
Scalable Network Traffic Visualization Using Compressed Graphs

Lei Shi∗, Qi Liao†, Xiaohua Sun‡, Yarui Chen§ and Chuang Lin§

Abstract—The visualization of complex network traffic in-
volving a large number of communication devices is a common
yet challenging task. Traditional layout methods create the
network graph with overwhelming visual clutter, which hinders
the network understanding and traffic analysis tasks. The
existing graph simplification algorithms (e.g. community-based
clustering) can effectively reduce the visual complexity, but lead
to less meaningful traffic representations. In this paper, we
introduce a new method to the traffic monitoring and anomaly
analysis of large networks, namely Structural Equivalence
Grouping (SEG). Based on the intrinsic nature of the computer
network traffic, SEG condenses the graph by more than 20
times while preserving the critical connectivity information.
Computationally, SEG has a linear time complexity and sup-
ports undirected, directed and weighted traffic graphs up to a
million nodes. We have built a Network Security and Anomaly
Visualization (NSAV) tool based on SEG and conducted case
studies in several real-world scenarios to show the effectiveness
of our technique.

Keywords-Security; Visualization; Graph Compression;

I. INTRODUCTION

There has been a recent surge of the network traffic in
both the Internet domain and the local area network, such as
enterprise private networks and data center networks. Mea-
suring and analyzing these traffic is made convenient lately
through the development of Software-Defined Networking
(SDN) and protocols such as OpenFlow [1]. In the process of
dealing with the network traffic, the visualization of overall
connection patterns, assumably as node-link graphs, is vital
in many scenarios. For example, in a company’s virtual
private network, the administrators need a way to get access
to the latest traffic patterns to maintain situational aware-
ness. Upon security alerts, they need to conduct interactive
traffic analysis to issue responsive mitigation and relevant
troubleshooting.

However, it is challenging to visualize the network traffic
graph scaling to a large number of hosts and complex

∗ State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Email: shil@ios.ac.cn

† Department of Computer Science, Central Michigan University, Email:
qi.liao@cmich.edu

‡ College of Design and Innovation, Tongji University, Email:
xsun@tongji.edu.cn

§ Department of Computer Science and Technology, Tsinghua Univer-
sity, Email: chenyarui@tsinghua.org.cn, chlin@tsinghua.edu.cn

This work is supported in part by the National Basic Research Program
of China (973 Program) under Grant No. 2010CB328105, National Science
Foundation of China (NSFC) under Grant No. 60932003 and 60973144.

connection patterns. First, the quadratic-complexity force-
directed drawing methods for the general graph [2] can not
calculate a good layout in real time (∼1s) for a graph with
more than a hundred nodes. Meanwhile, the number of hosts
in an Ethernet can easily reach multi-thousands without
counting different ports. Second, even if faster large graph
layouts can be computed in servers through optimizations
[3] [4], the visual clutter in the node-link representation (as
in Figure 1(b)), mainly the edge crossings, prohibits the user
from understanding the network traffic in details. Third, the
graph clustering algorithms with cohesive or distance based
measures, also known as community detection algorithms,
can greatly reduce the visual complexity by the multi-
scale graph abstraction approaches [5] [6]. Though quite
successful in analyzing social networks, these methods can
lead to poor results when communities are not prevalent,
which is the case for most network traffic graphs. An visual
example is shown in Figure 1(c). Moreover, the clustered
top view hides the context and topology details, which are
critical to traffic pattern analysis and discovery.

