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5 Abstract—The visualization of evolutionary influence graphs is important for performing many real-life tasks such as citation analysis

6 and social influence analysis. The main challenges include how to summarize large-scale, complex, and time-evolving influence

7 graphs, and how to design effective visual metaphors and dynamic representation methods to illustrate influence patterns over time. In

8 this work, we present Eiffel, an integrated visual analytics system that applies triple summarizations on evolutionary influence graphs in

9 the nodal, relational, and temporal dimensions. In numerical experiments, Eiffel summarization results outperformed those of traditional

10 clustering algorithms with respect to the influence-flow-based objective. Moreover, a flow map representation is proposed and adapted

11 to the case of influence graph summarization, which supports two modes of evolutionary visualization (i.e., flip-book and movie) to

12 expedite the analysis of influence graph dynamics. We conducted two controlled user experiments to evaluate our technique on

13 influence graph summarization and visualization respectively. We also showcased the system in the evolutionary influence analysis of

14 two typical scenarios, the citation influence of scientific papers and the social influence of emerging online events. The evaluation

15 results demonstrate the value of Eiffel in the visual analysis of evolutionary influence graphs.

16 Index Terms—Influence graph, dynamic visualization, citation analysis

Ç

17 1 INTRODUCTION

18 MAKING sense of the evolutionary influence of elements
19 in interconnected information space is a crucial task
20 in many domains. In citation analysis, understanding the
21 development of follow-up topics from a seminal paper
22 helps junior researchers identify cutting-edge opportunities.
23 In social influence analysis, analyzing the dissemination of
24 fake news on Twitter via people’s distributed retweeting
25 behavior provides the clue to potentially contain the rumor.
26 Because the analysis questions in these tasks are often
27 unclear to domain users, visualization of the influence

28hierarchy of key information elements, known as the influ-
29ence graph, becomes an important tool for users to support
30their tasks. As an example, Fig. 2a shows a visualization of
31citation influence graph triggered by a scientific paper.
32More often than not, influence graphs grow to very large
33sizes over time. Some landmark research papers have accu-
34mulated more than 10,000 citations. Celebrity gossip tweets
35on Twitter have been forwarded millions of times. Such
36large sizes prohibit the use of traditional layout algorithms
37for influence graph visualization due to their poor scalabil-
38ity [1]. Although clustering and compression methods can
39be integrated with multiscale visualizations to reveal the
40community structure of large graphs [2], [3], [4], these meth-
41ods have been shown to be inappropriate for influence
42graphs in which flow-based influence propagation patterns
43are more salient than community structure. Recently, an
44influence graph summarization method has been proposed
45which aims to maximize the overall flow rate in a clustered
46graph representation [5]. However, this latest study is lim-
47ited to a static influence graph summarization, and does not
48consider the evolution of influence over time or the poten-
49tial edge clutter on dense graph summarizations. Also,
50influence graphs can be filtered to show only the landmark
51propagators on the graph, e.g., the highly cited papers or
52the most-retweeted messages. The filtering approach
53focuses on important details of influence graphs but fails to
54reveal the overall influence graph hierarchy.
55In this study, we consider the problem of visualizing
56large-scale evolutionary influence graphs. Three domain
57user’s requirements in their influence analysis tasks should
58be met. First, the visualization should be a compact sum-
59mary of influence graph while revealing the key nodes,
60edges, and influence flows on the graph. Second, the
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61 visualization should support an interactive analysis of tem-
62 poral dynamics of influence graphs, including the evolution
63 of graph structure and certain node/edge groups, and their
64 pace of evolution. Third, the visualization should allow to
65 drill down to the detail of individual elements in the influ-
66 ence graph and link these details to the context of influence
67 such as human factors.
68 Solving the evolutionary influence graph visualization
69 problem is challenging. In static settings, a specialized
70 matrix decomposition on the influence graph has been
71 shown to approximate the influence flow maximization
72 objective and provide compact node summarizations [5].
73 Regarding evolutionary influence graphs, it remains an
74 open question whether node summarization alone can
75 effectively reduce the visual complexity of influence graphs.
76 On visualization design, the use of node-link metaphor
77 might be appropriate for our analysis scenario as users can
78 conduct several influence path related tasks (e.g., ST3 in the
79 user study presented in Section 6.2), in which the node-link
80 representation is reported to perform the best [6], [7]. How-
81 ever, the authors of existing works have concluded that for
82 most other graph analysis tasks, node-link representation
83 performs worse than the adjacency matrix on graphs that
84 are large and dense. Again, this calls for the application of
85 effective edge summarization algorithms before influence
86 graph visualization. In addition, the flow map visual meta-
87 phor [8] adopted in our design was initially applied to
88 graphs with a single source node and with all the other
89 nodes directly linked to the source. In comparison, the influ-
90 ence graphs studied here have many more hierarchies,
91 which brings challenges to the flow map layout algorithm.
92 Last but not least, the display of time-varying graphs
93 remains an open problem for the visualization community.
94 However, in our case, the single source and mostly single
95 directional nature of the influence graph has narrowed the
96 design space for visualization.
97 We present Eiffel, an evolutionary flowmap for influence
98 graph visualization. Our contributions are summarized as
99 follows:

100 � We propose new edge summarization algorithms,
101 based on the node summarization method reported in
102 [5], to reduce the visual complexity of evolutionary
103 influence graphs. The temporal summarizationmethod
104 is also introduced to improve analysis efficiency when
105 the number of time frames is large (Section 4).Wequan-
106 titatively validate the proposed triple summarization
107 framework in both data-driven experiments that com-
108 pare with standard graph clustering and edge pruning
109 algorithms, and in a user study about the soundness of
110 summarization result (Section 6.1).
111 � We adapt the flow map metaphor to the visualiza-
112 tion of influence graph summarizations. A new flow
113 map layout method is proposed to reveal both hier-
114 archical influence structure and flow-based patterns.
115 Two evolutionary visualization modes (i.e., flip-book
116 and movie) are introduced to illustrate the dynamics
117 of influence graphs over time (Section 5). The flow
118 map and evolutionary visualization design are eval-
119 uated in separate, controlled user studies. The result
120 demonstrates the advantage of Eiffel over the

