
A Coloring Algorithm for Disambiguating
Graph and Map Drawings

Yifan Hu , Lei Shi , and Qingsong Liu

Abstract—Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it

is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements.

In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed

algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to

a space decomposition of the color gamut. We give examples demonstrating this approach in real world graphs and maps, as well as

a user study to establish its effectiveness and limitations.

Index Terms—Graph drawing, virtual maps, edge coloring, branch-and-bound algorithm, global optimization

Ç

1 INTRODUCTION

GRAPHS are widely used to depict relational information
among objects. Typically, graphs are visualized as

node-link diagrams [1]. In such a representation, edges are
shown as straight lines, polylines or splines. Graphs that
appear in real world applications are usually non-planar.
For such graphs, edge crossings in the layout are unavoid-
able. It is a commonly accepted principle that the number of
edge crossings should be minimized whenever possible.
This principle was confirmed by user evaluations which
showed that human performance in path-following is nega-
tively correlated to the number of edge crossings [27], [30].
Later studies found that the effect of edge crossings varies
with the crossing angle. In particular, the task response time
decreases as the crossing angle increases, and the rate of
decrease levels off when the angle is close to 90 degree [20],
[21]. This implies that it is important not only to minimize
the number of edge crossings, but also to maximize the angle
of the crossings. Consequently, generating drawings that
give large crossing angles, or even right crossing angles,
became an active area of research (e.g., [7]). Nevertheless, for
general non-planar graphs, there is no known algorithm that
can guarantee large crossing angles for straight line draw-
ings [7]. Therefore, techniques to mitigate the adverse visual
effect of small angle crossings are important in practice.

In this paper we propose to use colors to help differentiate
edges. Our starting point is an existing layout, and we

assume that the graph is to be displayed as a static image on
paper, or on screen. The motivation comes from users of the
Graphviz [14] software. These users were generally happy
with the layouts of their graphs, but asked whether there
was any visual instrument that could help them follow edges
better. Examining their layouts, we realized that because
edges were drawn using the same color (e.g., black), it was
difficult to visually follow these edges when there were a lot
of edge crossings. The feedback from our users, and our own
observation, echo the findings by Huang et al. [20], [21].
When explaining why small crossing angles are detrimental
to the task of following a path, they found, with the help of
an eye tracking device, that “when edges cross at small angles,
crossings cause confusion, slowing down and triggering extra eye
movements.” and that “in many cases, it is crossings that cause
confusion, making all the paths between two nodes, and branches
along these paths, unforeseeable. Due to the geometric-path ten-
dency, human eyes can easily slip into the edges that are close to the
geometric path but not part of the target path.”

Edge crossing is not the only hindrance to the visual clar-
ity of a graph drawing. We denote by the term label the
drawing of a node, including the text label. An additional
problem is that when an edge from node u passes under-
neath the label of a node v and connects to a node w, it is
impossible to visually tell whether there is one edge u$ w,
or two edges u$ v and v$ w, when all edges are of the
same color (e.g., Fig. 3b). These problems can be solved
with user interactions by clicking on an edge of interest, or
on a node to bring its neighbors closer (see, e.g., [23]). How-
ever, doing so involves an extra step for the user that may
not be necessary if edges can be differentiated with a proper
visual cue. Furthermore, there are situations where interac-
tion is not possible, e.g., when looking at a static image of a
graph on screen, or in print. These are the situations that are
of particular interest in this paper.

We believe all the problems of visually distinguish-
ing and following edges mentioned above can be greatly
alleviated by choosing appropriate colors or line styles to

� Y. Hu is with the Yahoo Research, Sunnyvale, CA 94089.
E-mail: yifanhu@yahoo.com.

� L. Shi and Q. Liu are with the SKLCS, Institute of Software, Chinese
Academy of Sciences and UCAS, Beijing 100049, China.
E-mail: {shil, liuqs}@ios.ac.cn.

Manuscript received 17 July 2017; revised 16 Jan. 2018; accepted 21 Jan. 2018.
Date of publication 25 Jan. 2018; date of current version 31 Dec. 2018.
(Corresponding author: Lei Shi.)
Recommended for acceptance by B. Lee.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2018.2798631

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019 1321

1077-2626� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2017-924X
https://orcid.org/0000-0003-2017-924X
https://orcid.org/0000-0003-2017-924X
https://orcid.org/0000-0003-2017-924X
https://orcid.org/0000-0003-2017-924X
https://orcid.org/0000-0002-1965-2602
https://orcid.org/0000-0002-1965-2602
https://orcid.org/0000-0002-1965-2602
https://orcid.org/0000-0002-1965-2602
https://orcid.org/0000-0002-1965-2602
mailto:
mailto:

differentiate edges. We first identify edge pairs that need to
be differentiated (the colliding edges), and represent them as
nodes of a dual collision graph. We then propose an algo-
rithm to assign colors to the nodes of this collision graph
that maximizes the color difference between nodes that
share an edge. Our main contributions are:

� An approach for establishing a dual graph among
colliding edges/regions, and coloring the nodes of
the dual graph to disambugate graph/mapdrawings.

� A novel branch-and-bound graph coloring algorithm
that finds the globally optimal color embedding of
each nodewith regard to its neighbors. The algorithm
works with both continuous color spaces and user-
defined color palettes, and can be applied to graphs
with straight or curved edges, and tomaps.

� A user study that establishes the effectiveness of the
coloring approach, as well as its limitations.

2 RELATED WORK

2.1 Color Assignment

Graph coloring is a classic problem in algorithmic graph
theory. Traditionally the problem is studied in a combinato-
rial sense, for example, finding the smallest number of k col-
ors on the vertices of a graph so that no two vertices sharing
an edge have the same color. The difference between this
and our work is that in the k-colorability problem, a solution
is valid as long as any pairs of vertices that share an edge
have different colors; no consideration is given to maximiz-
ing the actual color differences. In essence, the distance
between colors is binary—either 0 or 1. For our problem, we
assume that even among distinctive colors, the differences
are not equal. They are measured by distances in the color
space. In the special case when only k colors are allowed,
our algorithm degenerates to find the optimal color assign-
ment among all solutions of the k-colorability problem.

This last problem of optimal color assignment was also
studied by Gansner et al. [12] and Hu et al. [18], in the con-
text of coloring virtual maps to maximize the color differen-
ces between neighboring regions. In these works, a set of
exactly k distinctive colors are assumed to be given, with k
being the number of countries in the map. The map was
then colored by an optimal permutation of the k colors. On
the other hand, in this paper we assume that the color space
can be either continuous or discrete, and we select among
all colors in the color space to maximize color differences.
When applied to map coloring, our algorithm produces k
distinctive colors as a side product.

Dillencourt et al. [8] studied the problem of coloring geo-
metric graphs so that colors on nodes are as different as pos-
sible. The problem they studied is very related to ours,
except that in their case the application is the coloring of geo-
metric regions, whereas we are also interested in coloring
edges of a graph. Dillencourt et al. used a force-directed gra-
dient descent algorithm to find a locally optimal coloring of
each node with respect to its neighbors. We propose a new
algorithm based on a branch-and-bound process over an
octree decomposition of the color space that finds a globally
optimal coloring for each node with respect to its neighbors.
Furthermore, our approach is more flexible and works for
discrete color palettes, in addition to continuous color spaces.

2.2 Crossing Angles

Given the finding by Huang et al. [20], [21] that edge cross-
ings at close to 90 degree hamper human performance less
than those at smaller angles, there are active researches
in the so called Right-Angle Crossing (RAC) drawings
of graphs. In such a drawing, edges cross at right angles
(e.g., [7]). This is a practice employed in hand- and algo-
rithm-drawn metro maps as well (e.g., [31]). However, it
was shown [7] that a straight-line RAC drawing can have at
most 4n� 10 edges, with n the number of vertices. As far as
we are aware, even that is only a necessary, but not suffi-
cient, condition. Therefore, techniques to help alleviate the
effect of small angle crossings when RAC or larger angle
drawings are not feasible are important in practice.