In this paper, we introduce a new graph simplification
method to the network traffic visualization problem, based
on the concept of structural equivalence [7] [8] well-known
in the social network research field. Rather than detecting
communities, structural equivalence classifies the network
nodes into categories by their position taken in the network,
depending merely on the network graph. Empirically this can
be better than the community-based clustering methods in
both reducing the graph size and preserving the connectivity
information, due to the high-frequency subgraph patterns in
the network traffic, such as singletons, hubs, and connectors
(Figure 1(b)). As shown in Figure 1(a), a 3460-host traffic
graph is reduced to 18 grouped nodes and 28 edges, while
the same graph by the modularity clustering [9] generates
50 intermediate cluster nodes (a maximal depth of 4), 939
unclustered nodes and 15438 edges in the top view. The
similar node pairing or grouping ideas have previously been
studied in [10] [11], as summarized in Section II, but none
of them develop and explore the method in an interactive
network traffic visualization context.

In more detail, we propose our main algorithm, Structural
Equivalence Grouping (SEG), in Section III. SEG completes
in linear time for sparse traffic graphs. Beyond the undirected
graphs, we extend SEG to support the directed and weighted
graphs. We also develop the fuzzy SEG method to control
the visual complexity in a finer granularity. The visual

(a) SEG-compressed view in NSAV tool

(b) Original view (c) Clustered view (d) Manual grouped view after SEG
Figure 1. VAST 2012 Mini Challenge-II network traffic graph in 40 hours (3460 nodes, 48599 edges), under different visualization approaches.

encodings and interaction methods for the SEG-compressed
traffic graph are introduced in Section IV. Notably we
support both SEG-defined and manual node grouping for
flexible graph navigation and analysis, as shown in Figure
1(d). The proposed SEG-based network traffic visualization
method is integrated into a tool called Network Security
and Anomaly Visualization (NSAV), which is evaluated in
the case studies under the computer network and security
scenarios in Section V. Results show that the NSAV tool can
significantly improve the domain user’s capability in their
traffic graph understanding, analysis and detail-accessing
tasks.

II. RELATED WORK

A. Structural Equivalence
The theory of structural equivalence dates back several

decades to the seminar work by social scientists Lorrain and
White [7]. In this very first paper, a categorical approach for
the algebraic analysis of social networks is proposed. The
aim is to reduce the social structure for better empirical study
on individuals’ relationships. The structural equivalence is
defined between two individuals who have the same type of
relationships with any others in the network.

Though the concept of structural equivalence is very neat
and easy to implement, in real world very few individuals
in the network share exactly the same relationships. Many

relaxing definitions of structural equivalence are proposed
later. In [12], automorphic equivalence is developed that
the two individuals are equivalence if they are swappable
together with some related others while keeping all the
network relationships intact. To better capture the notion
of social roles, the concept of structural relatedness [13]
and later regular equivalence [8] are proposed. Rather than
requiring exactly the same relationships with any others,
two individuals are equivalent if they share the same set
of neighborhood types.

B. Graph Visualization by Node Grouping

The most relevant visualization work is the graph drawing
with modular decomposition [10]. Rooted in the graph
theory, the module of a graph defines a set of nodes
that all nodes in the set are either neighbors or non-
neighbors simultaneously to all the other nodes outside the
set. Meanwhile, the modular decomposition is the process
to recursively partition the graph into a tree where every
tree node is a module of its parent. In [10], an algorithm
to draw a graph bottom-up along its modular decomposition
tree is proposed. The results are shown to reveal the graph
structure while preserving several layout aesthetics. The
similar work of motif simplification is done in [11] where the
frequent local structures in graph, such as fans, connectors
and cliques, are extracted and rendered as common motif

(a) Original graph (b) Compressed graph
Figure 2. SEG on an undirected graph.

glyphs encoding the type, size and specification. In the large
graph drawing context, the property of neighborhood set
is applied in an iterative coarsening process to reduce the
graph to smaller ones and layout recursively by the multi-
level drawing approach [14] [4]. The latest work in [15]
applies the node grouping to the representation of graph
adjacency matrices for visualizing gene regulatory networks.
For a comprehensive survey in the area of large graph
visualization, readers can refer to the paper in [16].

