
Maximizing Multi-scale Spatial Statistical Discrepancy

Weishan Dong†, Renjie Yao†‡, Chunyang Ma†, Changsheng Li†,
Lei Shi]∗, Lu Wang§, Yu Wang†, Peng Gao†, Junchi Yan†

†IBM Research – China
‡Northeastern University, China

]SKLCS, Institute of Software, Chinese Academy of Sciences
§University of Chinese Academy of Sciences

{dongweis,machybj,lcsheng,yuwangbj,bjgaop,yanjc}@cn.ibm.com,
yrjyrjwp7@hotmail.com, shil@ios.ac.cn, luwang@ucas.ac.cn

ABSTRACT
Detecting anomalous events from spatial data has important
applications in real world. The spatial scan statistic meth-
ods are popular in this area. With maximizing the spatial
statistical discrepancy by comparing observed data with a
given baseline data distribution, significant spatial overden-
sity and underdensity can be detected. In reality, the spatial
discrepancy is often irregularly shaped and has a structure
of multiple spatial scales. However, a large-scale discrep-
ancy pattern may not be significant when conducting fine
granularity analysis. Meanwhile, local irregular boundaries
of a maximized discrepancy cannot be well approximated
with a coarse granularity analysis. Existing methods most-
ly work either on a fixed granularity, or with a regularly
shaped scanning window. Thus, they have difficulties in
characterizing such flexible spatial discrepancies. To solve
the problem, in this paper we propose a novel discrepan-
cy maximization algorithm, RefineScan. A grid hierarchy
encoding multi-scale information is employed, making the
algorithm capable of maximizing spatial discrepancies with
multi-scale structures and irregular shapes. Experiments
on a wide range of datasets demonstrate the advantages of
RefineScan over the state-of-the-art algorithms: It always
finds the largest discrepancy scores and remarkably better
characterizes multi-scale discrepancy boundaries. Theoreti-
cal and empirical analyses also show that RefineScan has a
moderate computational complexity and a good scalability.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

Keywords
Anomalous event detection; spatial scan statistic; multi-
scale statistical discrepancy

∗The work of Lei Shi is supported by China National 973 project
2014CB340301 and NSFC grant 61379088.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662007.

1. INTRODUCTION
Anomalous event detection is an important problem in

data mining. It has numerous applications in environmen-
tal monitoring, epidemic surveillance, criminology research,
etc. The spatial scan statistic [9] is one of the most popular
methods in detecting anomalous events from spatial dataset-
s, where the events are geo-referenced. In such a context, the
anomaly is defined as the unusually high (or low) density of
events in a geographically bounded region that is unlikely to
have occurred only by chance. To quantify such anomalies,
a statistical discrepancy score between observed data and a
given baseline distribution is evaluated and maximized. A
p-value that reflects the unusualness of the maximized dis-
crepancy is also computed by hypothesis testing. Such an
analysis is also referred to as overdensity/underdensity de-
tection [1, 5] or cluster detection [7, 12] where the region
maximizing the discrepancy score is called a cluster1. Take
the epidemic surveillance scenario as an example, the people
infected by an epidemic disease in a city are observed data,
which are called cases, and the people not infected are called
controls. The summation of cases and controls is called pop-
ulation, which defines the baseline distribution. Given the
locations of each data sample, maximizing the spatial statis-
tical discrepancy between the cases and the population can
identify city regions with elevated disease risk (overdensity).
Suppose there is a high density of population in the city cen-
ter, which naturally leads to a high density of disease cases
observed there if the probability of getting infected is uni-
form throughout the population. However, such a clustering
of cases caused by the inhomogeneous baseline distribution
is not anomalous. Only the extraordinary clustering effect
that exceeds the interpretability of the baseline is anoma-
lous, which implies a higher probability of getting infected
than expected. The discrepancy maximization is well suited
for such anomaly detection applications.

By searching over the geographical space, regions maxi-
mizing a discrepancy function (i.e., clusters) can be identi-
fied. In reality, the discrepancy can often be highly flexible
in its geospatial structure. On one hand, it may embed com-

1The difference between the cluster concept here and the
one in the classical clustering problem is significant. In the
classical clustering problem, the focus is the overall data
clustering effect instead of the statistical discrepancy de-
fined between observations and a baseline. Therefore, in the
classical clustering framework, the statistical significance is
usually not considered, and detecting underdensity is impos-
sible. More discussions can also be found in [1, 5].



0 50 100 150 200 250 300
0

50

100

150

200

250

300

 

control
case

(a) Dataset1
0 50 100 150 200 250 300

0

50

100

150

200

250

300

(b) 16× 16 grids
0 50 100 150 200 250 300

0

50

100

150

200

250

300

(c) 64× 64 grids

Figure 1: A sample dataset and overdensity regions
(significant at 0.05 level) detected by GridScan [5]

plex multi-scale structures that cannot be well described at
one spatial scale only. Especially, maximized discrepancies
obtained at different scales can be far different, which we
will discuss later. On the other hand, the shape of the clus-
ter can be irregular at different scales. We refer to it as the
multi-scale spatial discrepancy, which is ubiquitous in spatial
data. Figure 1(a) shows a typical example: a uniform distri-
bution of controls is overlaid with four overdensity regions
of cases that are of varied scales. The capability of modeling
such spatial discrepancies can be critical, since a more accu-
rate characterization of anomalies undoubtedly helps achieve
stronger situational awareness in real-world applications [17,
10, 2, 8, 5]. However, existing scan statistic based algorithm-
s mostly work on simplified data assumptions and often fail
when dealing with multi-scale spatial discrepancies. Mainly
due to computational reasons, earlier proposed algorithm-
s assume that the clusters have regular shapes, e.g., circle
[9], ellipse [10], and rectangle [12, 1]. Although the detected
clusters can be of varied scales, these algorithms easily fail
to detect irregularly shaped clusters, making their applica-
tions limited in practice. Recently proposed algorithms can
detect irregularly shaped clusters [17, 2, 8, 4, 5], but most of
which, if not all, work at a fixed spatial scale. Their common
assumption is that the input data are geographically aggre-
gated by areas with fixed boundaries. Sizes and shapes of
the areas are predefined by either administrative regions or
regular grids. Because the spatial granularity is fixed, the
spatial discrepancies at finer or coarser granularities cannot
be addressed, which is well-known in geographical analysis
as the modifiable areal unit problem (MAUP) [15]. In oth-
er words, these algorithms solve the single-scale discrepancy
maximization problem. Figure 1 demonstrates examples of
applying a typical grid-based algorithm, GridScan [5], with
two different grid sizes on the sample dataset. We can see
that when using 16 × 16 grids (relatively large grid units),
a large-scale cluster significant at 0.05 level is detected, and
it connects all the local overdensity regions. But apparent-
ly, the grids are too coarse to approximate the local shapes.
When using 64 × 64 grids (relatively small grid units), the
fine-grained overdensity is better characterized but the glob-
al shape also becomes fragmented. In addition, because the
cluster locating in the upper right of Figure 1(a) disconnects
with the others at the given scale, its discrepancy score is
too small to be identified as significant (at 0.05 level). The
limitation of analyzing a single scale is evident.