121baseline design using node-link and single-mode
122evolutionary visualization (Section 6.2).
123� We apply Eiffel to the study of citation influence net-
124works and retweeting influence networks. Case
125studies on real-world data sets were conducted. The
126study result shows the usefulness of Eiffel in deriv-
127ing new and detailed insights from evolutionary
128influence graphs (Section 6.3). An online Eiffel proto-
129type is deployed, which enables the retrieval and
130visualization of citation influence evolution within
131the visualization community (Appendix C, which
132can be found on the Computer Society Digital
133Library at http://doi.ieeecomputersociety.org/
13410.1109/TVCG.2019.2906900).

1352 RELATED WORK

1362.1 Influence Graph Visualization

137We discuss the study of influence graph visualization in two
138application domains: citation network analysis and social
139influence graph analysis.
140Citation Networks, as a subset of bibliometric networks
141[9], describe the citation relationship among scientific docu-
142ments (e.g., papers, patents). Analyzing the citation net-
143works has been a regular topic in the visualization
144community [10]. The CiteSpace II system [11], [12] was built
145to delineate the concept of research front and intellectual
146base using node-link style citation network visualization.
147Each document in the research front is represented by a
148tree-ring node metaphor, which shows its citation informa-
149tion. The links between documents indicate a co-citation
150relationship [13], [14], [15], i.e., both have been cited in at
151least one other document. The historiograph in HistCite [16]
152also supports the node-link visualization of citation net-
153works. In particular, the citation information flow among
154scientific documents can be displayed. Maguire et al.
155extracted and visualized the egocentric citation network of
156a document to reveal its publication impact [17]. In non-
157node-link designs, VOSviewer [18] projected citation net-
158works onto 2D space using dimensionality reduction meth-
159ods; CircleView [19] was proposed to arrange the citation
160context of a document in a circular layout. There are many
161other citation network visualization tools, e.g., CitNe-
162tExplorer [20], Citeology [21], and the general-purpose net-
163work visualization toolkits such as Pajek [22], Gephi [23],
164Tulip [24], and NodeXL [25].
165On citation analysis, Eiffel targets the network of highly
166influential papers during a long period of time. Each of
167these papers can influence thousands of other papers
168directly or indirectly. In such a circumstance, the existing
169visualization methods can introduce huge visual clutter
170when the full citation network is displayed [11] or are
171designed to interpret only a small subgraph of the network
172[17], [19]. For example, CiteWiz [26] proposed the Growing
173Polygons technique to visualize the citation influence net-
174works, with focus on a detailed study of the one-hop cita-
175tion relationship. In comparison, Eiffel computes a compact
176summary of the evolutionary citation influence graphs to
177well support the analysis of highly influential papers. In
178addition, Eiffel visualizes the citation influence graph struc-
179ture and is not optimized for the display of semantic citation
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180 content. This is different from the recent work of CiteRivers
181 [27], which illustrates evolving topics of scientific literature
182 and the detailed content in their references.
183 Social influence graphs are generally constructed to charac-
184 terize the influence propagation of social media users and
185 their messages. Cao et al. developed Whisper [28], an elabo-
186 rate visual sunflower metaphor to illustrate the spatiotem-
187 poral information diffusion of real-time topics on Twitter.
188 Whisper focuses on the influence propagation in the geo-
189 spatial dimension. By contrast, Eiffel is designed to visually
190 display the influence graph structure among users or mes-
191 sages. G+ Ripples [29] supports the native visualization of
192 the information propagation process of public posts on Goo-
193 gle+. It combines the node-link metaphor with a circular
194 treemap design to efficiently display the hierarchical shar-
195 ing structure of a selected hot post. G+ Ripples scales to ren-
196 der a large number of sharing nodes by a space-filling
197 design, which can highlight key users in the sharing or re-
198 sharing process of the post. As a trade-off, it can only reveal
199 the local information propagation path, but not the global
200 influence graph structure. In comparison, Eiffel can provide
201 an overview of the large-scale influence graph structure by
202 a principled summarization framework. Siming et al. intro-
203 duced D-Map [30], a novel map metaphor for visualizing
204 the egocentric information diffusion on microblogs. D-Map
205 also summarizes social influence graph structure to reduce
206 visual clutter. Nevertheless, their influence node grouping
207 is based on the social behavior of posting users, which is
208 quite different from our goal of revealing influence flows in
209 a graph summarization. There are many other visualiza-
210 tions designed to interpret retweeting propagation net-
211 works [31], [32], [33], [34], [35]. However, few of these
212 designs support the summarization of large influence
213 graphs as Eiffel does.

214 2.2 Flow Map Visualization

215 The flow map metaphor is a thematic map design origi-
216 nated in the cartography practice [36]. The design focuses
217 on the display of object movements between areas, mostly
218 on the surface of the earth. For example, human migration
219 and the transportation of goods can be drawn as flow maps.
220 In the GIS textbooks [37], [38], lines and points are generally
221 used in the flow map to represent the direction and magni-
222 tude of an object’s movements, respectively.
223 Regarding network data, Guo proposed an integrated
224 flow mapping framework for visualizing large volumes of
225 multivariate flow data extracted from location-to-location
226 networks [39]. In this framework, graph partition and flow
227 clustering methods are introduced to group spatial regions
228 and the flows among these regions. Our work is a special
229 case of the flow mapping method over network data when
230 there is a single source node on the influence network being
231 studied. The radial or distributive flowmap [40] is generally
232 used in this case. Therefore, the work by Phan et al. [8] on a
233 distributive flow map layout comes closest to our research.
234 They cluster node positions to generate a hierarchical tree
235 structure, based on which a flow map can be drawn. Com-
236 pared with Phan et al.’s work, Eiffel takes a directed non-
237 tree graph as input and a backbone tree extraction method
238 is used instead of the hierarchical clustering from node
239 positions.