III. ALGORITHM

A. Structural Equivalence Grouping

Intuitively, SEG aggregates the graph nodes with the
same neighbor set together into groups and construct a new
graph for visualization. For example in the traffic graph
of Figure 2(a), the host “192.168.2.23” can be combined
with the other three surrounding hosts with exactly the same
connection pattern. The new graph after SEG (Figure 2(b)) is
called the compressed graph. The compressed graph has two
kinds of nodes: the single-node remaining from the original
graph (drawn in hollow) and the mega-node grouped from
multiple sub-nodes in the original graph (drawn with filled
colors). Before we formally describe the algorithms, graph
terminologies throughout this paper are first defined.

Definition. Let G = (V,E) be a directed, weighted and
connected original graph where V = {v1, ...,vn} and E =
{e1, ...,em} denote the node and link set. Let W be the graph
adjacency matrix where wi j > 0 indicates a link from vi to
v j, with wi j denoting the link weight. In each row of W , Ri =
{wi1, ...,win} denotes the row vector for node vi, representing
its connection pattern. The compressed graph after SEG is
denoted as G∗ = (V ∗,E∗). The compression rate is defined
by Γ = 1−|V ∗|/|V | (1−|E∗|/|E| in Section III-D).

The basic SEG algorithm takes the graph as a simple,
undirected and unweighted one by setting wii = 0 and wi j =
w ji = 1 for any wi j > 0.

Structural Equivalence Grouping. On graph G, for any
collection of nodes with the same row vector (including the
single outstanding node), aggregate them into a new mega-
node/single-node Gvi = {vi1 , ...,vik}. All Gvi form the node
set V ∗ for the compressed graph G∗. Let f vi = vi1 denote the
first sub-node in Gvi. The link set E∗ in G∗ are generated
by replacing all f vi with Gvi in the original link set, and

removing all the links not incident to any f vi. SEG is single-
pass on any graph, as any two nodes in the compressed graph
have different row vectors.

Directed Graph. The adjacency matrix W is trans-
formed to encode the both connection directions for each
node. Each row vector Ri(i = 1, ...,n) becomes Ri =
{wi(−n), ...,wi(−1),wi1, ...,win} having wi(− j) = w ji for j =
1, ...,n.

Weighted Graph. The adjacency matrix W is switched to
the weighted one by mapping a numeric data attribute of link
(i, j) (e.g. flow count in the traffic graph) to wi j in the matrix.
To further increase the compression rate, discretization of
the link weight is allowed: transform all link weights into
wi j ∈ (0,1] by either linear or non-linear normalization, and
then pick a bin count B(B≥ 1) and regenerate link weights
by wi j = dwi j×Be.

Supporting Clique. By the basic SEG, the sub-nodes
within a mega-node do not have any intra-group link.
However, it is also useful to group a clique of nodes with
the same external connection together. Specific rendering
can be applied to differentiate between mega-nodes with
isolated and fully connected sub-nodes. We devise a two-
step approach to achieve that: in the first step, the graph
adjacency matrix W is set to wii = 0, allowing the grouping
of isolated nodes. In the second step, W is reset to wii = 1
and all the original nodes not aggregated in the first step are
grouped again.

B. Controlling the Compression Rate

SEG is a deterministic algorithm in that for the same
original graph, it always produces the same compressed
graph. In the real usage, the user would like to flexibly
control the visual complexity after the compression.

Fuzzy Structural Equivalence Grouping. The basic idea
of fuzzy SEG is to group nodes with not only the same,
but also the similar neighbor set. The compression rate
can be increased with bounded compensation on accuracy.
The key is to define the pairwise similarity score between
graph nodes. Here we adopt the standard Jaccard similarity
between two sample sets A and B by J(A,B) = |A

⋂
B|

|A
⋃

B| . For
the directed and weighted graphs, we introduce a unified
Jaccard similarity computation between node vi and v j in
graph G by ρ =

∑∀k min(wik,w jk)

∑∀k max(wik,w jk)
. Note that for the directed

graph, k = −n, ...,−1,1, ...,n. Fuzzy SEG is achieved by
setting a similarity threshold ξ . The pair of nodes with ρ ≥ ξ

are grouped together iteratively.