The angular resolution of a drawing is the sharpest angle
formed by any two edges that meet at a common vertex. In
addition to maximizing crossing angles (e.g., [7]), there have
been research efforts in maximizing the angular resolution in
order to improve visual clarity. Most recently, Lombardi
Drawings of graphs was proposed [3], [9], in which edges are
drawn as arcs with perfect angular resolution. However,
Purchase et al. [29] found that even though users prefer the
Lombardi style drawings, straight-line drawings created by
a spring-embedder gives better performance for path follow-
ing and neighbor finding tasks. For straight-line drawings,
while it is possible to adjust the layout to improve the angular
resolution (e.g., [6], [15]), the extent to which this can be done
is limited. Although a previous study by Purchase et al. [28]
did not find sufficient support for maximizing angular reso-
lution, we find that when two edges connected to the same
node are almost on top to each other, it is difficult to tell
whether these are two edges or one. For this reason we con-
sider such edges to be in collision aswell.

2.3 Edge Bundling and Edge Coloring

Edge bundling is another useful tool for decluttering draw-
ings of complex graphs [4], [11], [13], [16], [17]. However
when edges are bundled, it is no longer possible to follow an
individual edge to its exact destination. Pupyrev et al. [26]
proposed to separate edges belonging to the same bundle by
a small gap. While this makes it possible in theory to follow
individual edges, in practice the edges in each bundle are
drawn very close to each other. We believe whether fully
bundled, or separated by a small amount, bundled or routed
edges can benefit from using colors to differentiate among
them (see Fig. 8). Peltonen and Lin [25] devised an alternative
approach to coloring edges in the context of edge bundling:
they made the color distance among bundled edges propor-
tional to the sum of euclidean distances of the end points.
They solved a multidimensional scaling (MDS) problem
to embed each bundled edge in a lower dimensional color
space. The MDS process minimizes the sum of the square of
differences between a pair of edges in the color space, and
their distance in the layout space. The minimization under-
weights edge pairs that have similar starting and ending
points. The resulting embedding colors edge bundles start-
ing from and ending in the same regions with similar colors.
This is contrary to our use case where such edges will be
assigned distinctive colors, and makes it difficult to follow a
particular edge. The paper highlighted other differences
from our original conference paper [19]. In addition, the

1322 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

optimization problem solved in [25] is unconstrained and
without consideration of the shape of the color space. An
affine transformation is applied afterwards to find the final
embedding in the color space. On the other hand, we opti-
mize directly in the color space, thus potentially have more
freedom in choosing the right colors. Furthermore, unlike
our algorithm, the algorithm proposed in [25] does not work
with discrete palettes.

As far as we know, Jianu et al. [22] were the first to pro-
pose the idea of using colors to differentiate edges. However,
we believe our work is substantially different and better.
Jianu et al. considered all pairs of edges, and set the edge
weights among all edges to be the inverse of either the inter-
section angle or the edge distance if the edges do not inter-
sect. This is sub-optimal in the resulting coloring since it is
perfectly harmless to color edges that have no conflict with
the same color. In our work, we propose a sparse dual colli-
sion graph, constructed based on four collision conditions.
Using our terminology, the approach of Jianu et al. always
results in a complete collision graph, making it inefficient
other than for very small graphs. Furthermore, because they
consider all edge pairs, every edge of the original graph ends
up with a unique color. Therefore the drawings in [22],
which are all of very small graphs, always contain a multi-
tude of colors, which is unnecessary. Our collision graph
almost always contains disconnected components (e.g.,
Fig. 4). This decomposes the coloring problem into smaller
ones, and allows us to use the same (black) colors for many
edges. Jianu et al. [22] solved the coloring problem using a
force-directed algorithm, similar to Dillencourt et al. [8]. We
were kindly given the source code for [22] from one of the
authors. Based on reading the code, we found that it applies
force directed algorithm to nodes of the collision graph in the
2D subspace of the LAB color space (the AB subspace). It
then sets a fixed L value of 75 (L is the lightness, between 0 to
100). This observation is consistent with the drawings in [22],
where black background is used for all drawings due to the
high lightness value (see also Fig. 6d). This makes the algo-
rithm limited to a small subset of all possible colors. Further-
more, the force-directed algorithms of Dillencourt et al. [8]
and Jianu et al. [22] can only be applied to continuous color

space in 2D or 3D. Neither works for user specified color
palettes, or 1D colors. Our algorithmworks for both continu-
ous or discrete color spaces. Overall, we believe that the idea
of using colors for disambiguating edges are quite natural to
think of. What differentiates our work from [22] is the design
of an appropriate algorithm that makes the idea work effi-
ciently and effectively in practice, and for continuous and
discrete color spaces. Finally, we present the first user study
which evaluates the results of our algorithm. The results sug-
gested possible scenarios when edge coloring is effective,
and demonstrated that our proposed algorithm is more
effective than that of Jianu et al.

This paper was originally published as a conference
paper [19]; the journal version adds substantial new materi-
als including a new user study, and expands the algorithm
and results sections.

3 THE EDGE COLORING PROBLEM AND

A COLORING ALGORITHM

Appropriate coloring can be of great help in differentiating
edges that cross at a small angle. Fig. 1 (left) illustrates such
a situation. It is difficult to follow the edge from the blue
node 19 to the blue node 16. In comparison, in Fig. 1 (right),
it is easier to see that they are connected via a blue edge.
The objective of this section is to identify situations where
ambiguities in following edges can occur, and propose an
edge coloring algorithm to resolve such ambiguities.

3.1 Edge Collisions

Two edges are considered in collision if an ambiguity arises
when they are drawn using the same color. The following
are four conditions for edge collision:

� C1: they cross at a small angle.
� C2: they are connected to the same node at a small angle.
� C3 (optional): they are connected to the same node at an

angle close to 180 degree.
� C4: they do not cross or share a node, but are very close to

each other and are almost parallel.
We now explain the rationale for considering each of

these four conditions as being in collision. C1 is consid-
ered a collision following the user studies described in
Section 1 by Huang et al. [20], [21]. When eyes try to fol-
low an edge to its destination, small crossing angles
between this edge and other edges create multiple paths
along the direction of the eye movement, either taking
eyes to the wrong path, or slowing down the eye move-
ment. C2 creates a situation where one edge is almost on
top of the other, making it difficult to visually follow
one of these edges.

C3 could create confusion as to whether the two edges
connected at close to 180 degree behind a node label are one
edge, or two edges. For example in Fig. 1 (left), it is difficult
to tell whether nodes 19 and 17 are connected, or whether
19 is connected to 20 and 20 is connected to 17. When edges
are properly colored (Fig. 1 (right)), it is clear that the latter
is true. Note that if edges are allowed to be drawn on top of
nodes, then an edge between 19 and 17 would be seen over
the label of 20, thus this kind of confusion can be eliminated.
Therefore we consider C3 as optional. However drawing

Fig. 1. Left: A graph with 20 nodes and 100 edges. It is difficult to follow
some of the edges. For example, is node 19 (blue) connected to
node 16 (blue)? Is node 19 connected to 17 (blue)? Right: The same
graph, with the edges colored using our algorithm. Now it is easier to
see that 19 and 16 are connected by a blue edge, but 19 and 17 are not
connected.

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1323

edges over the label of nodes introduces extra clutter and
make the node labels harder to read.

C4 causes a problem because when two edges are very
close and almost parallel, it is difficult to differentiate
between them. In addition, it can cause confusion when
node labels are drawn. Fig. 3a shows two lines very close
and almost parallel. While it is possible to differentiate
between the two edges, when node labels are added
(Fig. 3b), it is difficult to tell whether there are two edges
(1$ 2 and 3$ 4), or three edges (1$ 2, 1$ 4 and 1$ 3),
or whether there even exists an edge 3$ 2. This confusion
can be avoided if suitable edge coloring is applied (Fig. 3c).

To resolve these collisions, we propose to color the edges
so that any two edges in collision have colors that differ as
much as possible. We first construct a dual edge collision
graph.

3.2 Constructing the Dual Collision Graph

Let the original graph be G ¼ fV;Eg. Denote by NðvÞ the set
of neighbors of a node v. The dual collision graph is Gc ¼
fVc; Ecg, where each node in Vc corresponds to an edge in the
original graph. In otherwords, there is a one-to-onemapping
e : Vc ! E. Two nodes of the collision graph i and j are con-
nected if eðiÞ and eðjÞ collide in the original graph.