2403 PROBLEM

2413.1 Analysis Scenario

242In this preliminary work, we restrict the scope to the study of
243single-source maximal influence graphs, which illustrate the
244influence of one key element in the information space. Such a
245maximal influence graph is composed of three types of enti-
246ties: an influencer node acting as the single source of influ-
247ence, all the propagator nodes that are directly or indirectly
248influenced by the influencer, and the directed timestamped
249influence links from the influencer to the propagators and
250between the propagators. For example, in the citation analy-
251sis scenario, themaximal influence graph of a scientific paper
252f is composed of a set of nodes representing papers directly/
253indirectly citing f (including f), and the reversed citation
254links among these papers being the influence links. Unlike
255previous work [5], we consider the temporal dynamics of the
256influence graph. By the evolutionary setting adopted in this
257work, each influence link is associated with a unique time
258when the influence first happens from the source of the link
259to its target. For example, on the citation influence graph, the
260time of each link indicates the publication date of the target
261paperwhich cites the source paper.
262Our analytical goal is to understand the evolutionary
263influence of the selected element (i.e., the influencer) in the
264information space. Achieving this goal serves as the center-
265piece of many domain user’s decision-making tasks, for
266example, to select the test-of-time paper award for a confer-
267ence or to identify the key people and time frame to acceler-
268ate the spread of useful memes on social media. Because
269these decisions are often made by the human without rigid
270quantitative criteria, the effective visualization of evolution-
271ary influence graphs allows users to raise questions, formu-
272late hypotheses, validate and finalize their decisions.

2733.2 User Requirement

274We summarize three user requirements on the visualization
275of evolutionary influence graphs.
276First, though the influence graph in many scenarios is
277large and complex, consisting of tens of thousands of ele-
278ments organized in a non-tree structure, the visualization
279should be compact with appropriate visual complexity for
280the analysis of end users. More importantly, it should reveal
281the key components of the underlying influence graph,
282including the grouping of graph nodes and links, the critical
283propagators, and the salient influence flows across the
284entire graph. Meeting this requirement allows the user to
285comprehend the overall picture of the influence graph.
286Second, as the influence graph is evolutionary, design
287efforts should be made to display the temporal dynamics of
288the graph in addition to its static structure. Over the poten-
289tially long evolution time span, the visualization should be
290able to locate themajor changes of the graphwhile permitting
291the access of the influence links in a particular time frame.
292Third, both the influence graph and its evolution forms
293under certain information context. For example, in citation
294analysis, each node in the influence graph represents a
295research paper written by a list of authors on a relevant
296topic. The same authors can contribute to several other
297influence nodes/links in the graph, on the same or separate
298topics. Illustrating the correlation of this context with the
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299 influence graph can be important for users to understand
300 the evolutionary pattern of the influence.

301 3.3 Task Characterization

302 To meet the user requirements, we design the evolutionary
303 influence visualization for the following tasks in the typical
304 scenario of citation analysis.
305 T1. Static Overview of Influence Graphs. To analyze the
306 influence of a scientific paper (the influencer), users start
307 from a visual summary of all the papers directly or indi-
308 rectly citing the influencer and the citation structure among
309 them. The summary provides an overview of the scale of
310 the influence and the key component in the citation influ-
311 ence graph, such as the grouping of papers, highly influen-
312 tial papers, and the flow-based influence patterns.
313 T2. Interactive Analysis of Influence Evolutions. From the
314 static overview, users go further to explore the evolution-
315 ary dynamics of the citation influence graph. This includes
316 both a high-level viewing of the influence accumulation or
317 fluctuation over time and an interactive visual query to
318 analyze the fine-grained influence graph in the selected
319 time frames. Visual comparisons over time are also con-
320 ducted to identify the structural change of the influence
321 graph.
322 T3. Context Correlation and Detail Viewing. After the static
323 and dynamic analysis, users focus on the detailed contex-
324 tual information of the citation influence. S/he can query
325 the part of the influence graph contributed by a key author,
326 filter the influence graph by the topic relevancy to the origi-
327 nal influencer, or drill down to the topic keywords studied
328 in a particular group of papers. Accessing the context and
329 details helps users validate the hypothesis formed in the
330 overview and dynamic analysis of the influence graph.

331 4 EVOLUTIONARY INFLUENCE GRAPH

332 SUMMARIZATION

333 In this section, we describe the analytical process to summa-
334 rize evolutionary influence graphs for the proposed influ-
335 ence graph visualization method.

336 4.1 Definitions and Objectives

337 Table 1 lists the notations used throughout this work. We
338 consider the maximal influence graph GðfÞ ¼ ðV;EÞ, or G