Nonetheless, determining an optimal spatial scale for a ge-
ographical analysis is difficult in general. In fact, according
to the MAUP, the possibly different (and sometimes even
contradictory) spatial analysis results obtained at different
scales are all correct [15]. Thus, the superiority of any single
scale over the others is usually hard to measure. However,
specifically in the cluster detection problem, the maximized

discrepancy scores obtained at different scales are numeri-
cally comparable. We argue that rather than striving to find
an“optimal” scale, a better strategy dealing with multi-scale
discrepancies can be: combining the information gathered
from different scales to search for the region globally max-
imizing the discrepancy score. To the best of our knowl-
edge, no algorithm so far can incorporate multi-scale in-
formation for spatial discrepancy maximization. Compared
with the single-scale analyses, there are three technical chal-
lenges in maximizing a multi-scale spatial discrepancy: (1)
Determining boundaries of the discrepancy is much harder
than working on a fixed areal aggregation. Because there
is no available reference boundary at larger or smaller s-
cales, the search space is tremendously enlarged. (2) Due
to the MAUP, cluster detection results can be far differen-
t at different scales when the discrepancy indeed embeds
multi-scale structures. A reasonable way of combining such
information has to be developed. (3) Algorithms meeting
the two aforementioned challenges will inevitably introduce
additional computations. The overall computational com-
plexity must be acceptable in practice.

To meet these challenges, in this paper, we propose a nov-
el spatial discrepancy maximization algorithm, RefineScan.
The main idea is as follows. (1) On top of a base level
spatial aggregation (by regular grids in this paper) that rep-
resents the finest granularity in which the user is interested,
a multi-level grid hierarchy is built for information diffusion
across multiple scales. (2) On a higher level of the hier-
archy, the grid unit size becomes larger. Region search is
initially done on the top level grids to locate large-scale,
yet coarse, clusters. (3) The coarse clusters are then iter-
atively refined on lower levels until reaching the base level,
so that the useful information for maximizing the discrep-
ancy is kept and passed on to lower levels. An additional
technical challenge is that, due to the mathematical charac-
teristics of the employed discrepancy function (i.e., the scan
statistic likelihood), there is theoretical possibility of cluster
merging and splitting during refinement. In-depth analyses
are given from this perspective, and efficient computational
methods are developed accordingly. By doing so, the cluster-
s detected by RefineScan not only preserve the large scale
spatial connectedness that may help globally maximize the
discrepancy, but also accurately characterize small scale ir-
regular shapes. Experiments will show that compared with
existing algorithms, RefineScan performs the best in max-
imizing multi-scale spatial discrepancy and characterizing
the flexible clusters given ground truths. The computation-
al complexity of RefineScan is also moderate: O(n + N3)
given N ×N base level grids and a dataset of size n.

The remainder of the paper is organized as follows. Sec-
tion 2 details RefineScan and analyzes its computational
complexity. Section 3 presents experimental studies. Sec-
tion 4 reviews related work. Section 5 concludes the paper.

2. PROPOSED APPROACH
Table 1 summarizes the notations used in this paper. Kull-

dorff’s scan statistic [9] is one of the most popular discrep-
ancy measures developed in literature. Given a region Z,
the likelihood function of the scan statistic, L(Z), is defined
as the objective function of discrepancy maximization. T-
wo widely used probabilistic models for defining L(Z) are
Bernoulli and Poisson. Formally, when data are typical bi-
nary events, the Bernoulli model is used. Then we have



Table 1: Notations
Symbol Description
D input spatial dataset
n number of population in D, n = |D|
m number of cases in D, m ≤ n
N ×N dimension of base level regular grids
Z a cluster (region) defined by connected cells
nZ number of population inside Z
mZ number of cases inside Z
lmax number of levels of grid hierarchy, log2 N ≥ lmax ≥ 1
l level indicator of grid hierarchy, lmax ≥ l ≥ 0

C(l) set of all grid cells on level l, |C(l)| = N

2l
× N

2l

c a grid cell on a given level, c ∈ C(l)
nc number of population inside cell c
mc number of cases inside cell c

U set of unmarked cells on a given level, U ⊆ C(l)
K number of Monte Carlo simulations

L(Z) =

(
mZ

nZ

)mZ

×
(

1− mZ

nZ

)nZ−mZ

(1)

×
(
m−mZ

n− nZ

)m−mZ

×
(

1− m−mZ

n− nZ

)(n−nZ)−(m−mZ)

When the number of cases in data is known as Poisson dis-
tributed, the Poisson model is used, and

L(Z) =

(
mZ

E(mZ)

)mZ

×
(

m−mZ

m− E(mZ)

)m−mZ

(2)

where E(mZ) = m
n
× nZ is the expected number of cases in

a region under the null hypothesis of no overdensity or un-
derdensity. Also note that additional baseline information
other than locations can be considered here. For instance,
variables such as age and sex in the epidemic surveillance
application mentioned in Section 1 can be treated as covari-
ates, and E(mZ) becomes the covariate adjusted expectation
[9, 11]. A cluster is found by arg maxL(Z). Local optima
of L(Z) also need to be found, because multiple local clus-
ters can exist, which are necessary to be detected in prac-
tice. When detecting overdensity, a constraint mZ

nZ
> m−mZ

n−nZ

is applied, meaning only regions with more cases observed
than expected are to be detected. Conversely, mZ

nZ
< m−mZ

n−nZ

is applied for underdensity detection. Because the distribu-
tion of L(Z) is unknown, Monte Carlo simulation is usually
adopted to calculate the p-value when evaluating the signif-
icance of a cluster [9]. Specifically, a number of replicated
datasets are generated by randomly reassigning the case and
control labels under the null hypothesis. On each replicated
dataset, L(Z) is maximized, which refers to one simulation.
Suppose a cluster Z′ has a discrepancy score L(Z′), then
its p-value is p = r+1

K+1
, where K is the number of simula-

tions, and r is the number of discrepancy scores obtained
from the simulations with values no smaller than L(Z′). In
implementations, logL(Z) is often used instead of L(Z), so
we will use logL(Z) in algorithm descriptions hereafter. Al-
gorithm 1 outlines the overall cluster detection framework.
Line 1 is detecting all clusters by RefineScan. Lines 2–6
are Monte Carlo simulations. Lines 7–9 are computations of
p-values. Function I(·) on line 8 is the indicator function.

2.1 RefineScan Algorithm
To handle the multi-scale spatial discrepancy, a grid hier-

archy data structure is employed in RefineScan. Suppose
N ×N grids are applied to the data in D as the base level
grids. A base level grid cell is either marked or unmarked,
indicating its state of whether being a part of a cluster or
not. We define that a higher level regular grid cell is the
parent of four lower level grid cells, and a lower level cell

Algorithm 1: ClusterDetection

Input: D;K
Output: A set of clusters, clusters

1 clusters← RefineScan(D);
2 KClusters← ∅;
3 for i← 1 to K do // Monte Carlo simulations

4 generate a replicated dataset Di;
5 tmpClusters← RefineScan(D);

6 KClusters← KClusters ∪ {arg maxZ′∈tmpClusters log L(Z′)};
7 foreach Z ∈clusters do // compute p-values

8 r ← ΣZ′∈KClustersI(log L(Z′) ≥ log L(Z));

9 pZ ← r+1
K+1 ;

10 return clusters;

Figure 2: An example of three-level grid hierarchy

equals one quadrant of a parent cell. In this way, the base
level N × N grids correspond to N

2
× N

2
grids on a higher

level, namely level one, and further build up N
22
× N

22
grids

on level two, and so on. On level l, there are N
2l
× N

2l
grids.