C. Implementation

Structural Equivalence Grouping. The core step of SEG
to group nodes with the same row vector is achieved through
an appropriate hash function H(Ri) over the row vector
identifiers. The row vector identifier is created by splicing
the positive cells in the row into a string. This hash-based
implementation has a computational complexity of O(ND).

Table I
SEG PERFORMANCE ON VAST11 CHALLENGE DATASET.

Data edges edges rate time layout layout
(before) (after) (edges) (SEG) (before) (after)

undirected, sim=1 1613 50 96.9% 0.007 0.242 0.084
undirected, sim=0.8 1613 39 97.6% 0.012 0.242 0.088
undirected, sim=0.5 1613 23 98.6% 0.006 0.242 0.079

directed, sim=1 1613 82 94.9% 0.005 0.242 0.084

Table II
SEG PERFORMANCE ON VAST12 CHALLENGE DATASET.

Data edges edges rate time layout layout
(before) (after) (edges) (SEG) (before) (after)

undirected, sim=1 48599 28 99.9% 0.437 3.151 0.078
undirected, sim=0.8 48599 19 99.9% 0.515 3.151 0.062

directed, sim=1 48599 1022 97.9% 0.328 3.151 0.125
directed, sim=0.8 48599 403 99.2% 0.374 3.151 0.078

Table III
SEG PERFORMANCE ON TWITTER SOCIAL NETWORKS.

Data edges edges rate time
(before) (after) (edges) (SEG)

mention undirected 122976 66858 45.6% 2.074
mention, sim=0.5, anchor 122976 63089 48.7% 370.121
mention, sim=0.5, shingle 122976 59873 51.3% 24.92

follower undirected 2926986 2574823 12% 32.835

Here N is the number of nodes in the original graph, D is
the average node degree for the complexity to splice and
hash each row vector identifier. Therefore, the basic SEG
has a linear complexity and will perform well even for very
large graphs.

Fuzzy Structural Equivalence Grouping. We introduce
an improvement by the shingle-ordering [17] on the fuzzy
SEG implementation. For each row vector Ri, construct
the element set Ai = {a|wia = 1}. Given any permutation
σ : {1, ...,n} → {1, ...,n}, the shingle of the row vector Ri
is defined by Mσ (Ai) = σ−1(minα∈Ai{σ(α)}). By shingle
properties [17], the probability that shingles of set A and
B are identical is precisely their Jaccard coefficient J(A,B).
The corresponding fuzzy SEG algorithm still works in a
greedy manner to scan each node in a order. Each newly
scanned node without a group is selected as an anchor node
and also create a new group around the anchor node together
with the other nodes similar enough. Using shingle-based
method, we do not need to compare pairwise similarity. In-
stead, we pre-compute and record k shingles for each node’s
neighbor set, using k orthogonal permutation functions. At
most kN lists are created, each holding the nodes with a same
shingle result (1∼N) by one permutation function. Then for
each anchor node, we can get the set of similar enough nodes
by scanning the k corresponding list, according to the shingle
property. The overall complexity is O(kND+kN∗D2), where
kND is the complexity to pre-compute shingles, D2 is the
average size of the 2-hop neighbor set of each node, also
the upper bound of the average length of each list to scan.
In most graphs, the complexity is significantly below N2.

D. Performance

We evaluate the SEG performance in terms of the visual
compression rate (by the number of edges), the compression
time and the layout time before and after SEG. All the
experiments are carried out on the same 64-bit Windows
desktop (Intel Core i7@3.40GHz with 8GB memory). Table
I and II show the results on two traffic graph datasets.

Figure 3. User interface for compressed graph visualization. Left: SEG
controllers. Right: main panel for traffic visualization. Data set is from
VAST Challenge 2011.