339for short, of a source node f (influencer). Fig. 1 A.i shows an
340example of such an influence graph. Let G have n nodes,
341denoted by V ¼ fv1; . . . ; vng, where v1 ¼ f is the source
342node and all the other nodes are those reachable from f fol-
343lowing the influence links in E. The structure ofG is defined
344by its adjacency matrix A ¼ faijgni;j¼1, where aij ¼ 1 indi-
345cates an nontrivial influence link denoted by eij 2 E from vi
346to vj and aij ¼ 0 indicates an absence of influence link.
347In the time domain, we apply an evolutionary setting on
348the influence graph that each link eij of G is associated with
349a unique timestamp tij, which forms a time matrix T for the
350graph G. Each timestamp tij indicates when the influence
351first occurs from the source of the link eij to its target. Let tij
352take an integer value in ð0;G� where G denotes the maximal
353time span of the influence graph. Using the above setting,
354we define the evolutionary influence graph at time t by
355G½t� ¼ ðV ½t�; E½t�Þ where E½t� ¼ feijjtij � tg indicates that
356the influence links occurred before t and V ½t� ¼ fvij9vj;
357feij; ejig \ E½t� 6¼ ;g indicates the corresponding nodes.
358The final objective is to summarize the evolution of the
359influence graph G by computing abstractions for a series of
360evolutionary influence graphs {G½t�}t2ð0;G�. This is known as
361the evolutionary influence graph summarization (IGS)
362problem. At time t, we denote the abstraction of G½t� by
363M½t�. M½t� is composed of k disjoint and exhaustive node
364clusters: p1; . . . ;pk with size jp1j; . . . ; jpkj, and l � k2 flows:
365�1; . . . ; �l, which are link groups between k node clusters
366(see Section 7 for a discussion on the choice of k). The source
367and target node cluster indices of a flow �i are denoted by
368Sð�iÞ and Dð�iÞ. Examples of these abstractions are shown
369in Figs. 1 A.ii and 1A.iii. Computing each abstraction M½t�
370over G½t� is equivalent to defining a clustering function
371CðviÞ that maps the nodes in G½t� onto the cluster indices of
372½1; k�.

3734.1.1 Offline versus Online Summarization

374There are two strategies in setting the clustering function of
375an evolutionary IGS. Online summarization computes a
376separate clustering for each G½t� of any t 2 ð0;G�. Offline
377summarization normally applies the same clustering func-
378tion for all t 2 ð0;G�, by computing an abstraction M½G� (or
379M for short) for G½G� (G½G� ¼ G, the maximal influence
380graph). In this work, we apply the offline strategy exclu-
381sively for three reasons. First, on evolutionary influence
382graphs, we only count the emergent dynamics of links
383(nodes) and therefore the clustering nature of each node is
384unlikely to change after its first appearance. Second, com-
385puting the node clustering only at the end of the time span
386yields better clustering accuracy given that the influence
387graph information is complete. This is similar to the online
388versus offline dynamic graph layout trade-off [41]. Third,
389the computational cost is much lower for a single-batch off-
390line summarization than a G-time online summarization.
391The online approach also has an additional overhead to pre-
392serve clustering stability among summarizations.
393Specifically, the offline IGS problem can be decomposed
394into two sub-problems. First, we must compute a static
395abstraction M (M½G�) of the maximal influence graph G
396(G½G�). Second, we must compute an L-segmentation
3970 < t1 < � � � < tL ¼ G for the time span of ð0;G� to gener-
398ate a series of evolutionary summarizations {M½t1�; . . . ;

TABLE 1
Notations

SYMBOLS DEFINITION

f , G ¼ ðV;EÞ influencer and its maximal influence graph
n, vi, eij # of nodes, the ith node, and the directed link

from vi to vj in G
A, aij G’s adjacency matrix and its (i; j)th entry
T , tij, G G’s time matrix, (i; j)th entry, and time span
G½t� ¼ ðV ½t�; E½t�Þ evolutionary influence graphG at time t,

G ¼ G½G�
M½t�;M static abstraction of G½t�,M ¼M½G�
k, pi, jpij, CðviÞ # of clusters inM, the ith cluster and its size,

the clustering function
l, �i, Sð�iÞ,Dð�iÞ, rf ð�iÞ # of flows inM, the ith flow, its source and

target cluster index, the flow rate
t1; . . . ; tL L-segmentation on ð0;G� for IGS
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399 M½tL�} for the influence graph. The latter sub-problem is
400 known as the temporal summarization that reduces the
401 number of time frames in the dynamic visualization. In the
402 following, we study the objective for each sub-problem,
403 which paves the way for the Eiffel summarization frame-
404 work proposed in Section 4.2.

405 4.1.2 Static IGS Objective

406 The static IGS objective, which is built on the flow-based
407 heuristic in VEGAS [5], governs the abstraction of M on G.
408 The key is to define the flow rate rfð�Þ for any flow � on M as
409 follows:

rfð�Þ ¼
P

eij2� aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpSð�ÞjjpDð�Þj
p : (1)

411411

412 This flow rate is exactly the sum of all links on the flow, after
413 normalization by source and target cluster sizes. Given the
414 flow rate, the static IGS objective is formulated as follows:

max
Xl
i¼1

rfð�iÞ: (2)

416416

417 From the visualization perspective, the static IGS objective
418 maximizes the rate of all influence flows perceivable by users
419 in the summarization. This is essentially the same objective
420 form applied by the classical ratio-association graph cluster-
421 ing algorithm [42], except that ratio-association graph clus-
422 tering employs a different flow rate definition, i.e.:

rcð�Þ ¼ rfð�Þ if Sð�Þ ¼ Dð�Þ,
0 if Sð�Þ 6¼ Dð�Þ.

�
(3)

424424

425 Here the intra-cluster flow has the same rate as that of the
426 static IGS objective, whereas the inter-cluster flows are set
427 to zero. By maximizing only intra-cluster flows, the graph
428 clustering method detects communities having dense inter-
429 nal connections, as shown in the summarization result of
430 Fig. 1 A.ii. However, this is undesirable for the summariza-
431 tion of influence graphs. If we take the citation influence
432 graph of Fig. 1 A.i as an example, the sum of the flow rates
433 by the IGS objective (red labels in Fig. 1 A.ii) is much lower

434than that by the static IGS objective (red labels in Fig. 1
435A.iii, 3.62 versus 4.73), whereas the sum of the intra-cluster
436flow rate is higher.