Figure 2 shows a simple example of a three-level grid hierar-
chy. On a given level of the grid hierarchy, a cluster is a set
of connected cells. In this paper, we consider the immedi-
ate neighboring relationship defined by the 8-connectedness
(i.e., the first-order Queen spatial contiguity). We regard
cells inside a cluster as marked and the rest unmarked. Let
U denote all the unmarked cells on a level. Get8NB(c) is a
function returning all the 8-connected neighboring cells of
cell c. The inner-neighbors and outer-neighbors of a cluster
are defined as follows.

Definition 1 (Inner-Neighbors). Inner-neighbors
( inNB) of a cluster Z are the marked cells of Z neighboring
U : inNB = {c|c ∈ Z, Get8NB(c) ∩ U 6= ∅}.

Definition 2 (Outer-Neighbors). Outer-neighbors
( ouNB) of a cluster Z are the unmarked neighboring cells of
Z: ouNB = {c|c ∈ U , Get8NB(c) ∩ Z 6= ∅}.
We use GetInNB(Z) and GetOuNB(Z) to denote the functions
returning all inner- and outer-neighbors of Z, respectively.

The flow of RefineScan is shown in Algorithm 2, which
is a two-step procedure. After initializing the grid hierarchy
(lines 1–3), in the first step (lines 4–8), the rough locations
of candidate clusters at the largest available scale are identi-
fied by region-growing on the top level grids. The procedure
of locating a large-scale cluster is LocateCluster (Algorith-
m 3). In the second step (lines 9–15), each of the large-scale
and coarse clusters is refined on lower level grids, such that
the spatial structure at a finer level is exploited. The refine-
ment is done on each level of the hierarchy in a top-down
manner. Before refining on a lower level, all clusters and U
are reconstructed by decomposing every component grid u-
nit into its four children grids on the lower level. Then, each
cluster is iteratively refined by either removing cells from the
inner-neighbors, or growing cells from the outer-neighbors.
Once the refinement of all clusters finishes on one level, the
same operations are repeated on the next available lower lev-
el. Apparently, the granularity of a cluster becomes finer as



Algorithm 2: RefineScan

Input: D;N ; lmax;minP.
Output: A set of clusters, clusters.

1 define C(0) with N ×N regular base level grids;

2 foreach c ∈ C(0) do set mc and nc based on D;

3 build grid hierarchy H = {C(0), C(1), . . . , C(lmax)};
// locate large-scale clusters on top level grids

4 U ← C(lmax); clusters← ∅; candSeedSet← U ;
5 while candSeedSet 6= ∅ do
6 {Z, candSeedSet,U, clusters} ←

LocateCluster(candSeedSet,U, clusters,minP);
7 if Z 6= ∅ then clusters← clusters ∪ {Z};
8 else break;

// refine clusters to characterize local shapes
9 l← lmax − 1;

10 while l ≥ 0 do

11 decompose grids in each Z ∈ clusters and U to C(l) grids;
12 label each Z ∈ clusters as unrefined;
13 foreach unrefined Z ∈ clusters do
14 {U, clusters} ← RefineCluster(Z,U, clusters,minP);

15 l← l− 1;

16 return clusters;

the level goes down. Meanwhile, because the principle of re-
finement is to monotonically enlarge the discrepancy scores,
the grids’ spatial connectedness at larger scales is retained
also at smaller scales as long as it is helpful for enlarging the
score. It can be seen as information diffusions from higher
to lower grid levels. In this way, the information of different
scales is combined for cluster detection. The procedure of
refining a cluster is RefineCluster (Algorithm 5).

2.1.1 LocateCluster (Algorithm 3)
The objective here is to roughly and also quickly locate

a cluster on the top level grids. It can be inferred that

an exhaustive search needs to test 2|C
(lmax)| = 2

( N

2lmax
)2

alternatives to find the optimal solution, which is computa-
tionally inefficient. Therefore, here we adopt a greedy yet
effective cluster growing strategy proposed in GridScan [5],

which only has a linear time complexity to |C(lmax)|. Briefly,
it first finds a seed cell for a cluster, and then locally grows
the cluster by its outer-neighbors. The seed is chosen from a
candidate seed set (candSeedSet) by maximizing logL({c}).
When growing a cluster, only one cell chosen from the outer-
neighbors is included (and marked) each time. The cell is
found by maximizing a discrepancy gain function Gg(Z, c).

We first define a function Sg(Z, c) before formulatingGg(Z, c).
The aforementioned cluster growing is greedy in nature.
Therefore, it is possible that a growing cluster Z can ap-
proach one or more (at most three under 8-connectedness)
existing clusters that have stopped growing in previous it-
erations. Let mergClusters = {Z′|c ∈ GetOuNB(Z′), Z′ ∈
clusters} denote such clusters, where set clusters denotes
existing clusters. If there exists a cell c ∈ GetOuNB(Z) ∩
GetOuNB(Z′), then marking c will connect Z and Z′. In this
case, the supposed discrepancy score of Z by growing c is:

Sg(Z, c) = logL(Z ∪ {c} ∪mergClusters) (3)

It is known that Sg(Z, c) is not surely greater than both
logL(Z) and logL(Z′) [5]. If ∃Z′ ∈ mergClusters, s.t. Sg(Z, c) <
logL(Z′), c will not be chosen for growing. This is to re-
strict the discrepancy score to monotonically increase. It
can be inferred that merging Z with Z′ by c to obtain
a larger size cluster Z′′ = Z ∪ {c} ∪ Z′ requires the fol-

Algorithm 3: LocateCluster

Input: Candidate seeds, candSeedSet; U ; clusters; minP.
Output: New cluster Z; Updated candSeedSet; Updated U ;

Updated clusters.
1 Z ← ∅; ouNB← ∅;
2 c0 ← arg maxc∈candSeedSet log L({c}); // find seed cell
3 if log L({c0}) > 0 and AboveMinP (c0,minP) then
4 U ← U \ {c0}; // mark seed cell
5 Z ← {c0}; // initialize Z
6 ouNB← Get8NB(c0);
7 while true do
8 cnext ← arg maxc∈ouNB Gg(Z, c);
9 if Gg(Z, cnext) > 0 and AboveMinP(cnext,minP) then

10 mergClusters← {Z′|cnext ∈ GetOuNB(Z′), Z′ ∈
clusters};

11 foreach Z′ ∈ mergClusters do
12 Z ← Z ∪ Z′; // merge with Z

13 ouNB← ouNB ∪ GetOuNB(Z′);

14 clusters← clusters \ {Z′};
15 U ← U \ {cnext}; // mark cell cnext

16 Z ← Z ∪ {cnext}; // grow Z by cnext

17 ouNB← ouNB \ {cnext} ∪ (Get8NB(cnext) ∩ U);

18 else
19 candSeedSet← candSeedSet \ (Z ∪ ouNB);
20 break; // stop growing

21 return {Z, candSeedSet,U, clusters};

Algorithm 4: AboveMinP

Input: Grid cell c; minP.
Output: A boolean value, true or false.