Notably for both cases, SEG achieves a more than 95%
compression rate with the basic algorithm or applying a
fuzzy setting. The compression time is mostly below 0.5
second, reaching up to 104 edges. The layout time after SEG
is significantly reduced from that of the original graph.

We also experiment on one type of extreme-scale graph:
the twitter social graphs with up to millions of edges (Table
III). Because these graphs are beyond the application domain
of SEG, we only report their running time for the purpose
of a scalability study. The basic SEG compresses the largest
graph in half a minute; the fuzzy SEG with the shingle
implementation supports graphs with up to 105 edges and
returns results in 25 seconds.

IV. VISUALIZATION

A. Compressed Graph Visual Encoding

The right panel of Figure 3 gives an example of the SEG-
compressed graph visualization. As shown in the figure, the
mega-nodes are differentiated from the single-nodes by the
fill color. The single-nodes have no fill and the mega-nodes
have standard fill colors, with the color saturation mapped
to the number of sub-nodes in the group. The larger group
is filled with the more saturated color. By default, the fill
color hue is blue, e.g. the top-right node “192.168.1.10+”.
For the mega-nodes created by the fuzzy SEG, e.g. the node
“192.168.2.11+” on the right, the fill color will gradually
shift from blue to green and then to brown, according to
the smallest pairwise similarity score within the group. The
mega-node containing totally dissimilar nodes will lead to
a pure brown fill color. We do not use the node size to
represent the group size of the mega-node, since the group
size normally has a rather biased distribution. The large
groups can introduce unnecessary visual complexities which
counters our initial design goal.

Labels of the mega-node are created by aggregating the
labels of the sub-nodes in the original graph. Due to the
space limitation, an abstracted label is drawn on each mega-
node as the node identifier. The full label will pop-up upon

a mouse hovering or a click action, e.g. the one on the
node “192.168.1.10+”. The group size of each mega-node is
drawn below the visual node, together with the intra-group
similarity score when it is below one. By default, straight
lines are used to represent the links in the compressed graph,
with thickness mapped to the sum of counts of all the
corresponding links in the original graph. Compressed graph
attributes can also be mapped flexibly into the visuals. For
example, the node label can be the host types (Figure 1(a))
or the alphabetical anomaly icons (Figure 3) indicating the
type of anomalies happening on the host.

B. Graph Interaction Design

Except the basic graph interactions, more controls over
the SEG setting are accessible through a control panel as
in the top left of Figure 3. In the “Compression Options”
section, multiple checkboxes work as switches for the basic,
directed and weighted SEG. For the weighted SEG, the link
weight mapping from the graph attribute can be specified.
For normalized link weight, a bin number can be selected
to discretize the weight. In the “Compression Level” and
“Compression Similarity” sections, a larger or smaller com-
pressed graph is tunable by the LOD control and the fuzzy
SEG.

Complementary to the automatic SEG operation, we also
introduce the manual node grouping/splitting interaction as
in many cases the users have their own criteria towards a
best traffic abstraction. The user can either select a collection
of nodes and click the “group” button in the navigation
panel, or use drag-and-drop to group one node into another
once per time. In the drag-and-drop process, the pairwise
similarities with all the other nodes are shown as visual hints.
In a manual splitting process, the user can either select some
mega-nodes and click the “split” button, or just double-click
one mega-node. The mega-node grouped by the fuzzy SEG
will collapse to mega-nodes by the basic SEG, and further
collapses to the original sub-nodes.

C. Network Security and Anomaly Visualization Tool

In the integrated NSAV tool (Figure 1(a)), the compressed
traffic graph visualization functions as the major view in
the central panel. Meanwhile, there are several other panels
illustrating other facets of the network traffic.

Graph Node/Edge Filtering and Selection. This is in
the lower-left corner of the control panel in Figure 3. In
the “node” tab, the user can filter the graph according to
various criteria of the host importance. A host importance
distribution is shown on top of the slider to suggest a better
filter setting. In the “edge” tab, the graph is filtered according
to the connection importance respectively, The mapping of
the node/edge filtering criteria can be manually adjusted
according to the available attributes. Finally, in the “List”
panel, any individual host can be quickly selected from a
list so that the host will be highlighted in the traffic graph.