4374.1.3 Temporal Segmentation Objective

438The second objective is to regulate the temporal summariza-
439tions M½t1�; . . . ;M½tL� by choosing L nontrivial segmenta-
440tion points denoted by 0 < t1 < � � � < tL ¼ G (L < G).
441The heuristic is to divide the timeline into L dense time
442frames in which intense influence links emerge. The result-
443ing dynamic visualization can reveal the stages of the influ-
444ence evolution from the influencer. We denote these L time
445frames by W1; . . . ;WL, where Wi ¼ ðti�1; ti�, t0 ¼ 0, tL ¼ G.
446Each time frame is reduced by removing empty timestamps
447from the starting and ending boundaries of the frame.
448Using these time frames, each flow � is divided into L
449continuous flow segments, denoted by �ð1Þ; . . . ; �ðLÞ. The flow
450segment rate of �ðgÞ is defined as follows:

rsegð�ðgÞÞ ¼
P

eij2�;tij2Wg
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpSð�ÞjjpDð�Þj

p �
P

eij2�;tij2Wg
aij

jWgj � jWgjq; (4)

452452

453where jWgj denotes the length of the reduced time frameWg

454and q 2 ð0; 1Þ is the segmentation parameter. Note that the
455first multiplicative term in Eq. (4) is the exact flow rate defi-
456nition used in Eq. (1) within the current time frame. This
457first term will sum to a constant value for all segments in a
458flow given a fixed static IGS abstraction. The second multi-
459plicative term is a weight that prioritizes high density flow
460segments. The third term is a penalty for short segments
461(also an award for long segments) so that it does not end up
462with all one-length flow segments. We apply q ¼ 0:5 by
463default as a trade-off between segment density and frame
464size. Finally, the temporal segmentation objective is formu-
465lated as follows:

max
Xl
i¼1

XL
g¼1

rsegð�ðgÞi Þ: (5)

467467

468If we take the minimal flow pi ! pj (jpij ¼ jpjj ¼ 1) in Fig. 1
469C as an example, the initial single-segment flow (L ¼ 1)

Fig. 1. The evolutionary influence graph summarization framework in Eiffel. (A) The node summarization over i maximal influence graph by ii graph
clustering and iii static IGS objective. The link timestamp, clustering result and flow rate are labeled on the influence graphs. (B) The edge summari-
zation from i baseline graph to ii flow map structure. (C) The temporal summarization. Without loss of generality, we illustrate a case summarizing
the flow with the minimal rate (jpij ¼ jpjj ¼ 1). Shaded boxes indicate timestamps where the influence links occur.
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470 with time span G ¼ 25 has a flow segment rate of 7.2. After
471 choosing appropriate segmentation points at t1 and t2, the
472 sum of the segment rates increase to 7.37 (L ¼ 2) and 7.45
473 (L ¼ 3), respectively.

474 4.2 Eiffel Summarization Framework

475 In Section 3, we built a three-stage framework to summarize
476 large evolutionary influence graphs. In the first stage (Fig. 1
477 A), the nodes in the maximal influence graphG are clustered
478 to maximize the static IGS objective, which leads to a smaller
479 graph of k nodes (clusters) and a maximum number of k2

480 edges (flows). In the second stage (Fig. 1 B), l flows are
481 selected to adapt to the flowmap visualization design. Lastly,
482 in the third stage (Fig. 1 C), L flow segments are extracted
483 from the entire timeline to optimize the user viewing experi-
484 ence in the evolutionary influence graph visualization.

485 4.2.1 Node Summarization

486 The work in Ref. [5] showed that the static IGS objective can
487 be optimized by a symmetric version of nonnegative matrix
488 factorization (SymNMF) [43]. We follow this method and
489 propose a two-stage approach. First, we compute the topol-
490 ogy similarity matrixAG of the influence graphG as follows:

AG ¼ AAT þATA

2
; (6)

492492

493 where A is the adjacency matrix of G. In the context of cita-
494 tion influence graphs, each entry of AG indicates the similar-
495 ity between two papers by the number of commonly cited
496 and commonly citing papers (i.e., neighboring nodes in the
497 graph). Second, matrix decomposition is conducted to gen-
498 erate k node clusters from the similarity matrix AG by
499 SymNMF

min
H�0
jjAG �HHT jj2F ; (7)

501501

502 where jj � jjF denotes the Frobenius norm of the matrix.
503 H ¼ fhijg is an n� k matrix that indicates the cluster mem-
504 bership of all the nodes in G. vi will be clustered into pc if
505 hic is the largest entry in the ith row of H. We apply the fol-
506 lowing iterative SymNMF solver with a multiplicative
507 updating rule [43] to computeH:

hij  hij 1� bþ b
ðAGHÞij
ðHHTHÞij

 !
: (8)

509509

510 Here, hij denotes the entries ofH and b is set to 0.5. The iter-
511 ation ends when jjAG �HHT jjF < �jjAGjjF where � ¼ 10�7,
512 or a maximum number of iterations (500) is reached.
513 We evaluated the SymNMF-based node summarization
514 method by comparing its performance with those of classi-
515 cal graph clustering methods in a series of numerical experi-
516 ments. The experimental results in Appendix A, available in
517 the online supplemental material show that the overall flow
518 rate and the content consistency within clusters form a
519 trade-off in IGS. SymNMF obtains the largest overall flow
520 rate among all the algorithms tested on graphs of any size.
521 Therefore, we selected SymNMF as the node summarization
522 method in Eiffel. On large graphs (e.g., more than 1000
523 nodes), all algorithms applied to a moderate number of

524clusters (20 or 40) fail to detect consistent node clusterings.
525This calls for the development of new approaches to main-
526tain the focus of user analyses on smaller influence graphs
527(Section 7). More details on the evaluation of node summari-
528zation methods are presented in Appendix A, available in
529the online supplemental material.