1 switch cluster detection objective do
2 case overdensity return (mc ≥ minP);
3 case underdensity return (nc −mc ≥ minP);

lowing two conditions: (1) L(Z′) > L(Z′ ∪ {c}), indicat-
ing that Z′ did not grow by c in earlier search, and (2)
L(Z′′) > L(Z′)

∧
L(Z′′) > L(Z), indicating that Z′′ has

a larger discrepancy score than both Z and Z′. It is easy
to prove that this never happens when L(Z) is monoton-
ic with mZ

nZ
. This is because when finding overdensity, if

mZ′
nZ′

>
mZ′+mc

nZ′+nc
, we have either

mZ′+mZ+mc

nZ′+nZ+nc
<

mZ′
nZ′

or
mZ′+mZ+mc

nZ′+nZ+nc
< mZ

nZ
. When finding underdensity, such a

conclusion also holds with reversing the directions of the
inequations. However, because L(Z) is neither monotonic
with mZ

nZ
nor with nZ , cluster merging is likely to happen.

The discrepancy gain function of growing a cell, Gg(Z, c), is:

Gg(Z, c) =

0 if ∃Z′ ∈ mergClusters
s.t. Sg(Z, c) < logL(Z′)

Sg(Z, c)− logL(Z) otherwise

(4)

When choosing the seed or cell to grow, an additional con-
dition is AboveMinP (Algorithm 4). It is to restrict extra
large size of a cluster and make the cluster shape compact.
A parameter minP is applied to limit the inclusion of cells
that contain too less points. Empirical studies have shown
that a default minP =1 works well enough in many cases [5].

2.1.2 RefineCluster (Algorithm 5)
Given that the clusters and U are decomposed to the cur-

rent level grids, refining a cluster Z is also iterative and
incremental. In each step, two operations are evaluated: (1)
removing a cell from Z’s inner-neighbors, or (2) growing a
cell from Z’s outer-neighbors. The one better enlarges Z’s
discrepancy score will be applied. Because the discrepancy



Algorithm 5: RefineCluster

Input: Unrefined cluster Z;U ; clusters;minP.
Output: Updated U ; Updated clusters.

1 inNB← GetInNB(Z);
2 ouNB← GetOuNB(Z);
3 while true do
4 cin ← arg maxc∈inNB Gr(Z, c);
5 cout ← arg maxc∈ouNB Gg(Z, c);
6 if Gr(Z, cin) = Gg(Z, cout) = 0 then
7 label Z as refined; // stop refining
8 break;

9 if Gr(Z, cin) ≥ Gg(Z, cout) then
10 spltClusters← {Z′|

⋂
Z′ = ∅, Z =

⋃
Z′ ∪ {cin}};

11 foreach Z′ ∈ spltClusters do
12 Z ← Z \ Z′; // split new cluster

13 label Z′ as unrefined;

14 clusters← clusters ∪ {Z′};
15 U ← U ∪ {cin}; Z ← Z \ {cin}; // remove cin
16 nb← Get8NB(cin);
17 inNB← inNB \ {cin} ∪ (nb ∩ Z);
18 ouNB← ouNB∪{cin}\{c|c ∈ nb∩U, c /∈ GetOuNB(nb∩Z)};
19 else if AboveMinP(cout,minP) then
20 mergClusters← {Z′|cout ∈ GetOuNB(Z′), Z′ ∈ clusters};
21 foreach Z′ ∈ mergClusters do
22 Z ← Z ∪ Z′; // merge existing cluster

23 inNB← inNB ∪ GetInNB(Z′);

24 ouNB← ouNB ∪ GetOuNB(Z′);

25 clusters← clusters \ {Z′};
26 U ← U \ {cout}; Z ← Z ∪ {cout}; // grow cout

27 nb← Get8NB(cout);
28 if nb ∩ U = ∅ then
29 inNB← inNB \ nb; // fill special case hole
30 else
31 inNB← inNB ∪ {cout} \ {c|c ∈ nb ∩ Z, c /∈

GetOuNB(nb ∩ U)};
32 ouNB← ouNB \ {cout} ∪ (nb ∩ U);

33 return {U, clusters};

score is monotonically increased, if a large-scale cluster has
been roughly located on a higher level, its component grids’
spatial connectedness can still be preserved on lower levels
as long as its discrepancy score keeps increasing.

Removing a cell from inner-neighbors is implemented on
lines 9–18. This may cause a cluster to split into multiple (at
most four under 8-connectedness) pieces. Let spltClusters =
{Z′|

⋂
Z′ = ∅, Z =

⋃
Z′ ∪{c}} denote the new clusters that

will split out of Z once removing c. Z will then become Z′′ =
Z \ {c} \ spltClusters. The supposed maximized discrepancy
score generated by removing c from Z is:

Sr(Z, c) = max
Z′∈spltClusters∪{Z′′}

logL(Z′) (5)

Similar to the analysis in Section 2.1.1, Sr(Z, c) is not always
greater than logL(Z) or logL(Z′), where Z′ ∈ spltClusters∪
{Z′′}. Therefore, cluster splitting is probable as well. When
judging if removing c can result in cluster splitting, just con-
sidering c and its 8-neighbor is necessary but not sufficient.
There are 28−1 = 255 possible situations of the 8-neighbor.
The excluded situation refers to that the 8-neighbor cells
are all unmarked, which never happens. It can be proved
by enumeration that, in 132 out of the 255 situations, s-
pltClusters is guaranteed to be empty, which simplifies the
computation of (5). Still, there are 123 situations that may
cause cluster splitting. Figure 3 illustrates two such typical
situations. Nevertheless, such situations do not certainly
lead to cluster splitting, because the split parts observed in
the 8-neighbor area may still be connected from outside. In
this case, finding all the connected components of Z \ {c} is

(a) (b)

Figure 3: Two typical situations of 8-neighboring
cells that may cause cluster splitting if removing the
cell in the center (in gray). Dark cells are marked.
White cells are unmarked.

needed to obtain spltClusters. We restrict that if the clus-
ter splitting does not result in at least one new cluster with
discrepancy score greater than the original logL(Z), the cell
will not be removed. The discrepancy gain function of re-
moving operation, Gr(Z, c), is thus defined as:

Gr(Z, c) = max{Sr(Z, c)− logL(Z), 0} (6)

An inner-neighbor maximizing Gr(Z, c) will be considered
to remove from Z. The inner- and outer-neighbors are to be
updated incrementally (lines 16–18) after the removal.