The problem of coloring the edges of G then becomes
that of coloring nodes of the collision graph Gc. Let C be the
color space, and cðiÞ 2 C be the color of a node i 2 Vc. We
seek to maximize the minimum color difference between all
pairs of neighboring nodes in the collision graph

arg max
c:Vc!C

min
fi;jg2Ec

wijkcðiÞ � cðjÞk; (1)

where wij � 1 is a weight inversely proportional to how
important it is to differentiate colors of nodes i and j, and
kcðiÞ � cðjÞk is a measure of the difference between the col-
ors assigned to the two nodes. Note that we do not seek to
maximize the average color difference, because that could lead
to a situation where the average is optimized at the expense
of some neighboring nodes being colored with similar

colors. However, if the layout is in such a way that most of
the edges collide with each other, then minimizing the aver-
age color differences may be more appropriate since at least
on average, the color difference would be large. In practice,
we have not found this to be necessary. Typically, the colli-
sion graphs are sparse and disconnected, e.g., Fig. 4.

Note that (1) is stated rather generally: C could be a dis-
crete, or continuous, color space. This is intentional since
we are interested in both scenarios. All we assume is that C
sits in a Euclidean space of dimension d.

Once we colored the collision graph, we can use the same
coloring scheme for the edges of the original graph. The
complete pipeline of our proposed approach is illustrated in
Fig. 2. Notice that the collision graph in Fig. 2b (displayed
more clearly using a force-directed layout in Fig. 4) is dis-
connected. We apply our algorithm on each component of
the collision graph.

3.3 A Color Optimization Algorithm

Dillencourt et al. [8] proposed a force-directed algorithm in
a euclidean color space. They wanted all pairs of nodes
to have distinctively different colors. Consequently, their
algorithm used a force model where repulsive forces exist
among all pairs of nodes.

Since in our case edges can have the same color as long as
they do not collide, there is no need to push all pairs of nodes
of the collision graph apart in the color space. Therefore we

Fig. 2. The proposed pipeline for coloring the edges of the Zachary’s Karate Club Graph: (a) The original graph; (b) the dual collision graph, with each
node representing an edge of the original graph, and positioned at the center of that edge; (c) the dual collision graph, with nodes colored to maximize
color differences along the edges (see Fig. 4 for a clearer force-directed layout of this graph); (d) the original graph, with edges colored using the
node coloring in (c).

Fig. 3. An illustration of the rationale for collision condition C4. (a) Two
edges that do not cross. (b) When nodes are shown, it is difficult to tell if
there are two edges (1$ 2 and 3$ 4), or three edges (1$ 2, 1$ 4
and 1$ 3), or whether there even exists an edge 3$ 2. (c) After color-
ing each edges with a distinctive color, it is clear that there are two
edges, 1$ 2 and 3$ 4.

1324 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

can not use the algorithm of Dillencourt et al. [8] as is.
Although it is possible to adapt their algorithm, we opt to
propose an alternative algorithm for two reasons. One is
that we would like to be able to use not only continuous
color spaces, but also discrete color palettes (Section 4.1).
The other is due to the fact that even when deciding the
optimal color for one node of the collision graph with
regard to all its neighbors, this seemingly simple problem
can have many local maxima. These two reasons mean
that a force-directed algorithm, which operates in a contin-
uous space and is known to be prone to get stuck in local
minimum, is not ideal.

Here, we give an example to illustrate the second reason.
For simplicity of illustration, within this example, we
assume that our color space is 2D, and that the color dis-
tance is the Euclidean distance. Suppose we want to find
the best color embedding for a node u in the collision graph
with six neighbors, and the six neighbors are currently
embedded as shown in Fig. 5 (left). We want to place u as
far away from the set of six points as possible. Fig. 5 (left)
shows a color contour of the distance from the set of six
points. Color scale is given in the figure, with blue for low
values and off-white for large. From the contour plot it is
clear that there are seven or more local maxima. In 3D there
could be even more local maxima. A force-directed algo-
rithm such as [8], even with the random jumps and swaps,
is likely to settle in one of the local maxima.

Instead we hope to find the global maximum. A naive
way to find the global maximum position in the color space
with regard to a set of points is to search exhaustively by
imposing a fine grid over the color space, and calculating
the distance from each mesh point to the set. However,
given that the color space are typically of three dimensions,
even at a resolution of 100 subdivisions along each dimen-
sion, we need 106 distance calculations. This is computa-
tionally too expensive, bear in mind that this computation
needs to be performed for each and every node of the colli-
sion graph repeatedly until convergence.

We propose a more efficient algorithm based on the
octree data structure (quadtree for 2D) that does not require
evaluations of the distance over all mesh points. Using

Fig. 5 (left) as an example, we want to find a point in the
color space that is of maximal distance to a target set of
points. We define the objective function value of a square to
be the distance from the center of the square to the target
set. We start with a queue of one square covering the color
space, and define the current optimal value as the maximal
distance over all squares in the queue to the target set.
Taking a square from the current queue, we subdivide it
into four squares. If the distance of one of the four squares
to the point set, plus the distance from the center of the
square to a corner of the square, is less than the current opti-
mal distance, this square is discarded. This is because no
point in this square can have a larger distance to the target
set than the current optimal distance. If the square is outside
of the color space, it is also discarded. Otherwise the square
is entered into the queue, and the optimal value updated.
This continues until the half width of all squares in the
queue is smaller than a preset threshold �. The point that
achieves the current optimal value is taken as the optimum.
We know that the current optimal value should be within a
value d1=2� to the global optimal value, where d1=2� is the
half diagonal of the final square in d-dimensional space.

This algorithm is in essence a branch-and-bound algo-
rithm operating on the octree (quadtree for 2D) decomposi-
tion of the color space. When applied to the problem in
Fig. 5 (right), we can see that in the top-left quadrant, the
quadtree branched twice and stopped, because the function
values are relatively small in that quadrant. The top-right
and bottom-right quadrants branched 3 and 4 times, respec-
tively. The final optimal point is found in the bottom-left
quadrant. Initially the algorithm homed in on two regions,
one around f0:375; 0g and the other around f0; 0g, eventu-
ally settled around the latter.

Of course this branch-and-bound algorithm only finds
the global optimal embedding for one node. After applying
the algorithm to every node of the collision graph once (one
outer iteration), we repeat if the minimal color difference
increases, or if it does not change, but the total sum of color
difference across all nodes increases.

We have named the algorithm CLARIFY (Edge Coloring
for CLARIFYing a Graph Layout) and formally state it in
Algorithm 1. The following are the notations used in the
presentation of the algorithm: for a point x and a finite point
set C in the euclidean color space C , we define the point-set
distance as distðx;CÞ ¼ miny2CwiðxÞ;iðyÞkx� yk2, where iðxÞ

Fig. 4. The collision graph in Fig. 2c, with a force-directed layout. A node
labeled “i j” represents edge i$ j in the original graph. Nodes are colored
using Algorithm 1, so that each node is colored as differently from its neigh-
bors as possible. To disambiguate edgeswe color them in gray scale.

Fig. 5. Left: Contour plot of the distance to a set of six (white) points in
the space ½0; 0:9� � ½0; 0:9�. There are seven or more local maxima. E.g.,
near f0; 0:55g, f0:35; 0:9g and f0:4; 0:7g. Right: An illustration of the
quadtree structure generated during our algorithm for finding the global
optimal embedding of a node that is farthest away from the set of six
points. The final solution is f0; 0g (shown as the red point).

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1325

is edge index that corresponds to the point x. We denote the
center of a square or cube s as centerðsÞ, its children (by
dividing a square into 4 or a cube into 8) as childrenðsÞ, and
its half width as dðsÞ. We define the distance between s and a
set of point C as that between the center of s and C, that is

distðs; CÞ ¼ dist ðcenter ðsÞ; CÞ:

The CLARIFY algorithm utilizes the global optimization
algorithm for embedding one node, given in Algorithm 2 as
EmbedOneNode.

Algorithm 1. CLARIFYðG; C ; �Þ
1 input: graph G ¼ fV;Eg, color space C , threshold �
2 compute a dual collision graph Gc ¼ fEc; Vcg of G
3 randomly choose cðiÞ in C for all i 2 Vc

4 set:mindist ¼ 0, sumdist ¼ 0
5 repeat
6 set:mindistold mindist, sumdistold ¼ sumdist

mindist ¼ 1, sumdist ¼ 0
7 for i 2 Vc

8 define cðNðiÞÞ :¼ fcðjÞjj 2 NðiÞg
9 define wmax ¼ maxj2NðiÞwij

10 cðiÞ ¼ EmbedOneNodeðcðNðiÞÞ; wmax; �Þ
11 mindist ¼ min mindist; distðcðiÞ; cðNðiÞÞÞf g
12 sumdist þ¼ distðcðiÞ; cðNðiÞÞÞ
13 until(mindist < mindistold jj

(mindist ¼ mindistold && sumdist � sumdistold))
14 return: cðeðiÞÞ ¼ cðiÞ; i 2 Vc

Algorithm 2. EmbedOneNodeðC;wmax; �Þ
1 input: a set of points C 2 C , max weight wmax, a threshold �
2 set: s a square/cube covering the color space C
3 set: a first-in-first-out queue Q ¼ fsg
4 set: c� ¼ centerðsÞ and dist� ¼ distðs; CÞ
5 for s 2 Q
6 if dðsÞ < � break
7 Q :¼ Q� fsg
8 for t 2 childrenðsÞ
9 if t \ C ¼ ; j distðt; CÞ þ wmaxd

1=2dðtÞ < dist�

10 continue
11 if distðt; CÞ > dist�

12 c� ¼ centerðtÞ, dist� ¼ distðt; CÞ
13 Q :¼ Q [ftg
14 return: c�

4 IMPLEMENTATION AND RESULTS

We now give details on the implementation of CLARIFY,
and results of using the algorithm on real world graphs.