5304.2.2 Edge Summarization

531Influence graphs generated after node summarization can
532be much denser than the original graphs, and they often
533have complex link structures. To succinctly visualize the
534flow of information from the influencer to propagators, we
535propose to further summarize the edges of influence graphs
536by highlighting the most important link groups, while mini-
537mizing information loss. This means that we attempt to
538achieve two conflicting objectives. First, we want to maxi-
539mize the overall flow rate in the summarization. Second, we
540want to reduce visual clutter and minimize edge crossings
541in the final display (i.e., flow map visualization). Below we
542propose three edge summarization algorithms.
543Connected Top-n Flow Graph. The first edge summariza-
544tion algorithm we propose uses a greedy approach. All
545edges (flows) are sorted by the flow rate. The first n� 1
546edges with the highest flow rates are kept, and the other
547flows are removed. Here n is the number of nodes in the
548graph. If the resulting graph is disconnected, we incremen-
549tally add back the removed edges in decreasing order of
550their flow rates until the graph becomes connected. We call
551the final graph the Connected Top-n Flow Graph.
552Maximum Weighted Spanning Tree (MWST). The second
553edge summarization algorithm computes an MWST that is
554rooted at the source node, which maximizes the overall
555flow rate of the tree edges. This algorithm guarantees that
556the resulting graph (a tree) is planar and can be drawn free
557of edge crossings.
558Maximal Padded MWST. Since a tree has just n� 1 edges,
559some edges with high flow rates may be excluded when
560using the MWST. To preserve more information in the sum-
561marization, we propose to selectively add back non-tree
562edges. While it is a straightforward task to add non-tree
563edges to the visualization, doing so would introduce consi-
564derable visual clutter and distract users from the flow map
565metaphor. To reduce clutter while preserving the flow map
566design, we leverage the edge bundling technique and only
567add back non-tree edges that can be bundled onto the tree
568structure of MWST. Specifically, for a directed non-tree
569edge e ¼ vi ! vj, if there is a path from vi to vj in the span-
570ning tree, we bundle e with that path. If not, but there is a
571path from vi to vj in the current summarization (including
572the tree edges and non-tree edges added thus far), we bun-
573dle ewith that path. Otherwise, if no path can be found, this
574edge is not added. All non-tree edges are tested for add-
575back in decreasing order of their flow rates. The final visual-
576ization largely preserves the flow map design, while maxi-
577mally maintaining the influence graph information. We call
578the MWST with bundled edges theMaximal Padded MWST.
579The proposed edge summarization methods were evalu-
580ated in a numerical experiment (Appendix B, available in
581the online supplemental material). The experimental results
582showed that while all the three methods could reduce the
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583 visual clutter and minimize edge crossings, the maximal
584 padded MWST preserved a higher overall flow rate for
585 graphs of any size after edge summarization, compared
586 with MWST and connected top-n flow graph. Therefore, we
587 selected maximal padded MWST as the edge summariza-
588 tion method in Eiffel. More details on the evaluation of edge
589 summarization methods are presented in Appendix B,
590 available in the online supplemental material.

591 4.2.3 Temporal Summarization

592 After the node and edge summarizations, the temporal
593 summarization computes the best timeline segmentation to
594 maximize the objective in Eq. (5). We propose an iterative
595 optimization process for temporal summarization. If we
596 take the segmentation of a single flow as an example, as
597 shown in Fig. 1 C, the process begins by treating the entire
598 flow as a single segment. In each iteration, the best segmen-
599 tation point (ti) is identified by maximizing the sum of the
600 flow segment rates in Eq. (5). Segmentation ends when all
601 the candidate segmentation points no longer increase the
602 sum of the segment rate. The process of a single flow can be
603 extended to the entire evolutionary influence graph by
604 aggregating all the flow rates onto the same timeline.
605 We caution that temporal summarization may introduce
606 some side effects. When displayed as an animation, users
607 may not recognize the fluctuating speed of the passage of
608 time. To avoid this effect, the animation buttons in Eiffel are
609 disabled when temporal summarization is applied. We also
610 note that a few enabling conditions are set in Eiffel to apply
611 temporal summarization. First, the total number of time
612 frames should be large (based on a backend setting) so that
613 the summarization in time can improve usability with
614 respect to the side effect. Second, the objective in Eq. (5)
615 should increase from that of the default setting without
616 summarization, which indicates that the influence graph
617 evolution is indeed staged and can be clearly perceived after
618 the temporal summarization.

6195 FLOW MAP VISUALIZATION

620In Eiffel, we apply the flow map design [8] by observing the
621similarity between the influence and flow graphs (e.g.,
622human migration). First, both types of graphs have roots,
623which enables the extraction of tree-based backbones. Sec-
624ond, in both cases, the flows among nodes are at least as
625important as the nodes themselves.

6265.1 Static Flow Map

6275.1.1 Visual Design

628Fig. 2 shows a screenshot of the Eiffel visualization inter-
629face. In the main panel (Fig. 2a), the citation influence graph
630summarized by the maximal padded MWST (Section 4) is
631visualized as a flow map, which serves as the overview of
632the graph (T1 of Section 3.3). In the leftmost part of the flow
633map, the red star icon indicates the source of the influence
634graph, i.e., the influencer. All the other visual nodes in cyan
635circles indicate summarized groups of original nodes in the
636influence graph. The size of each circle encodes the number
637of nodes in the group following Stevens’ power law for
638area perception [44]. Normalization is also applied to avoid
639an extreme difference in the actual size. The exact number
640of nodes in each group is displayed in the center of each cir-
641cle and can be turned off to focus on the graph structure.
642The label below each group provides a summary of node
643content, which is produced by the keyword extraction
644algorithm described in Section 5.1.2 below.
645The links between nodes in the flow map are repre-
646sented as yellow, segmented B�ezier curves, whose layout
647method we describe later. By default, the thickness of
648each segment indicates the flow rate from the source of
649the segment to its destination on the maximal padded
650MWST, including the flows passing through. This is con-
651sistent with the design rationale of the flow map. To
652reduce visual clutter, the arrow of the link is not visible
653unless the user hovers the mouse hovered, because the
654flow is by default from left to right. In addition to the

Fig. 2. Eiffel user interface: (a) Flow map for IGS; (b) Animation controller for evolutionary visualization; (c) The selected node group, which repre-
sents a list of nodes; (d) Detail panel on the selected node.
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656 links can be displayed on demand as half-transparent,
657 straight lines.
658 In addition to the flow map of the IGS, more information
659 is provided in the corner space of the main panel (Fig. 2a).
660 On the top-left, a label indicates the time range of the influ-
661 ence graph; on the bottom-left, a legend indicates the types
662 of graph nodes and links; on the bottom-right, two double-
663 ranged sliders control the maximal/minimal node size and
664 link thickness respectively to reduce the visual clutter aris-
665 ing from overlapping nodes/labels.