As an alternative to removing an inner-neighbor, grow-
ing an outer-neighbor is also evaluated. Key steps of such a
cluster growing (lines 19–32) are similar to LocateCluster

(Algorithm 3). Once a cell maximizing Gg(Z, c) is deter-
mined to be included in Z, again, probable cluster merging
is handled. The inner- and outer-neighbors are also to be
updated (lines 23, 24, 27–32). Different from LocateClus-

ter where inner-neighbors are not considered, a special case
of updating inner-neighbors needs to be handled (line 29):
Suppose within a cluster, there is a hole with a size of one
cell, which must be an outer-neighbor2. If this hole is cho-
sen for growing, then its 8-neighbor should be removed from
inner-neighbors and no insertion is performed, which is d-
ifferent from the normal cases (line 31). By comparing the
maximized Gr(Z, c) and Gg(Z, c), either removing or grow-
ing that better improves the discrepancy score is applied at
a time. The refinement stops if there is no further improve-
ment on the current level (line 8).

2.2 Computational Complexity Analysis
We consider the time complexity of detecting one cluster

in RefineScan (Algorithm 2). Data aggregation (lines 1–
2) costs O(n + N2). Building the grid hierarchy (line 3)

costs O((N
2

)2 + . . .+( N
2lmax

)2) = O(N2 · 4
lmax−1
3·4lmax

) = O(N2).
The dominant computation on lines 4–8 is LocateCluster

(Algorithm 3). The complexity of growing one cluster is
of the same order of the cluster growing in GridScan given
( N
2lmax

)2 grids [5], which can be proved to be O(N2).
In the refinement step (lines 9–15), the primary com-

putations include line 11 that costs O(( N

2(l−1) )2) and Re-

fineCluster (Algorithm 5). Inside RefineCluster, the pri-
mary computations are lines 4–5. All the rest set operations
can have efficient implementation so that their cost is domi-
nated. We can infer that the size of inner- or outer-neighbors
approximately equals the length of a cluster’s perimeter P .
On level l, in extreme cases, Pl = O((N

2l
)2), whereas in most

cases, Pl = O(N
2l

). Calling GetInNB(Z) in RefineCluster

(line 1) at the first time after cluster growing on the top

2It can be proved that such a hole cannot be generated in
upper levels since the unit cell size of upper levels must be
larger. Therefore, it can only be generated on the current
level. A theoretically possible cause can be that, a hole with
area larger than a cell is generated by cluster merging, and
it is filled by growing with one cell left unmarked.



level needs to traverse all outer-neighbors. But afterward-
s, if all inner- and outer-neighbors are always kept together
with Z, GetInNB(Z) only costs O(1). GetOuNB(Z) on line
2 always costs O(1) because outer-neighbors are already
maintained since LocateCluster. Finding cin (line 4) costs
O(Pl · (|spltClusters| + p · |Z|)), where O(|Z|) is the size of
cluster Z (also is the complexity of finding connected com-
ponents), and p is the probability of observing the 123 situa-
tions that may cause cluster splitting (see Section 2.1.2). We
have |spltClusters| ≤ 3 and in most cases it is equal to 0. Be-
sides, empirical results show that usually p < 123

255
. Therefore

in normal cases, O((N
2l

)3) can be a reasonable cost approxi-

mation for line 4, if assuming |Z| is of order O((N
2l

)2). Sim-

ilarly, finding cout (line 5) costs O(Pl) = O(N
2l

). Therefore,

RefineCluster has a complexity of O((N
2l

)3). The cost of re-

finement on all levels is thus O(
∑lmax
l=0 (( N

2(l−1) )2 + (N
2l

)3)) =

O(N2 · 16·(4
lmax−1)

3·4lmax
+N3 · 8

(lmax+1)−1
7·8lmax

) = O(N3).

Overall, the time complexity of RefineScan is O(n+N2+
N3) = O(n+N3). As can be seen, RefineScan can handle
very large datasets without difficulty, because the complex-
ity is linear to dataset size n with fixed N . Note that N
may not be very large in practice (e.g., N=1K is very large
already). If n� N , the complexity approaches O(n).

Now let us compare a naive algorithm that maximizes the
multi-scale discrepancy directly on the base level grids by ex-

haustive search. Given N×N grids, there are 2(N2) possible

ways of marking them. The algorithm will cost O(n+2(N2))
to find the global optimum, which is unacceptable in prac-
tice. Although RefineScan employs a greedy search that
does not guarantee the global optimality, as a trade-off, it-
s computational cost is significantly lower. Experiments in
the next section will show that RefineScan can have remark-
able performance when compared with the state-of-the-art
discrepancy maximization algorithms.

3. EXPERIMENTAL STUDIES
In this section, we will experimentally evaluate the perfor-

mance of RefineScan using a variety of public datasets. We
will also study the impacts of parameters on RefineScan as
well as the algorithm’s scalability.

3.1 Tasks, Datasets, and Common Settings
Eight overdensity and underdensity detection tasks are

conducted on six datasets (see Table 2). More or less, these
datasets all contain multi-scale spatial discrepancies, which
will be clearly seen later. These datasets were also used
as benchmarks in previous studies [3, 4, 5]. All the tasks
are overdensity detections except for task 3. Dataset1 and
Dataset2 are purely spatial datasets. “Emerging”, “expand-
ing”, and “moving” are spatio-temporal datasets. We adopt
certain data chunks of two weeks from the original datasets,
with data collected in the earlier week treated as controls
and data collected in the latter week treated as cases. Epi-
demic is also a spatio-temporal dataset, and each record is
a microblog with time stamp and GPS location. The orig-
inal dataset containing totally 1,023,077 microblogs is from
the IEEE VAST Challenge 2011 Mini-Challenge 13. Fever
and Diarrhea are its subsets, corresponding to two typical
subgroups of microblogs that are classified by epidemic key-
words fever and diarrhea. In the data chunk of May19day,

3http://hcil.cs.umd.edu/localphp/hcil/vast11

Table 2: Cluster detection tasks
#task dataset task type
1 Dataset1 overdensity
2 Dataset2 overdensity
3 Dataset2 underdensity
4 “emerging”: weeks 3–4 overdensity
5 “expanding”: weeks 3–4 overdensity
6 “moving”: weeks 4–5 overdensity
7 Epidemic - Fever: May19day overdensity
8 Epidemic - Diarrhea: May19day overdensity

microblogs containing the certain keywords are treated as
cases, and the rest are treated as controls. All the data
preparations (including how the data are grouped and la-
beled) are exactly the same as in the literature. More details
of these datasets, the ground truths, and the pre-processing
steps can be found in [3, 5].

Based on the common discrepancy function, logL(Z), we
compare RefineScan with a typical grid-based algorithm,
GridScan [5], Kulldorff’s spatial scan statistic [9] using cir-
cular and elliptic windows (SaTScan software [11] as imple-
mentation), and Neill’s scan statistic [12] using rectangular
window on regular grids (city4 applic software [13] as imple-
mentation). In Neill’s approach, only overdensity detection
with Poisson model is implemented. On Dataset2 and Epi-
demic, Poisson model is used for all algorithms. On the
other datasets, Bernoulli model is used for all algorithms
except Neill’s approach. Default minP =1 is used in Re-

fineScan. Unless explicitly mentioned, parameters of the
candidate algorithms are set to their default values. We use
K = 99 Monte Carlo simulations and report clusters signifi-
cant at 0.05 level. All experiments are done on a 64-bit Win
7 machine with Intel Core 2 2.66GHz CPU plus 3G memory.