Data Center – Vlan 10 – 192.168.1.x/24

Internet

Cisco 3750E Switch

Mail Server
EX01

(192.168.1.6)

Shipping/Routing
Database Server

SRDB01
(192.168.1.4)

Internal Web
Server
WEB01

(192.168.1.5)

Cisco ASA5510
Firewall

All Freight Corporation
AFC.COM

Network Architecture

DMZ (VLAN 30)

File Server
FS01

(192.168.1.7)

HR Database
Server

HRDB01
(192.168.1.3)

150+ Workstations

DC / DNS / DHCP
DC01

(192.168.1.2)

External Web Server

Office - Vlan 20 - 192.168.2.x/24

DHCP pool
192.168.2.10-250

Snort
IDS

VLAN10

Span Port

Firewall log
(192.168.1.50)

DC / DNS
DC2

(192.168.1.14)

PCAP
Capture

192.168.1.16

192.168.1.1

172.20.1.1172.20.1.5

10.200.150.1

VLAN20

192.168.2.1

10.200.150.X/24

Figure 4. AFC network topology. Top-left: anomaly icon for event types.
Top-right: acceptable flow rules.

Anomaly Panel. The right panel of the NSAV tool is
referred as the anomaly panel (Figure 1(a)), which consists
of three sections. The first (top) panel includes a list of all
the anomaly types occurred during the specified time range.
Selection of any anomaly types from the list will highlight in
the traffic graph all the hosts on which such anomalies have
happened. The second (middle) panel consists of mappings
between anomaly icons and their anomaly type description,
much like a legend for the anomaly timeline visualization
below. The third (bottom) panel shows anomaly events as
timeline plots of all the interesting hosts under investigation.
Each unique anomaly event at a specific time will have
an anomaly icon to encode its type and count (orange
color represents the source and gray color represents the
destination for an anomaly connection).

Time Range Selector. The double-end slider at the bot-
tom of the tool allows the user to interactively select the
desired time range for the investigation period.

V. CASE STUDY

We first describe the method to process the network traffic
data in NSAV tool and then present two case studies.

A. Network Traffic Processing

The NSAV tool reads and automatically correlates several
standard network traffic and management data:

Netflow is the industry standard in network management
to collect and monitor network activities. Each Netflow
record contains information for a packet flow, e.g. src/dst
IP addresses and port numbers, protocol, flow size, start and
end timestamps, etc.

Intrusion Detection System (IDS) like Snort is a fully
functional and customizable system to monitor different
types of network traffic. IDS log includes all kinds of
intrusion detection events.

Acceptable Use Policy (AUP) of each organization is
about what activities/services are allowed within its network.
AUP can be transformed into a good rule set for visual
anomaly detections.

(a) Original (b) Compressed
Figure 5. AFC corporate network traffic overviews.

Operating System Log records events such as invalid
logon attempts, as well as events related to resource use,
such as creating, opening, and deleting files.

In detail, the NSAV tool first reads the Netflow data
and builds network flow graphs on each time window (an
hour by default). The flow graph of any consecutive time
windows is generated on the fly by merging the per-window
graphs. The network anomalies are extracted from AUP files,
IDS logs, OS logs and other reports, and then processed
into standard anomaly files for each host. For example, the
firewall anomalies are detected by first translating the AUP
into the Acceptable Flow Rules (top-right of Figure 4) and
filtering the Netflow entries with the rules. The anomaly type
list is given in the top-left of Figure 4.

B. Situational Awareness

We first apply the NSAV tool on the VAST 2011 Mini
Challenge-II dataset [18]. The dataset includes a computer
network architecture (Figure 4) of a shipping company - All
Freight Corporation (AFC) and all the necessary traffic data
for the tool, including three days of Netflow firewall log.
Note that we drop the src/dst port number when aggregating
the flow graphs, so as to reduce the traffic graph size.