4.1 Color Space

CLARIFY works for both continuous color spaces (as long
as it is a metric space), as well as discrete ones.

The RGB Color Space. An often used color model is RGB.
This model defines color by a combination of three color
intensities, red, green, and blue. Thus colors in the RGBmodel
can be considered as residing in a three-dimensional cube.

RGB color model is widely used for the representing and
displaying images in electronic systems, such as LCD/LED

display. However, distance between two colors in the RGB
space is not an accurate measure of perceived difference by
human eyes. For that purpose, the LAB color model is con-
sider better [10].

The LAB Color Space. The LAB color space (a rectangular
box ½0; 100� � ½�128; 128� � ½�128; 128�) includes all per-
ceivable colors, and more. We only care about the LAB color
gamut—the part of the LAB space that corresponds to the
RGB space. It has a complex shape. Applying CLARIFY
requires checking whether a cube is outside of the LAB
gamut, which is considerably more complicated than check-
ing whether a point is outside of the gamut.

Instead, since CLARIFYworks just as well on a discrete set
of colors, we modify CLARIFY slightly as follows. We first
sample the LAB gamut: we subdivide L, A and B at one unit
increment, and check whether the resulting points are inside
the LAB gamut by converting the point to RGB space, and
back to the LAB space. If the double-conversion ends at the
same point (within a threshold of 0.02 in euclidean distance),
the point is considered inside the LAB gamut. This resulted
in 826,816 points (12.4 percent of the LAB space). Note that
we only have to find this sample set once and store as a file.
We then construct an octree over this point set. The CLARIFY
algorithm works with this octree, without worrying about
staying inside the LAB gamut. This sampling technique also
makes it very easy to control the lightness of the color—if we
need to display the drawing in a dark background and thus
light colors are desired, we can simply filter out points with a
low L value in the sample. Fig. 6b shows the result of apply
CLARIFY in the LAB spacewith 0 � L � 70.

In terms of CPU time, we found that working in LAB
space with the sampling technique gives very similar CPU
time to working in the RGB space. Speed can be further
improved if we take a coarser sample.

User-Define Color Palettes. Any user defined color palette
can be handled in a similar way to the LAB gamut—we con-
vert the color palette consists of k colors to the LAB space,
then interpolate these k colors to get K sample points. We
do so by subdividing the path linking these k points in the
LAB space into K � 1 segments of equal distance. The path
can be constructed along a natural ordering of the palette,
or along a shortest path/tour by solving a Traveling Sales-
man Problem in 3D. An octree is then constructed using the
K sample points and CLARIFY is applied over the octree.
Fig. 6 gives some examples of using two a ColorBrewer [2]
color palette, withK ¼ 104.

4.2 Complexity of the CLARIFY Algorithm

The CLARIFY algorithm consists of two main steps: finding
the dual collision graph, and computing a color assignment.

The collision graph is calculated by checking whether
edge pairs are in collision. Conditions C2 and C3 can be
checked by looping through each node of the original
graph, and testing if a pair of edges starting from the node
nearly overlap, or run in almost opposite directions. This
check can be done after sorting the angles, hence on a node
with l neighbors, assuming that the edges are not entirely
on top of each other, the cost should be around l log ðlÞ, so
the cost of checking over all nodes is jEj log jEj (the patho-
logical case of all edges on top of each other would give a
complete collision graph thus a complexity of jEj2).

1326 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

Condition C1 can be checked using the Bentley-Ottmann
algorithm [24] with a complexity of OððjEj þ kÞlog jEjÞ,
where k is the number of edge crossings. If k is jEj2 or more,
a naive algorithm which checks all jEj2=2 edges should be
used. We are not aware of a good algorithm for checking
C4, one possibility is to replace each edge with a rectangle
in the shape of a thicker edge, then apply the Bentley-
Ottmann algorithm, which should give us the same com-
plexity as checking C1.

The second step of CLARIFY, that of assigning colors,
applies the EmbedOneNode algorithm repeatedly over all
nodes. EmbedOneNode is a branch-and-bound algorithm
over an octree data structure. Its complexity is dependent
on the number of local maxima, and how close they are to
the global maximum (in terms of the objective function
value). If the local maxima have much smaller function val-
ues compared with the global maximum, as in the case of
Fig. 5, then branches of the octree/quadtree corresponding
to the local maxima will terminate at an early stage, and the
complexity of the algorithm is around jlog ð�Þj, otherwise
the complexity is around L � jlog ð�Þj where L is the average
number of local maxima and � the half width of the smallest
cube in the octree structure. Overall the worst case complex-
ity isOðjEjjlog ð�ÞjLÞ per iteration over all nodes. L is a value
hard to quantify, we believe it is related to the average
degree of the collision graph.

Taking both the collision graph formation and the optimi-
zation into account, the CLARIFY algorithm has an average
case complexity of OððjEj þ kÞlog jEj þ tjEjjlog ð�ÞjLÞ, with k
the number of edge crossing, L the average number of local
maxima, and t the number of iterations of Algorithm 1. The
worst case complexity is OðjEj2 þ tjEjjlog ð�ÞjLÞ, in the path-
ological situationwhere all edges are on top of each other.

In practice we found that the optimization step domi-
nates the computation time even when we use the naive
algorithm for computing the collision graph (see Table 2).
Therefore for the rest of the paper we use the naive algo-
rithm for the first step of forming the collision graph, which
makes computation of C4 much simpler.

4.3 Choice of Parameters

For all our experiments on graphs, we take wij ¼ 1 in
Equation (1). For maps, we use non-unit weights as
described in Section 4.4. To check collision conditions, we
need to define what is a “small angle” and what is “close to
180 degree.” Based on visual observations by the authors,
for the rest of this paper we set these to be 15 degree and
165 degree. We define two lines being “very close” if the
smallest distance between two points on the lines is less than
1 percent of the larger of the length of the lines. We consider
two lines as “almost parallel” if they form an angle that is
less than one degree. The parameter � controls the accuracy
with which we find the global optimal embedding for one
node. Table 1 shows the effect of this parameter on the color
difference achieved, as well as on CPU time. Clearly the CPU
time increases almost linearly with jlog ð�Þj, as predicted by
the complexity analysis. The color difference is also in-line
with expectation: from � to �=10, it changes roughly propor-
tionally to d1=2� or less, where d ¼ 3 is the dimension of the
color space. This fits our analysis in Section 3.3. Our own
visual observation convinced us that � ¼ 10�2 gives very sim-
ilar coloring to � ¼ 10�3, hencewe set � ¼ 10�2 by default.

4.4 Examples

We now apply CLARIFY to graphs from real applications
(additional examples are at http://yifanhu.net/EdgeColoring).

Fig. 6. Applying CLARIFY on the Karate graph in RGB and LAB color spaces (a-b), and with a ColorBrewer palettes (c). For comparison we include
the result of applying the algorithm of Jianu et al. [22], versus CLARIFY in LAB color space with fixed lightness of 75 (d-e). Finally we modified the
Jianu et al. [22] code to use a white background and dropped pairs of edges with closeness metric less than 0.1 (f).

TABLE 1
Effect of � on the Color Difference and CPU Time When
Applying CLARIFY (Ten Random Starts) in RGB Color
Space (Max Possible cdiff ¼ 1:732) to the Graph in Fig. 1

� cdiff CPU

10�1 0.866 0.02
10�2 0.974 0.05
10�3 0.988 0.09
10�4 0.990 0.23
10�5 0.990 0.43

The CPU time is that for CLARIFY, minus the time for constructing
the collision graph (0.04 seconds). The latter is independent of �.