We will first evaluate the visualization results of detected
clusters for each task. This verifies the necessity of char-
acterizing multi-scale spatial discrepancy. Then, we will e-
valuate the numerical results by comparing the maximized
discrepancy scores and analyzing the CPU time cost of Re-
fineScan. At last, we will analyze the impact of parameters
on RefineScan, and study the algorithm’s scalability.

3.2 Visualization Evaluation
On task 1, we use N=64, lmax=2 in RefineScan. The

grid hierarchy is thus a 3-level structure with 16 × 16 top
level grids. As a fair comparison, we also test N=16 and 64,
respectively, for both GridScan and Neill’s approach. Data
distribution of Dataset1 is shown in Figure 1(a). As an il-
lustration of the execution process of RefineScan, Figure 4
shows the snapshots of the cluster’s shape outputted by Re-

fineScan (highlighted grids in the figure) on each level of
the grid hierarchy. We can see that at first, RefineScan

locates all the overdensity regions on the top level (level
2) with large connected grids, and then refines the overal-
l shape with smaller grid units on the lower levels (levels
1 and 0) while keeping the connectedness on larger scales.
The top-down procedure of cluster refinement can be clearly
seen. The comparison of all candidate algorithms’ results on
task 1 are summarized in Figure 5. The results of RefineS-
can and GridScan are shown by highlighted grids, SaTScan
results are shown by circles and ellipses, and the results of
Neill’s approach are shown by rectangles in dashed blue line.
We can see that RefineScan better characterizes the cluster
shape than the others. GridScan cannot well approximate
the cluster boundary with large grids although the correct
regions are identified. Also, it cannot detect significant over-
density at larger scales with too small grids: Some regions



(a) LocateCluster on level 2

(b) Refinement on level 1 (c) Refinement on level 0

Figure 4: Illustration of RefineScan execution on
task 1. Clusters are shown with base level grids.
The control data are not displayed for clarity.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

(a) RefineScan
0 50 100 150 200 250 300

0

50

100

150

200

250

300

(b) Others N=16
0 50 100 150 200 250 300

0

50

100

150

200

250

300

(c) Others N=64

Figure 5: Results on Dataset1 (task 1)

with dense cases easily regarded insignificant. It is note-
worthy that, although the finest grids used in RefineScan

are the same as in GridScan (64 × 64), their results are far
different. The effectiveness of RefineScan in terms of han-
dling multi-scale spatial discrepancy is clearly demonstrated.
Neither SaTScan nor Neill’s approach can work well: Due to
the limitation of the regular scanning windows, they cannot
recognize the true cluster shape and often wrongly detect a
large connected region as multiple (and overlapping) ones.

On tasks 2 and 3, we use N=32, lmax=2 in RefineScan.
Therefore, the grid hierarchy is 3-level with 8×8 grids on top.
We also test N=8 and 32 for GridScan and Neill’s approach.
The dataset and cluster results are shown in Figure 6. We
can see that the comparisons generate similar conclusions to
task 1. RefineScan better characterizes the cluster’s overall
shape. In contrast, other algorithms either split a connect-
ed region into separate ones or report unnecessarily large
areas. Still, with the same finest grids (32 × 32), RefineS-
can behaves differently from GridScan. The advantage of
RefineScan will be further illustrated when examining the
maximized discrepancy scores in Section 3.3 (Table 3).

On tasks 4–6, we useN=40, lmax=1 in RefineScan, mean-
ing a grid hierarchy of 2 levels with 20×20 grids on top is em-
ployed. Results of the other candidates are adopted from [5]

19 20 21 22 23 24 25 26
22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

 

control
case

(a) Dataset2

19 20 21 22 23 24 25 26
22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(b) RefineScan
19 20 21 22 23 24 25 26

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(c) Others N=8
19 20 21 22 23 24 25 26

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(d) Others N=32

19 20 21 22 23 24 25 26
22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(e) RefineScan
19 20 21 22 23 24 25 26

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(f) Others N=8
19 20 21 22 23 24 25 26

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

27.5

(g) Others N=32

Figure 6: Dataset2 and results. Task 2 results are
shown in (b)(c)(d) and task 3 results in (e)(f)(g).

for comparison. GridScan and Neill’s approach use N=20.
The results are shown in Figure 7. The data in these datasets
are not as dense as in Dataset1 and Dataset2, which makes it
difficult to capture the patterns with small grids. Moreover,
20 × 20 is an appropriate setting considering the scales in
which the true clusters are generated [3]. The true clusters in
the datasets are a circle, a large-scale ring, and an L-shaped
area, respectively. Again, we can find that RefineScan cap-
tures the correct spatial discrepancy structures, improving
the results of GridScan. More detailed numerical improve-
ments can be found in Section 3.3 (Table 3). On the other
hand, SaTScan and Neill’s approach do not work well, even
when facing the circular true cluster (see Figure 7(d)).

On tasks 7 and 8, we only compare RefineScan with Grid-
Scan since the true clusters are notably irregular. 30 × 76
base grids and lmax=1 are used in RefineScan. The up-
per level grids are thus 15 × 38. In GridScan, 15 × 38 and
30×76 grids are used, respectively. Results are visualized in
Figure 8. We can see that RefineScan again works better:
One cluster for fever and one cluster for diarrhea are detect-
ed, which is consistent with the ground truth (c.f. [5]), and
the shapes are correctly characterized with plenty of detail-
s. GridScan can have satisfactory results with coarse grids.
But if using fine grids, the diarrhea cluster breaks into four
pieces, and the fever cluster breaks into two parts with much
smaller sizes. This again indicates that as a single-scale algo-
rithm, GridScan can be sensitive to the grid setting, whereas
RefineScan is more robust due to combining and utilizing
the information from multiple spatial scales.

3.3 Numerical Evaluation
The maximized discrepancy scores obtained by each can-

didate algorithm on the eight tasks are reported in Table 3.
We can find that RefineScan performs the best throughout
the experiments. It always finds the largest discrepancy s-
core, indicating its remarkable performance in maximizing
multi-scale spatial discrepancy from a variety of dataset-
s even in presence of irregularly shaped clusters. Since the
search strategies of the candidate algorithms differ with each
other and are implemented in different languages and pro-
gramming models, it is not meaningful to directly compare



0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

 

incidents collected during week 3
incidents collected during week 4
true cluster

(a) RefineScan on “emerging”
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

 

incidents collected during week 3

incidents collected during week 4

true cluster inner bound

true cluster outer bound

(b) RefineScan on “expanding”
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

 

incidents collected during week 4
incidents collected during week 5
true cluster

(c) RefineScan on “moving”

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

(d) Others on “emerging”
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

(e) Others on “expanding”
0 5 10 15 20

0

2

4

6

8

10

12

14

16

18

20

(f) Others on “moving”

Figure 7: Results on the three spatio-temporal datasets (tasks 4–6). In all the figures, true clusters are
explicitly denoted. RefineScan results are shown in (a)–(c). Results of other algorithms are shown in (d)–(f).