We give a detailed user trail as below. Consider John,
the AFC network operation lead, is checking the corporate
network status of the recent three days for noteworthy events.
He starts by loading the whole network traffic in this period,
as shown in Figure 5(a). Because the view is too messy, he
continues by applying the basic SEG to create a compressed
traffic graph, as shown in Figure 5(b). From this graph, he
quickly learns some key hosts in the period (e.g. 1.2, 1.14.
“192.168.” is omitted throughout this study), but still feel a
little prohibitive to proceed to details. He further simplify
the graph by using the fuzzy SEG with a similarity score of
0.5. The resulting graph in Figure 3 is clear enough for his
overview purpose: the hosts in the central group (1.2, 1.6,
1.14, 2.171-173) and 2.174/175 are all the hub nodes.

Port Scan & OS Security Holes. Based on the AFC
network structure (Figure 4), John bypasses three server
machines (1.2, 1.6, 1.14) which routinely communicate with
all the hosts for DNS/data services. Also in his knowledge,
the suspicious behaviors of a hub node, e.g. port scan, often

Figure 6. The hosts with security holes and the cross-subnet port scans
from 192.168.2.174/175.

associate with the OS security holes. So he clicks on this
anomaly type and highlights all the hosts with such anomaly
on the graph. To drill-down to individual hosts, he splits the
fuzzy group and locates 2.171-2.175 as the threats. He finds
that 2.174/175 are more dangerous due to the higher port-
scan rate (by the link thickness) and the cross-subnet floods
to 1.10-250 where many hosts do not exist. The screenshot
with anomaly views of 2.174/175 is given in Figure 6.

DoS Attacks. A critical machine John examines in the
following is the AFC’s external web server (172.20.1.5).
With the SEG-compressed graph, this server is easily located
by its unique connection patterns. A single click on the
host shows up a noteworthy anomaly icons (I) on the
morning of the first day, suggesting that there could be
Denial-of-Service (DoS) attacks through SIP. John further
drills down to that period with the time range selector and
highlight the web server’s egocentric traffic graph. Figure 7
confirms the potential DoS attacks from the external hosts
10.200.150.201, 206-209, through the anomalies happening
simultaneously with the web server.

C. Botnet Detection

We evaluate on VAST 2012 Mini Challenge-II dataset
from a financial company’s network [19]. An overview of
the 40-hour network traffic by NSAV tool is shown in Figure
1(a). Noteworthy events are detected in a divide-and-conquer
manner over each of the connected components.

IRC Malware Infection and Botnet Behavior. In the
first subgraph of the network traffic, as in Figure 8, it
is identified that the I and M icons appeared frequently
and almost in couples in reverse directions. A selection
of the IRC−Malware− In f ection s anomaly (icon I) in
the anomaly type list reveals three group of hosts high-
lighted in red in Figure 8. They are all workstations having
enormous IRC connections to a portion of 12 websites
(10.32.5.*), potentially to be compromised botnet clients.
Further selecting two typical workstations (172.23.123.105,
172.23.231.174) and websites (10.32.5.50, 10.32.5.52), their
temporal anomaly distributions are plotted in the right panel
of Figure 8. It is shown that the IRC traffic exchanged with
the websites overwhelm in the whole inspected period. Note
that nine of the websites (10.32.5.51-59) reply with the IRC
authorization message (icon M), indicating the establishment
of potential botnet server-client connections.

Figure 7. DoS attacks against 172.20.1.5 (corporate web server) from
10.200.150.201, 206-209.

Figure 8. Three group of machines in heavy IRC traffic with the websites
through port 6667. Potential botnet infections.