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1327

http://yifanhu.net/EdgeColoring

Table 2 gives results on six of the graphs we tested, includ-
ing running time and objective function (1) (color diff)
achieved in LAB color space. These come either from the
University of Florida Sparse Matrix Collection [5], or from
the test graphs distributed with Graphviz [14], and origi-
nate from different application areas. We intentionally
avoided choosing mesh-like graphs—such graphs are easy
to layout aesthetically. Their layouts also tend to exhibit a
low perceptual complexity, making it relatively easy to fol-
low edges and paths. Compared with a non-mesh-like
graph, a mesh-like graph is easier for our algorithm
because there are typically fewer colliding edges. We ran
the experiment on a Macbook Pro laptop with a 2.3 GHz
Intel Core i7 processor.

It can be seen from Table 2 that for graphs of up to a few
thousand nodes and edges, CLARIFY runs quickly. The
majority of the CPU time is spent on color assignment,
while the construction of the collision graph takes relatively
little time even with the naive collision graph construction
algorithm. The Harvard500 graph gives a large jEcj (number
of edges in the collision graph) in comparison to the number
of edges, because it has a few almost complete subgraphs,
which results in a lot of crossings at small angles.

Fig. 7 shows the ngk_4 graph before and after the color-
ing. It is difficult to tell, from Fig. 7a, whether nodes 45 and

15 (blue) are connected. From Fig. 7b we can tell that they
are indeed connected by a red edge.

So far we have been applying CLARIFY to straight-line
drawings of graphs. The algorithm can also be used for
drawings where edges are splines. This could be the result
of an edge bundling, or an edge routing. Fig. 8 shows the
result of applying our algorithm to a graph from a user of
our software, this is one of the examples that motivates our
work. As we can see, from the original drawing, it is diffi-
cult to differentiate some of the splines. For example, is
node 16 connected to node 60, or to node 19 (both below
node 16)? With colored splines, we can see that node 16 is
connected to node 60 by a red spline.

Finally, we applied CLARIFY to color virtual maps
where countries could be fragmented. Because of the frag-
mentation, we have to use as many color as there are coun-
tries. Fig. 9 (top) shows colored versions of an author
collaboration map (see [12]) using two color palettes. Here
each node is an author who published in the International
Symposium of Graph Drawing between 1994 to 2004.
Authors are connected by edges if they co-authored a paper.
This gives a collaboration graph. Nodes are then clustered
to form countries. Up to now, for coloring the edges of
node-link graphs, we assume that it is equally important to
differentiate all colliding edge pairs, thus set the wij in (1) to
1. For coloring virtual maps, it is more important to color
adjacent countries with more distinct colors, at the same
time, we also want to differentiate all countries. Thus we set
wij to be the inverse of the length of the shortest path that
connect countries i and j in the collision graph of the map.
From Fig. 9 we can see that CLARIFY works well in using
the specified palettes, keeping neighboring countries col-
ored with very distinct colors. Unlike the coloring algorithm
in [12], we also maintain good color distinction among non-
neighboring countries. Additional examples are given at
http://yifanhu.net/EDGE_COLORING, where readers can
find graphs and maps colored using curated color palettes.
These palettes add themes (e.g., pastel) to the drawings,

TABLE 2
Statistics on the Original and Dual Collision Graphs, CPU Time

(in Second) and Objective Function (cdiff) for CLARIFY
(One Random Start)

graph jV j jEj jEcj CPU cdiff

ngk_4 50 100 54 0.6 (0.) 122.69
NotreDame_yeast 1,458 1,948 1,685 1.3 (0.2) 67.9
GD00_c 638 1,020 1,847 1.7 (0.1) 64.32
Erdos971 429 1,312 4,427 2.1 (0.1) 59.3
Harvard500 500 2,043 11,972 2.3 (0.3) 35.0
extr1 5,670 11,405 34,696 14.5 (7.9) 47.1

The time in bracket is for constructing the dual collision graph.

Fig. 7. Edge coloring on ngk_4 graph: (a) The original graph. Are nodes 45 and 15 (blue) connected? (b) the colored drawing. We can tell that 45 and
15 are indeed connected by a red edge.

1328 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

http://yifanhu.net/EDGE_COLORING

and makes themmore aesthetically pleasing instead of look-
ing random and jumbled, yet the edges/countries are dis-
tinct enough where it matters. We note that CLARIFY is the
only method that can utilize color palettes effectively. While
one could also generate colored maps by randomly select
colors in a specific color palette, the end results are often
unsatisfactory. For example, some neighboring countries
are assigned very similar colors (Fig. 9 (bottom)).

4.5 Comparison with Jianu et al. [22]

We evaluated our algorithm against that of [22] (hereafter
called JRFL), using the code kindly supplied by the authors.
Fig. 6d gives the result of applying JRFL on the Zachary
graph. Following [22], we use a black background, because
the code sets lightness to 75. It is seen that near nodes 34
and 28, it is difficult to differentiate edges. E.g., it is not clear
whether node 34 is connected to 27 or not, due to the colors
of edges 34–27 and 34–23 being very similar. For a like-for-
like comparison, Fig. 6e shows the result of CLARIFY with
fixed lightness of 75. Despite of the restricted lightness, it
does not suffer from the ambiguity seen in Fig. 6e. Finally,
to understand whether JRFL is handicapped by the black
background and by the fact that it considers all the edge
pairs, we modified the JRFL code to use a lightness of 50,
and set the weights for the pairs of edges with a closeness
metric � 0:1 to 0. It is seen that changing the background

color and using a threshold do not resolve the issues we
observed in Fig. 6d. We also compared with JRFL on other
graphs, and found CLARIFY better both in terms of ability
to disambiguate drawings (by visual inspection), and in
speed. On most graphs, CLARIFY is about 10 times faster.
An additional advantage of CLARIFY is that it is the only
known algorithm that can utilize color palettes effectively.

5 USER STUDY

We conducted two sets of controlled user experiments to
study the performance of CLARIFY edge coloring algorithm
on representative graph analysis tasks, such as visually fol-
lowing edges, finding neighbors and identifying paths. In
the first experiment, we compared three methods: the base-
line method that draws each edge in Black-only (B,
Fig. 10b), the edge coloring method applying our CLARIFY
algorithm to determine the color of each edge (C, Fig. 10c),
and the rAndom coloring (A, Fig. 10a) that uses one ran-
domly-picked color in the entire color space for each edge.
This comparison is to validate the effectiveness of using col-
ors to draw graphs, with respect to the ordinary black-only
drawing. The second experiment compared the CLARIFY
algorithm with the latest JRFL edge coloring algorithm [22],
to examine whether CLARIFY advances the state-of-the-art.
Both experiments apply the same study design, data sets,
graph analysis tasks, and study procedure.

5.1 User Study Design

To fully utilize each subject, we applied a within-subject
design that every subject entered the experiment with each
of the edge coloring methods in comparison. In such design,
user’s performance can be distorted by the learning effect if
the same graph layout is used for all the edge coloring
methods. Therefore, we used three different layouts of the
same graph data (Figs. 10a, 10b, and 10c). The subjects were
arranged by a full factorial design to study the effect of all
the combinations of edge coloring method and layout factor.
The detailed design in the first experiment is shown in
Fig. 11a, where subjects were grouped into 6 classes, enter-
ing different coloring-layout combinations. Within each
group, we arranged 6 subjects to test every possible experi-
ment order, so as to counter-balance the practice and fatigue
effect (Fig. 11b). In total, we recruited 36 subjects for the offi-
cial test of the first experiment. In the second experiment,

Fig. 8. ða) A graph with spline edges. Some of the splines are hard to differentiate. (b) In the zoomed-in view, is node 16 connected to node 60, or to
node 19 (both below node 16)? (c) Splines are colored using the CLARIFY algorithm. Now colliding edges are easier to differentiate. (d) In the zoomed-
in colored view, node 16 is seen to be connected to node 60 by a red spline, but not to 19. The latter is connected by a blue spline to node 15 above.

Fig. 9. Top: Applying CLARIFY on a collaboration map with two Color-
Brewer palettes: Accent_8 (left) and Dark2_8 (right). Bottom: Randomly
selecting colors from the palettes.

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1329

we recruited another set of 24 subjects as there are only four
different coloring-layout-order combinations, i.e., two color-
ing methods (CLARIFY and JRFL) and two layouts (layout
1, 2). All subjects were graduate students majoring in com-
puter science, which accorded well with the potential user
base of graph drawing tools. Note that we do not consider
the between-subjects difference.