Table 3: Comparisons of maximized discrepancy s-
cores. RefineScan performs the best (bolded). For
GridScan and Neill’s approach, when two grid sizes
are used for a task, the results obtained by coarse
grids (smaller N) are shown in the upper row.

# RefineScan GridScan
Neill’s SaTScan SaTScan
approach (circular) (elliptic)

1 3338.26
2202.52 539.569

392.750 N/A]

1074.77 686.293

2 299.976
219.939 109.868

61.042 142.031
292.687 91.575

3 277.805
178.414

N/A† 126.615 137.059
137.935

4 50.1049 36.3827 9.55162 30.7689 31.4163
5 89.0435 49.6349 0* 12.2105 17.0193
6 63.0508 33.9758 15.6311 26.8212 28.4956

7 240.479
160.343

– – –
113.954

8 401.706
331.344

– – –
181.249

]Insufficient memory. †Underdensity detection not supported.
*No cluster was detected.

their computational time. Therefore, here we only report the
CPU time of RefineScan on each task (one run of Algorith-
m 2 on the original data without Monte Carlo simulations
and single threaded C++ implementation) in Figure 9. We
can find that generally, larger dataset size (n), the number
of base grids (N), lmax and true cluster size (i.e., the number
of marked grids), and a more irregularly shaped multi-scale
discrepancy, will result in more CPU time. Overall, the
computational cost of RefineScan is moderate.

3.4 Impact of Parameters and Scalability
To analyze the impacts of the primary parameters N and

lmax on RefineScan, and further verify the algorithm’s s-

Figure 9: CPU time of RefineScan on each task
calability, we conduct additional experiments on a simulat-
ed dataset, D1K [5] that contains 103 cases and 103 con-
trols for Bernoulli model based overdensity detection. It
is noteworthy that although the reported result here is on
a specific dataset, the conclusion coincides with the theo-
retical analysis in Section 2.2, and can be generalized to
any datasets. We first test the performance of RefineS-

can using feasible combinations of N ∈ {8, 16, 32, 64, 128}
and lmax ∈ {0, 1, 2, 3, 4, 5, 6}. Note that lmax is bounded by
log2N , and in practice at most log2N − 1 since a search s-
tarting with only one grid unit on the top level is meaningless
in most cases. Therefore, only the combinations satisfying
lmax < log2N are tested.

The results of maximized discrepancy scores are summa-
rized in Table 4. In the table, the largest scores obtained
are shown in bold. We can see that in general, when lmax
is sufficiently large, a larger N leads to a larger discrepancy
score. This is natural since a finer base granularity helps
better characterize clusters’ shape. Meanwhile, with a fixed
N , lmax is not necessarily to be as large as log2N − 1 to
obtain the maximized discrepancy score. This is also rea-
sonable, because as long as the grid size on a level of the



−93.55 −93.5 −93.45 −93.4 −93.35 −93.3 −93.25 −93.2

42.2

42.25

42.3

Longitude

La
tit

ud
e

 

others
fever case
diarrhea case

(a) Data Overview

−93.55 −93.5 −93.45 −93.4 −93.35 −93.3 −93.25 −93.2

42.2

42.25

42.3

Longitude

La
tit

ud
e

 

ground zero location

(b) RefineScan

−93.55 −93.5 −93.45 −93.4 −93.35 −93.3 −93.25 −93.2

42.2

42.25

42.3

Longitude

La
tit

ud
e

 

ground zero location

(c) GridScan: 15× 38

−93.55 −93.5 −93.45 −93.4 −93.35 −93.3 −93.25 −93.2

42.2

42.25

42.3

Longitude

La
tit

ud
e

 

ground zero location

(d) GridScan: 30× 76

Figure 8: Results on tasks 7 and 8. Diarrhea clusters are shown in blue. Fever clusters are shown in orange.

Table 4: Maximized discrepancy scores with varying
lmax and N
PPPPPlmax

N
8 16 32 64 128

0 57.2237 790.295 278.854 269.319 102.171
1 516.732 790.295 1016.2 336.941 327.793
2 57.2237 790.295 1016.2 1164.41 397.031
3 - 790.295 1016.2 1164.41 1265.07
4 - - 1016.2 1164.41 1265.07
5 - - - 1164.41 1265.07
6 - - - - 1265.07

Table 5: CPU time cost (in second) with varying
lmax and N
PPPPPlmax

N
8 16 32 64 128

0 0.031 0.125 0.266 0.797 2.263
1 0.089 0.36 7.942 13.672 53.879
2 0.026 0.968 8.219 65.754 129.106
3 - 0.343 8.985 67.969 557.234
4 - - 8.078 69.453 562.656
5 - - - 67.406 565.094
6 - - - - 600.641

grid hierarchy is sufficiently large to capture the global scale
structure, an even larger grid size at a higher level does no
more help. In contrast, if N is too small (e.g., N=8, the first
column of Table 4), meaning the base level grids are still too
coarse, the algorithm may become unstable due to missing
details of the data distribution in the aggregation step. Be-
sides, even with a sufficiently large N , if lmax is too small
(e.g., N = 128 and lmax ∈ {0, 1, 2} in Table 4), RefineScan
cannot benefit much from the grid hierarchy due to miss-
ing data distribution information at larger scales. Hence,
RefineScan cannot work well either.

The CPU time cost of RefineScan (still, one run without
Monte Carlo simulations) is summarized in Table 5. Gen-
erally, when the dataset size n is constant, larger N and
larger lmax values naturally result in increased CPU time.
Section 2.2 showed that RefineScan has a computational
complexity of O(n+N3), where the O(n) complexity is in-
troduced only by parsing the dataset for one time aggrega-
tion before detecting clusters. Therefore, as validation on
the linearity with n is trivial, we omit it here. We only need
to verify that with a constant n, the primary computation
is linear to N3. Accordingly, we choose the CPU time cost
obtained by the largest lmax for each N (values are bold-
ed in Table 5) and study the relationship between the real
CPU time and N . Figure 10 shows the samples and a fitted

0 50 100 150
−2

0

2

4

6

8

10
x 10

5

N

C
P

U
 T

im
e 

(m
s)

 

 

Sample

y = 0.2872 N3 − 2376.7

Figure 10: CPU time against N

curve from the samples. The curve is obtained by regress-
ing the CPU time with variable N3 using a linear model
y = aN3 + b. When plotting the linear model against N ,
it becomes a cubic curve. The obtained linear equation is
y = 0.2872N3 − 2376.7 with R square 1.0, indicating a per-
fect linearity between the CPU time and N3.

The results show the performance of RefineScan with
changing parameters and verify the theoretical analyses in
earlier sections. The guidelines of setting the parameters
of RefineScan when applying it to new real-world problem-
s can also be given: N should be set as large as possible
if more detailed discrepancy structure is of great interest.
However, this may lead to a larger computational cost (lin-
ear to N3 given a dataset), and thus a trade-off should be
considered in practice. The grid hierarchy plays a key role in
successfully characterizing multi-scale discrepancies, while a
large enough lmax (but may not necessarily close to log2N
depending on the data distribution) is also helpful.