666 5.1.2 Interaction

667 The Eiffel interaction on the static flow map is designed to
668 fulfill the context and detail viewing tasks (T3 of Section 3.3).
669 Some of these interactions are accessed via the menu on top
670 of the flow map (Fig. 2a), users can configure the mappings
671 from data to the node label, color, link thickness, and the
672 number of clusters. The node color transparency can be set to
673 reflect the average number of citations of each paper group.
674 This can help in the identification of important topic streams
675 on an influence graph. The system supports different color
676 styles. For a static display, light background and dark fore-
677 ground colors are used by default.When users switch to evo-
678 lutionary analysis, a dark background color is applied to
679 provide amovie-like display.
680 With regard to network interactions, Eiffel offers baseline
681 interactionmethods including node drag&drop, zoom&pan,
682 and click selection. When the mouse hovers over a node, the
683 other nodes that have directly influenced this node or have
684 been influenced by this node are highlighted on the graph, as
685 well as the connecting influence flows. This helps to distin-
686 guish between direct and indirect influences. Upon the selec-
687 tion of a node on the graph (Fig. 2a), the group information
688 (size, content summary, etc.) and the list of original nodes in
689 the selected group (i.e., a list of papers in the citation case)
690 are displayed in the panel to the right of the flow map, as
691 shown in Fig. 2c. When users select one node from the list,
692 details regarding this node (i.e., paper title, venue, etc.) are
693 shown in the rightmost panel (Fig. 2d). On the citation influ-
694 ence graph, the authors of the selected paper are displayed
695 below the list of papers. When users select one author, the
696 influence of this author can be visually observed by the list of
697 his/her co-authored papers displayed on top of the full influ-
698 ence graph in themain panel (Fig. 8c).
699 The influence graph can be further analyzed via the filter-
700 ing operations by the two double-ranged sliders at the bot-
701 tom-right of the main panel (Fig. 2a). If we take the citation
702 influence graph as an example (Figs. 8a and 8b), using the
703 top similarity filter, users can specify a minimum similarity
704 value for the source of the influence graph, and display the
705 distribution of nodes that match this criterion on the

706influence graph visualization. Using the citation filter
707below, the minimal #citations can be specified to show only
708the important papers on the visualization. In both cases, the
709full citation influence graph is drawn in the background
710and the filtered graph is shown in the foreground overlaid
711on the full graph.

7125.1.3 Algorithm

713To draw an aesthetic flow map, we designed three
714algorithms to realize: 1) placement of nodes; 2) intelligent
715edge layout; 3) node label generation.
716Node Placement. The node layout of a flow map in Eiffel is
717calculated in three steps. First, a backbone tree is extracted
718by the maximal padded MWST algorithm described in
719Section 4.2.2. Second, the dot algorithm in the GraphViz
720package [45] is applied to the backbone tree (including the
721links padded onto the tree) to compute the layout of the
722root and leaf nodes on the backbone tree. The dot algorithm
723is an implementation of the Sugiyama-style hierarchical
724graph layout [46]. Third, the position of the intermediate
725nodes on the backbone tree is computed together with the
726edge layout process.
727Edge Layout. We introduce a new edge layout algorithm
728in Eiffel, which is based on the work of Phan et al. [8]. The
729original flow map layout algorithm only works on graphs
730with one root and several 1-hop neighbors (i.e., star graphs).
731The main idea of our algorithm is to keep the aesthetic flow
732map layout while allowing flows to pass through intermedi-
733ate nodes on the backbone tree.
734We describe the algorithm with respect to a simple graph
735in Fig. 3. The nodes are denoted as v1; v2; . . . ; v11. In the first
736step, the positions of the root and leaf nodes are pre-com-
737puted by dot (nodes outlined in red, Fig. 3a).
738In the second step, the position of all intermediate nodes
739are computed, in the order of a breadth-first tree search. If
740we take the first node v2 as an example, as shown in Fig. 3b,
741we first define the concept of a sub-cluster. A sub-cluster of
742one node includes all the nodes in one of its child branches
743on the tree. For example, {v3, v7, v8, v9} is a sub-cluster of
744node v2 and {v7, v9} is a sub-cluster of v3. To compute the
745layout of v2, we first determine its maximal weighted sub-
746cluster. In this case, the node weight can be the number of
747papers in the group. Assume {v3, v7, v8, v9} is the maximal
748weighted sub-cluster of v2. Then two bounding boxes
749are considered: one to enclose all the leaf nodes in this sub-
750cluster (i.e., {v8, v9}), denoted as bBox1 (centered at c1),
751and the other to enclose the leaf nodes of all the other sub-
752clusters of v2 (i.e., {v5; v11; v12}), denoted as bBox2 (centered
753at c2). In cases where a node has only one sub-cluster, bBox1

754and bBox2 become the same. Lastly, the position of v2 is
755computed as follows:

Fig. 3. Eiffel flow map edge layout process.
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p2 ¼ minðd1; d2Þ
k � d3 � p1 þ 1�minðd1; d2Þ

k � d3

� �
pc1 : (9)