The host 172.23.231.174 (all-time IRC client) show fine-
grained patterns: the connections are composed of two
temporal stages, indicated by a small gap in the middle of
the anomaly panel. A drill-down analysis at this gap shows
that the first stage ends-up with a large port (43325) and the
second stage starts with a small port (1185). After checking
the anomaly file, we conclude that the IRC traffic from the
workstations are programmed, with sequentially enumerated
source ports. It verifies the hypothesis that these hosts have
been compromised as botnet clients.

VI. CONCLUSION

In this paper, we apply the Structural Equivalence Group-
ing (SEG) method to visually condense the large network
traffic graph without sacrificing the connectivity information.
It is shown that SEG can effectively reduce the scale of many
real-world traffic graphs and still preserve critical features
of the original graph. The classical node-link representa-
tion is introduced to visualize the SEG-compressed graph,
with carefully designed visual encodings and interactions to
provide the user with both ease and interactivity in visual
analysis. We showcase the applications of the integrated
NSAV tool in two use cases and demonstrate the advantages
of the proposed compressed graph visualization technique.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Openflow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[2] E. R. Gansner, Y. Koren, and S. North, “Graph drawing by
stress majorization,” in Graph Drawing, 2004.

[3] P. Gajer and S. G. Kobourov, “GRIP: Graph drawing with
intelligent placement,” Journal of Graph Algorithms and
Applications, vol. 6, no. 3, pp. 203–224, 2002.

[4] Y. Hu, “Efficient and high quality force-directed graph draw-
ing,” Mathematica Journal, vol. 10, no. 1, pp. 37–71, 2005.

[5] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon, “Multi-
scale visualization of small world networks,” in InfoVis, 2003,
pp. 75–81.

[6] J. Abello, F. van Ham, and N. Krishnan, “ASK-GraphView:
A large scale graph visualization system,” IEEE Trans. Visual
Comput. Graphics, vol. 12, no. 5, pp. 669–676, 2006.

[7] F. Lorrain and H. C. White, “Structural equivalence of in-
dividuals in social networks,” The Journal of Mathematical
Sociology, vol. 1, no. 1, pp. 49–80, 1971.

[8] D. R. White and K. P. Reitz, “Graph and semigroup homo-
morphisms on networks of relations,” Social Networks, vol. 5,
no. 2, pp. 193–234, 1983.

[9] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Physical Review E, vol. 69, no. 6, p.
066133, Jun 2004.

[10] C. Papadopoulos and C. Voglis, “Drawing graphs using
modular decomposition,” Journal of Graph Algorithms and
Applications, vol. 11, no. 2, pp. 481–511, 2007.

[11] C. Dunne and B. Shneiderman, “Motif simplification: Improv-
ing network visualization readability with fan and parallel
glyphs,” in CHI, 2013, pp. 3247–3256.

[12] S. P. Borgatti and M. G. Everett, “Notions of position in social
network analysis,” Sociol. methodol., vol. 22, pp. 1–35, 1992.

[13] L. D. Sailer, “Structural equivalence: Meaning and definition,
computation and application,” Social Networks, vol. 1, no. 1,
pp. 73–90, 1978.

[14] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Software, vol. 38, no. 1, 2009.

[15] K. Dinkla, M. A. Westenberg, and J. J. van Wijk, “Com-
pressed adjacency matrices: Untangling gene regulatory net-
works,” IEEE Trans. Visual Comput. Graphics, vol. 18,
no. 12, pp. 2457–2466, 2012.

[16] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer,
J. J. van Wijk, J.-D. Fekete, and D. W. Fellner, “Visual
analysis of large graphs,” EuroGraphics - State of the Art
Report, pp. 37–60, 2010.

[17] F. Chierichetti, R. Kumar, and S. Lattanzi, “On compressing
social networks,” in KDD, 2009.

[18] “IEEE VAST Challenge,” 2011, http://hcil.cs.umd.edu/
localphp/hcil/vast11/.

[19] “IEEE VAST Challenge,” 2012, http://www.vacommunity.
org/VAST+Challenge+2012/.