5.2 Data and Tasks

All tests were done using the Zachary’s Karate Club social
graph. This is a well known benchmark graph with 34
nodes and 78 edges. Three layouts were generated with dif-
ferent node numberings to eliminate the learning effect
(Figs. 10a, 10b, and 10c). On each combination of the edge
coloring and layout, three graph analysis tasks (T1	T3)
were designed for users to complete (Fig. 11c).

T1 (1-hop Connectivity): Determine whether two nodes are
connected by an edge directly;

T2 (Degree): Estimate the number of nodes that a particular
node connects to directly;

T3 (Path): Write down the shortest path between two nodes
(including these two).

Examples of the colored graphs used for the three tasks
are given in Figs. 10a, 10b, 10c, and 10d respectively. Each
task was repeated three times for each subject, representing

Fig. 10. Four colored graph examples tested in the user study, under certain [coloring method] by [layout] by [analysis task] combinations. Not all
combinations are shown due to the space limit.

Fig. 11. The full factorial design to counter-balance negative effects such
as learning, practice and fatigue (the case of the first experiment).

1330 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

easy, medium and hard tasks by the different edges/nodes/
paths selected.

After completing all the tasks for each coloring method,
subjects also responded to two subjective questions
(Q1	Q2). Answers were selected from a 1	7 Likert scale.

Q1 (Usability): How much does this coloring method help you
in completing the tasks and finding the correct answers?

Q2 (User Experience): How much do you like the experience
with this coloring method?

5.3 Study Procedure

The study procedure is composed of two sessions: a training
session and a test session. The training session was intro-
duced to make sure each subject understood all tasks well
and became familiar with the graph drawing and coloring
methods. It included two sample tasks from each task type
on a much simpler graph. The organizer checked the
answer of each training task and explained any ambiguity
on the task immediately. The test session is the formal user
study, during which we recorded the subject’s answer and
the completion time in each task. The task completion time
was measured after the subject had read the question, so
that the reading skill variation was excluded.

Note that the study procedure and task designs had been
carefully refined based on the result and feedback from the
pilot study before this test. First, we found that the task
accuracy and completion time had a coupling effect with
the task difficulty, which may also influence the comparison
result on coloring methods. Therefore, we classified each
task into three difficulty levels according to the edge/node/
path chosen in the question (Fig. 10, from left to right).
User’s results were compared within the same level to elim-
inate the factor of task difficulty. Second, it was noticed
during the experiment, most of the subjects spent a good
amount of time locating the nodes mentioned on each ques-
tion, which can be a disturbing factor to the result. Our solu-
tion was to annotate the related nodes in yellow to remind
the subjects of their focuses (Fig. 10). Third, our initial
design on the path task was to ask subjects to count the
length of the shortest path. However, in the pilot study, sub-
jects can either get wrong due to a misunderstanding of the
concept of length for the shortest path (false negative) or get
right by counting the length of a non-path (false positive).
We solved this by asking subjects to write down the shortest
path, for which the correctness of being a path and the
shortest path were checked after the experiment.

All experiment results were analyzed separately on each
task. Significant level was set at 0.05 throughout the analysis.

5.4 Result on Comparing Black-Only and Colored
Drawings

In the first experiment, three coloringmethods are compared:
the black-only, the CLARIFY, and the random coloring.

Connectivity Task. The user’s accuracy in judging the 1-
hop connectivity is summarized in Fig. 12a. On easy tasks,
it is as expected that all methods receive a 100 percent accu-
racy because there is no conflicting edge or overlapping to
disturb the connectivity, such as the case in the left part of
Fig. 10a. On hard cases, both the random coloring and
CLARIFY reach a high accuracy of 97.3 percent, while the
black-only coloring only receives an accuracy of 80.6 per-
cent. The result on the medium difficulty level has been a
surprise: the CLARIFY algorithm (77.9 percent) only gains a
tiny advantage over the black-only coloring (74.9 percent),
and both are worse than the random coloring (89.2 percent).
In a finer grained analysis, we find the root cause for this
exception. There is one tricky case that the CLARIFY algo-
rithm uses the color of black for the target edge, as shown in
Fig. 12c, the same with the black-only coloring on this edge,
while the random coloring chooses a much brighter nontriv-
ial color for this edge (Fig. 12b). The user’s accuracy in this
case is 83.3 percent for the random coloring, 41.7 percent for
the CLARIFY algorithm and 33.3 percent for the black-only
coloring, with a big deviation from the average case. After
we remove this tricky case (about 11 percent of all cases),
the resulting task accuracy plot becomes Fig. 12d, in which
all three methods receive similar accuracy under easy and
medium difficulty levels.

We conducted the binary logistic regression to capture
the boolean value of the task accuracy. It is shown that on
hard tasks, the contribution of the coloring method to the
task accuracy variation is statistically significant (p ¼ :027).
Compared to the random coloring and the CLARIFY algo-
rithm, the black-only coloring decreases the likelihood
(odds) of correctly answering each task to 9.3 percents of
the random/CLARIFY methods (95 percent CI = [1, 87.7],
p ¼ :038), controlling for the difference on layouts. The
goodness of fit of this logistic regression model is 0.339
(Nagelkerke R Square). On the completion time, Fig. 12e
shows the average time in 95 percent Confidence Interval
(CI) error bars. The black-only method costs the user more
time on medium and hard tasks, but requires less time on

Fig. 12. The accuracy and completion time of connectivity tasks, reported by their difficulty levels (first experiment).

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1331

easy tasks. From the in-depth pilot study, this result can be
explained by the user feedback that the black-only drawing
spends less of the user’s cognitive effort in completing very
easy tasks. The follow-up analysis of variance (ANOVA)
test reveals a significant difference in the completion time of
coloring methods on hard tasks, by an unequal variance F-
test, F ð2; 67Þ ¼ 3:841; p ¼ :026. Because of the non-compli-
ance to the homogeneity of variances (p < :05 in the Levene
test), we have applied the Welch ANOVA here. By the
Games-Howell post hoc test, there are significant differen-
ces between the black-only method and the CLARIFY algo-
rithm (p ¼ :025), and between the black-only method and
the random coloring (p ¼ :05).

Degree Task. The estimated degree by users is translated
into the measure of deviance ratio, which is the absolute
degree deviance divided by the correct degree. Fig. 13a
summarizes the deviance ratio of degree tasks. It is clear
that on all difficulty levels, the black-only method suffers
from a higher error in degree tasks, though the difference is
not significant in the ANOVA test. On the completion time,
as shown in Fig. 13b, the differences on all difficulty levels
are quite small.

Path Task. The raw input on the path task is checked in
two phases: 1) whether the answer is a true path in the
graph; 2) whether the true path is the shortest one. Again,
we use the deviance ratio as the measure of error for a path,
which is the absolute path length deviance divided by the
length of the shortest path. Fig. 14a reports the mean accu-
racy in identifying a true path. On all difficulty levels, the
CLARIFY algorithm achieves a better accuracy than the
black-only method and the random coloring. However, the
significant difference is only observed on hard tasks: com-
pared to the CLARIFY algorithm, the black-only method
decreases the likelihood (odds) of correctly identifying a
path to 4.5 percents of the CLARIFY algorithm (95 percent
CI = [0.4, 45.5], p ¼ :009), controlling for the difference on
layouts. The goodness of fit of the logistic regression model
is 0.69 (Nagelkerke R Square).

On the identified true paths, we summarize their devi-
ance ratios to the shortest path in Fig. 14b. Both graphical
and statistical analyses do not find coherent difference
among coloring methods. On the completion time, as shown
in Fig. 14c, the performance of three coloring methods is
also close to each other.

Subjective Questions. The user’s subjective scores on the
usability and user experience are summarized in Fig. 14d. It

is shown that the CLARIFY algorithm is better rated than the
random coloring and the black-only coloring. We then apply
the Kruskal-Wallis test to analyze their differences, which
does not require a normality assumption of the observed
data. Results indicate that there is a large difference among
coloring methods on the usability (x2ð2Þ ¼ 16:2; p ¼ :067),
though not significant. The mean rank is 70.4 for CLARIFY,
53.6 for the random coloring, and 42.5 for the black-only col-
oring (the rank value has a range of 1 to 108 from 108 feed-
backs on three coloring methods). On the user experience,
there is a significant difference among coloring methods
(x2ð2Þ ¼ 35:4; p ¼ :003). The mean rank is 71.6 for CLARIFY,
62.9 for the random coloring, and 32 for the black-only color-
ing. Follow-up Mann-Whitney tests are conducted to evalu-
ate the pairwise difference among coloring methods. It is
shown that, between CLARIFY and the black-only coloring,
the subjective ratings are significantly different on both
the usability (U ¼ 310:5; p ¼ :019) and the user experience
(U ¼ 157:5; p ¼ :001). Between the random coloring and the
black-only coloring, the subjective ratings are significantly
different only on the user experience (U ¼ 292:5; p ¼ :018).
Between CLARIFY and the random coloring, the subjective
ratings are not significantly different, though the CLARIFY
algorithm receives better average ratings.