4. RELATED WORK
Previous studies on spatial discrepancy maximization for

overdensity/underdensity detection either only consider reg-
ularly shaped clusters or just focus on a fixed spatial scale.
Typical algorithms addressing regular shapes include the s-
patial scan statistics methods using circular and elliptic s-
canning windows proposed by Kulldorff et al. [9, 10] and the
rectangular window based scan statistics proposed by Neill
et al. [12, 14] and by Agarwal et al. [1]. Given a dataset
with size n, the computational complexity of cluster detec-
tion (with excluding data preparation) of Kulldorff’s scan



statistic methods is at least O(n2) when running without
aggregation and becomes O(N2) when data are aggregated
to N×N grids [9, 10]. It can be inferred that a naive search
for rectangular regions costs O(N4) given N×N grids. Neill
et al. reduces the complexity to O((N logN)2) [12]. Agarw-
al et al’s ε-approximation algorithm costs O( 1

ε
N3 logN) [1].

Compared with these algorithms, the proposed RefineS-

can in this paper is much more flexible and more powerful,
and its computational complexity O(N3) is quite acceptable.
There are also algorithms that can detect irregularly shaped
clusters, but most of which work on a pre-defined spatial
scale. Typical algorithms in this category include GridScan
proposed by Dong et al. [5], the random-work based FS3

proposed by Janeja and Atluri [8], AMOEBA proposed by
Aldstadt and Getis [2], a flexible scan statistic proposed by
Tango and Takahashi [17], etc. As analyzed in previous sec-
tions, because there is no explicit consideration on the multi-
scale spatial structure embedded in data, these algorithms
cannot well handle multi-scale spatial discrepancy. More-
over, their performance can be sensitive to the aggregation.
Many of these algorithms employ exhaustive search, making
their scalability poor. The lowest computational complexity
by far isO(N2) of GridScan [5], which is linear to the number
of grids (N ×N) or say aggregation areas. By comparison,
we can see that RefineScan does not introduce heavy addi-
tional computations considering the significant performance
improvement over these single-scale algorithms.

The traditional clustering algorithms in data mining can
also be applied to spatial datasets to discover clustering pat-
terns. For instance, DBSCAN proposed by Ester et al. [6]
is capable of considering multi-scale information within the
classical clustering framework. There are also grid-based
algorithms, such as STING proposed by Wang et al. [18]
and WaveCluster proposed by Sheikholeslami et al. [16].
A grid hierarchy is also employed in STING to store the
multi-scale statistical information for spatial query speed-
up. Nonetheless, as already discussed in Section 1, due to
the intrinsic difference between the classical clustering prob-
lem and the overdensity/underdensity detection problem on
which this paper focuses, these algorithms do not work on
discrepancy maximization. Not to mention that RefineScan
utilizes the grid hierarchy in a different way: The top-down
manner of the cluster refinement in RefineScan essentially
implements the information diffusion across multiple spatial
scales, which is totally different from the speed-up purpose
motivating the grid hierarchy in STING.

5. CONCLUSION
In this paper, we propose a novel algorithm RefineScan

for multi-scale spatial statistical discrepancy maximization.
By employing a multi-level grid hierarchy with efficient clus-
ter growing and refinement methods, RefineScan is good at
maximizing flexible spatial discrepancies even when facing
multi-scale and irregularly shaped discrepancy structures.
Experiments show that RefineScan outperforms the state-
of-the-art algorithms by (1) finding the largest discrepan-
cy scores throughout the experiments, and (2) better char-
acterizing the true shapes of overdensity and underdensity.
The impacts of parameters on RefineScan are also studied.
Guidelines of setting the parameters are given accordingly.
GivenN×N base level grids and a dataset of size n, the com-
putational complexity of RefineScan is O(n + N3), where
N can be bounded to a small number in practice. It makes

RefineScan a scalable and effective algorithm for detecting
spatial anomalous events from large datasets.

6. REFERENCES
[1] D. Agarwal, A. McGregor, J. Phillips,

S. Venkatasubramanian, and Z. Zhu. Spatial scan
statistics: approximations and performance study. In
KDD’06, pages 24–33. ACM, 2006.

[2] J. Aldstadt and A. Getis. Using AMOEBA to create a
spatial weights matrix and identify spatial clusters.
Geographical Analysis, 38(4):327–343, 2006.

[3] W. Chang, D. Zeng, and H. Chen. A stack-based
prospective spatio-temporal data analysis approach.
Decision Support Systems, 45(4):697–713, 2008.

[4] W. Dong, X. Zhang, Z. Jiang, W. Sun, L. Xie, and
A. Hampapur. Detect irregularly shaped
spatio-temporal clusters for decision support. In SOLI,
pages 231–236. IEEE, 2011.

[5] W. Dong, X. Zhang, L. Li, C. Sun, L. Shi, and
W. Sun. Detecting irregularly shaped significant
spatial and spatio-temporal clusters. In SDM, pages
732–743, 2012.

[6] M. Ester, H. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, pages
226–231, 1996.

[7] V. Iyengar. On detecting space-time clusters. In
KDD’04, pages 587–592. ACM, 2004.

[8] V. Janeja and V. Atluri. Random walks to identify
anomalous free-form spatial scan windows. IEEE
Trans. Knowl. Data Eng., 20(10):1378–1392, 2008.

[9] M. Kulldorff. A spatial scan statistic. Comm. Statist.
Theory Methods,, 26(6):1481–1496, 1997.

[10] M. Kulldorff, L. Huang, L. Pickle, and L. Duczmal.
An elliptic spatial scan statistic. Statistics in
Medicine, 25(22):3929–3943, 2006.

[11] M. Kulldorff and Information Management Services,
Inc. SaTScanTM v8.0: Software for the spatial and
space-time scan statistics, 2009.
http://www.satscan.org.

[12] D. Neill and A. Moore. Rapid detection of significant
spatial clusters. In KDD’04, pages 256–265, 2004.

[13] D. Neill, A. Moore, K. Daniel, and R. Sabhnani.
city4 applic software for Scan Statistics, 2011. Auton
Lab, Carnegie Mellon University, http://www.
autonlab.org/autonweb/downloads/software.html.

[14] D. Neill, A. Moore, M. Sabhnani, and K. Daniel.
Detection of emerging space-time clusters. In KDD’05,
pages 218–227, 2005.

[15] S. Openshaw. The modifiable areal unit problem. Geo
Books, 1984.

[16] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
Wavecluster: A multi-resolution clustering approach
for very large spatial databases. In VLDB, pages
428–439, 1998.

[17] T. Tango and K. Takahashi. A flexibly shaped spatial
scan statistic for detecting clusters. International
Journal of Health Geographics, 4(1):11, 2005.

[18] W. Wang, J. Yang, and R. Muntz. STING: A
statistical information grid approach to spatial data
mining. In VLDB, pages 186–195, 1997.