5.5 Result on Comparing Coloring Methods

In the second experiment, two coloring methods are com-
pared: the CLARIFY coloring and the JRFL coloring.

Connectivity Task. The user’s accuracy in judging the 1-hop
connectivity is summarized in Fig. 15a. On the easy task,
same with the first experiment, both JRFL and CLARIFY col-
oring methods receive a 100 percent accuracy. On medium
and hard tasks, CLARIFY (100, 96 percent) is better than JRFL
(96, 87 percent), though the difference is not significant. Note

Fig. 13. The deviance ratio and completion time of degree tasks,
reported by their difficulty levels (first experiment).

Fig. 14. (a)	(c) The accuracy, deviance ratio and completion time of path
tasks, reported by their difficulty levels; (d) Subjective ratings on the
usability and user experience of three coloringmethods (first experiment).

1332 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

that the tricky case in the first experiment is avoided by not
using layout 3. We conducted the binary logistic regression
to capture the boolean value of the task accuracy. On all three
difficulty levels, the contribution of the coloring method to
the task accuracy variation is not significant. The largest effect
happens in the hard task: compared to the JRFL coloring,
CLARIFY increases the likelihood (odds) of correctly answer-
ing the task to 3.66 times (95 percent CI = [0.32, 41.7]), control-
ling for the difference on layouts. The goodness of fit of this
logistic regressionmodel is 0.317 (Nagelkerke R Square).

On the completion time, Fig. 15b shows the average time
in 95 percent Confidence Interval error bars. JRFL costs the
user more time on all difficulty levels. The follow-up analy-
sis of variance (ANOVA) test reveals a significant difference
on the hard task, by an unequal variance F-test, F ð1; 30Þ ¼
5:789; p ¼ :023. Because of the non-compliance to the homo-
geneity of variances (p < :05 in the Levene test), we applied
the Welch ANOVA here.

Degree Task. Fig. 16a summarizes the deviance ratio of
degree tasks. It can be seen that on all difficulty levels, JRFL
suffers from a higher error in degree tasks. The differences
are not significant in the ANOVA test for all levels, but on
easy task, the difference is very close to significance
(p ¼ :071). On completion time (Fig. 16b), the effect is the
same with the connectivity task that JRFL costs users more
time on all difficulty levels. On the hard task, the difference is
significant by theWelch ANOVA, F ð1; 30Þ ¼ 4:393; p ¼ :045.

Path Task. Fig. 17a reports the mean accuracy in identify-
ing a true path. On all difficulty levels, CLARIFY and JRFL
have a similar path accuracy, with differences smaller than
10 percent. By binary logistic regression, the contribution

of coloring method to the path accuracy is not significant
on all levels.

On the identified true paths, we summarize their devi-
ance ratios to the shortest path in Fig. 17b. On all difficulty
levels, the ANOVA test on the path deviance ratio does not
reveal significant difference between CLARIFY and JRFL.

On the completion time, as shown in Fig. 17c, JRFL lets
users spend more time than CLARIFY on medium and hard
tasks, and slightly less time on the easy task, though all dif-
ferences are not significant by the ANOVA test.

Subjective Questions. The user’s subjective scores on the
usability and user experience are summarized in Fig. 17d. It
is shown that CLARIFY is better rated than JRFL on both
scores. We then apply the Mann-Whitney test to analyze
their differences, which does not require a normality
assumption of the observed data. Results indicate that there
is a significant difference between CLARIFY and JRFL on
the usability score (U ¼ 143:0; p ¼ :002). The mean rank is
30.5 for CLARIFY and 18.5 for JRFL (the rank value has a
range of 1 to 48). On the user experience, the difference is
also significant (U ¼ 188:5; p ¼ :031). The mean rank is 28.7
for CLARIFY and 20.3 for JRFL.

5.6 Summary and Implication

First, our user study results demonstrate that the edge color-
ing technique (the random and CLARIFY algorithms) can
improve user’s performance in all the three representative
graph analysis tasks studied here, and they receive signifi-
cantly better subjective ratings from the user. Exceptions
only happen on a few easy/medium tasks without conflict-
ing edges (e.g., the connectivity task in the left part of
Fig. 10a). The superiority of edge coloring is especially nota-
ble on hard tasks, where we obtain significance on the task

Fig. 15. The accuracy and completion time of connectivity tasks,
reported by their difficulty levels (second experiment).

Fig. 16. The deviance ratio and completion time of degree tasks,
reported by their difficulty levels (second experiment).

Fig. 17. (a)	(c) The accuracy, deviance ratio and completion time of
path tasks, reported by their difficulty levels; (d) Subjective ratings on
the usability and user experience of two coloring methods (second
experiment).

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1333

accuracy of connectivity and path tasks. These results
greatly encourage the use of edge coloring techniques.

Second, among different coloring algorithms, CLARIFY
enjoys a clear advantage over the previous JRFL algorithm,
on all three graph analysis tasks. Significant differences are
observed on the completion time of connectivity and degree
tasks, as well as the user’s subjective ratings. The advantage
of CLARIFY can be attributed to the larger color discrimina-
tion among conflicting edges, in both intensity and color
hue. More details can be found in Section 4.5.

Third, between the random coloring and our CLARIFY
algorithm, we should claim that in a lot of cases the differ-
ence is small. However, on path-related hard tasks, as well
as the user’s subjective ratings, CLARIFY performs much
better. The algorithm minimizes the number of colors to dis-
tinguish conflicting edges, so that user’s cognitive efforts on
hard tasks are reduced. This is more important on global
tasks (e.g., the path task) than local tasks (e.g., the connectiv-
ity and degree task); and on hard tasks than easy tasks. Fur-
thermore, CLARIFY is the only algorithm that can effectively
take advantage of a color palette for specific visual theme.
While random coloring could also use a color palette, as
shown in Fig. 9, this often gives unsatisfactory results.

Last but not the least, the user study result suggests a few
improvements to the CLARIFY algorithm design. Most
notably, the brighter non-black color should be used for all
edges with connectivity conflict, so that users can pay more
attention to disambiguating these edges.

6 DISCUSSIONS

The approach of coloring edges for disambiguating draw-
ings has its limitations. Our working assumption is that the
drawing is displayed as a static image on paper, or on
screen. In cases where an interactive environment is avail-
able, interactive techniques such as “link sliding” and
“bring & go” [23] could be more effective. In such a situa-
tion, the algorithms proposed here can be used as an addi-
tional visual aid to the interactive techniques.

While the algorithm proposed here can run on relatively
large graphs, our experience is that for graphs with a lot of
edges, a static image is insufficient to allow the user to
clearly see and follow each edge. Therefore our approach is
best suited for small- to medium-sized graphs. Typical
usage scenarios are illustrations of diagrams, such as com-
puter or biological networks.

During our user study, we found that using black as the
default color for non-conflicting edges may not be the most
appropriate option in some cases. Some users fail to under-
stand that a black edge passing under a node label is one
edge, not two edges. For example, the edge between nodes
19 and 9 in Fig. 12c may be better visualized using a brighter
color as the default for such edges. Our user study also
shows that for the purpose of distinguishing edges, random
coloring also works. However as shown in Section 4.4, ran-
dom coloring does not work when applied to color palettes.
The color space for a color palette is discrete and much
smaller, thus it is likely that random coloring will fail to
find the optimal color combination.

There are situations in which it may not be appropriate to
use colors to differentiate edges. First, there is a perceptual
cost of introducing color to the visualization of graphs. As

our user study shows, for easier tasks, colored versions take
users more time to complete. Second, colors may be reserved
to encode other information. The proposed method can
workwith any style spaces. For example, for disambiguating
the edges in Fig. 4, we avoided using colors for edges in order
to accurately display colors of the nodes. For that drawing
we used CLARIFY with grayscale, so that edges are in black
or gray. In general, with CLARIFY, edges can be differenti-
ated using dashed lines or textures of different style. This
can be achieved by mapping different line styles to a region
or a set of discrete points in the 2D/3D space.

7 CONCLUSIONS

Edge crossings, particularly those at small crossing angles,
are known to be detrimental to the visual understanding of
graph drawings. This paper proposes an edge coloring algo-
rithm for disambiguating edges that are in collision because
of small crossing angles or partial overlaps. The algorithm,
based on a branch-and-bound procedure applied to a space
decomposition of the color gamut, generates color assign-
ments that maximize color differences of the colliding
edges. The algorithm works for both continuous color space
and discrete color palettes, and can also be applied to gener-
ate coloring for disambiguating virtual maps. Our user
study found that coloring edges in graph drawings helped
users’ performance in major graph analysis tasks, and
sometimes the improvement is significant. Consequently,
we have made the CLARIFY code available as the edge-

paint function in the open source Graphviz software.

ACKNOWLEDGMENTS

Lei Shi was supported by China National 973 Project
2014CB340301, NSFC Grants 61379088, 61772504, and the
Key Research Program of Frontier Sciences, CAS (Grant No.
QYZDY-SSW-JSC041).

REFERENCES

[1] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Algorithms for
the Visualization of Graphs. Englewood Cliffs, NJ, USA: Prentice-
Hall, 1999.

[2] C. Brewer, ColorBrewer. (2017). [Online]. Available: http://www.
colorbrewer2.org

[3] R. Chernobelskiy, K. I. Cunningham,M. T. Goodrich, S. Kobourov,
and L. Trott, “Force-directed Lombardi-style graph drawing,” in
Proc. 19th Int. Symp. GraphDrawing, 2011, pp. 320–331.

[4] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li, “Geometry-based
edge clustering for graph visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 14, no. 6, pp. 1277–1284, Nov./Dec. 2008.

[5] T. A. Davis and Y. Hu, “University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, pp. 1–18, 2011.
[Online]. Available: http://www.cise.ufl.edu/research/sparse/
matrices/

[6] G. Di Battista and L. Vismara, “Angles of planar triangular
graphs,” in Proc. 25th Annu. ACM Symp. Theory Comput., 1993,
pp. 431–437.

[7] W. Didimo, P. Eades, and G. Liotta, “Drawing graphs with right
angle crossings,” Theoretical Comput. Sci., vol. 412, no. 39,
pp. 5156–5166, 2011.

[8] M. B. Dillencourt, D. Eppstein, and M. T. Goodrich, “Choosing
colors for geometric graphs via color space embeddings,” in Proc.
14th Int. Symp. Graph Drawing, 2006, pp. 294–305.

[9] C. Duncan, D. Eppstein, M. T. Goodrich, S. Kobourov, and
M. N€ollenburg, “Lombardi drawings of graphs,” J. Graph Algo-
rithms Appl., vol. 16, pp. 85–108, 2012.

[10] B. Fraser, C. Murphy, and F. Bunting, Real World Color Manage-
ment, 2nd ed. Berkeley, CA, USA: Peachpit Press, 2004.

1334 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. 2, FEBRUARY 2019

http://www.colorbrewer2.org
http://www.colorbrewer2.org
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

[11] E. Gansner, Y. Hu, S. North, and C. Scheidegger, “Multilevel
agglomerative edge bundling for visualizing large graphs,” in
Proc. IEEE Pacific Vis. Symp., 2011, pp. 187–194.

[12] E. R. Gansner, Y. Hu, and S. Kobourov, “Visualizing graphs and
clusters as maps,” IEEE Comput. Graph. Appl., vol. 30, no. 6,
pp. 54–66, Nov./Dec. 2010.

[13] E. R. Gansner and Y. Koren, “Improved circular layouts,” in Proc.
14th Int. Symp. Graph Drawing, 2006, pp. 386–398.

[14] E. R. Gansner and S. North, “An open graph visualization system
and its applications to software engineering,” Softw. Practice Expe-
rience, vol. 30, pp. 1203–1233, 2000.

[15] A. Garg and R. Tamassia, “Planar drawings and angular resolu-
tion: Algorithms and bounds,” in Proc. 2nd Eur. Symp. Algorithms,
1994, pp. 12–23.

[16] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Trans. Vis. Comput. Graph.,
vol. 12, no. 5, pp. 741–748, Sep. 2006.

[17] D. Holten and J. J. van Wijk, “Force-directed edge bundling for
graph visualization,” Comput. Graph. Forum, vol. 28, pp. 983–990,
2009.

[18] Y. Hu, S. Kobourov, and S. Veeramoni, “On maximum differential
graph coloring,” in Proc. 18th Int. Symp. Graph Drawing, 2010,
pp. 274–286.

[19] Y. Hu and L. Shi, “A coloring algorithm for disambiguating graph
and map drawings,” in Proc. 21th Int. Symp. Graph Drawing, 2014,
pp. 89–100.

[20] W. Huang, “Using eye tracking to investigate graph layout
effects,” in Proc. 6th Int. Asia-Pacific Symp. Vis., 2007, pp. 97–100.

[21] W. Huang, S.-H. Hong, and P. Eades, “Effects of crossing angles,”
in Proc. IEEE Pacific Vis. Symp., 2008, pp. 41–46.

[22] R. Jianu, A. Rusu, A. J. Fabian, and D. H. Laidlaw, “A coloring
solution to the edge crossing problem,” in Proc. 13th Int. Conf. Inf.
Vis., 2009, pp. 691–696.

[23] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. Fekete,
“Topology-aware navigation in large networks,” in Proc. 27th Int.
Conf. Human Factors Comput. Syst., 2009, pp. 2319–2328.

[24] J. O’Rourke, Computational Geometry in C, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[25] J. Peltonen and Z. Lin, “Peacock bundles: Bundle coloring for
graphs with globality-locality trade-off,” in Proc. 24th Int. Symp.
Graph Drawing Netw. Vis., 2016, pp. 52–64.

[26] S. Pupyrev, L. Nachmanson, S. Bereg, and A. Holroyd, “Edge
routing with ordered bundles,” in Proc. 19th Int. Symp. Graph
Drawing, 2011, pp. 136–147.

[27] H. C. Purchase, “Which aesthetic has the greatest effect on human
understanding?” in Proc. 5th Int. Symp. Graph Drawing, 1997,
pp. 248–261.

[28] H. C. Purchase, D. A. Carrington, and J.-A. Allder,
“Experimenting with aesthetics-based graph layout,” in Proc. 1st
Int. Conf. Theory Appl. Diagrams, 2000, pp. 498–501.

[29] H. C. Purchase, J. Hamer, M. N€ollenburg, and S. G. Kobourov,
“On the usability of Lombardi graph drawings,” in Proc. 20th Int.
Symp. Graph Drawing, 2012, pp. 451–462.

[30] C. Ware, H. Purchase, L. Colpoys, and M. McGill, “Cognitive
measurements of graph aesthetics,” Inf. Vis., vol. 1, no. 2, pp. 103–
110, Jun. 2002.

[31] A. Wolff, “Drawing subway maps: A survey,” Informatik-
Forschung und Entwicklung, vol. 22, no. 1, pp. 23–44, 2007.

Yifan Hu received the BS and MS degrees in
applied mathematics from Shanghai Jiao-Tong
University and the PhD degree in optimization
from Loughborough University, United Kingdom.
He is currently a senior principal research scien-
tist at Yahoo Research, having previously worked
at AT&T Labs. He is a contributor to the Graphviz
graph drawing system. His research interests
include data mining and information visualization.

Lei Shi received the BS, MS, and PhD degrees
from Tsinghua University, in 2003, 2006, and
2008, respectively. He is a professor in SKLCS,
Institute of Software, Chinese Academy of Scien-
ces. His research interests include visual analyt-
ics and data mining. He has published more than
70 papers in refereed conferences and journals.
He is the recipient of the IBM Research Accom-
plishment Award on “Visual Analytics” and the
VAST Challenge Award twice in 2010 and 2012.

Qingsong Liu received the BS degree from the
International School of Software, Wuhan Univer-
sity, in 2009. He is working toward the graduate
degree in SKLCS, Institute of Software, Chinese
Academy of Sciences. His research interests
include information visualization and visual
analytics.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HU ET AL.: A COLORING ALGORITHM FOR DISAMBIGUATING GRAPH AND MAP DRAWINGS 1335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