757757

758 In Fig. 3b, r1 and r2 are two intersection points with bBox1
759 and bBox2 when connecting the root (v1) to c1 and c2, respec-
760 tively. d1, d2, d3 are the distances from the root to r1, r2, c1,
761 respectively. p1, p2, pc1 are the positions of v1, v2, c1, respec-
762 tively. k denotes the number of hops from v2 to its maximal
763 weighted leaf node v9. By this algorithm, v2 is placed on the
764 straight line connecting the root to the center of its maxi-
765 mum weighted sub-cluster. After positioning v2, all the
766 other intermediate nodes are placed by the same method in
767 the order of a breadth-first tree search.
768 In the third step, to smoothly connect the root to each leaf
769 node, B�ezier curves are constructed, which pass through all
770 the intermediate nodes on the backbone tree (Fig. 3c). Note
771 that, in order to differentiate the flow rate of each link, each
772 B�ezier curve is first virtually computed and all the control
773 points are kept. Next, each segment on the B�ezier curve that
774 connects two neighboring nodes is drawn separately using
775 these control points.
776 Label Generation. The textual label beneath each node
777 is generated by an improved TF-IDF algorithm. TF-IDF was
778 used previously in information retrieval to rank the words
779 from one document in the context of a text corpus. In the
780 citation influence scenario, we extract keywords from a
781 selected group of papers, which correspond to a single node
782 in the influence graph summarization. Our algorithm is
783 composed of three steps.
784 First, we denote the selected group of papers as C. The
785 title and abstract of all the papers in C are merged into a sin-
786 gle document denoted as c. Separate weights of the title and
787 abstract are used, by default, each title is counted twice. The
788 title and abstract of highly cited papers is also assigned a
789 higher weight.
790 Second, we extract and rank tokens from c. Both the unig-
791 ram and bigram schemes are applied. In the unigram, each
792 word is counted as a token; in the bigram, each pair of two
793 consecutive words in the document is counted as a token.
794 The tokens in c are ranked by themetric computed as follows:

df ranking metricðt; c; C;DÞ ¼ tfðt; cÞ � idfðt;DÞ � dfðt; CÞ:
(10)

796796

797 Here, we denote the token to be ranked as t, the paper col-
798 lection in the whole data set as D. The first two terms in the
799 right side of Eq. (10) preserve those in the original TF-IDF
800 algorithm, which indicate the token frequency of t in c and
801 the inverse document frequency of t in D. We introduce a
802 third term of dfðt; CÞ that is not used in TF-IDF. This new
803 term represents the document frequency of t in the selected
804 paper group C and is used to encourage the selection of
805 tokens that appear in more papers. In other words, dfðt; CÞ
806 is a coverage metric. For example, when comparing one
807 token with ten occurrences in just one paper of the group
808 and another token with one occurrence in each of all the ten
809 papers in the group, we prefer to select the latter token.
810 Third, after the top-ranked tokens are selected, we extract
811 keywords from these tokens. Due to the limited viewing
812 space, we pick just one keyword from each token. When the
813 bigram scheme is used, the two words in a bigram token is

814ranked further by the metric of Eq. (10) computed in the
815unigram scheme.
816Our keyword extraction algorithm takes the user’s input
817for customization. Users can switch between unigram and
818bigram schemes, and choose to show 1-3 keywords accord-
819ing to the space provided. The node layout and the node/
820label size can also be fine-tuned for better visualization.

8215.2 Evolutionary Visualization

822In addition to the static display, Eiffel supports visualization
823of the evolution of influence over time (T2 of Section 3.3).
824Depending on the summarization result, users can invoke
825one of two evolutionary visualization modes. In the flip-
826book mode (Fig. 7a), the influence graph is visualized cumu-
827latively: once a node or flow has emerged on the timeline, it
828remains present forever. Users can determine an end time
829point to display the accumulated influence graph until this
830point. This is effective for analyzing the propagation of influ-
831ence over time. In the movie mode (Figs. 7b and 7c), the evo-
832lutionary visualization shows only the nodes and flows in a
833selected time window. This window can be adjusted and
834scrolled along the timeline to display the temporal dynamics
835(invariants, changes, etc.) of influence evolution. As shown
836in the bottom of Fig. 2a, these modes are configured by
837switching between the two scented tabs located under the
838flowmap.
839To illustrate influence evolutions, we designed a smooth
840animation scheme for the transition between consecutive
841time frames in both flip-book- and movie-mode visualiza-
842tions. First, for nodes that have emerged or are growing in a
843given time frame, silver halos are drawn around these
844nodes to attract the viewer’s attention to these changes (e.g.,
845in Fig. 7a, a halo is associated with node groups having
846high growths). The node size and numeric label inside each
847node circle also change with the new group size. Second,
848the new flows in each time frame do not appear instantly.
849Instead, an animated transition is displayed so that the
850influence link stretches gradually from the source to the
851destination. In the movie mode, three stereo depths are
852introduced to emphasize the evolution of influence over
853time. In the foreground, we draw the newly emerged flows
854and nodes in silver and fill them with halos, and we do the
855same with the flip-book mode. In the main display layer,
856other visual objects in the currently selected time window
857are drawn in the standard design. In the background, the
858complete influence graph (accumulated up to the last time
859frame) is displayed in high transparency, which serves as
860context for the current influence graph.
861Previous researches by Robertson et al. [47] showed that
862animation-based trend visualization is the fastest technique
863for presentation, but performs worse than static displays
864(such as small multiples) regarding analysis tasks. There-
865fore, in our design, we support both animated evolutionary
866visualization and their static displays. As shown in Fig. 2b,
867an animation controller is designed beneath the flow map
868view of the Eiffel interface, which is composed of two parts.
869In the top row, “play” and “stop” buttons provide the same
870functionality as those in a classical movie player for anima-
871tion. In the bottom row, a timeline slider allows flexible nav-
872igation to show the static display of influence visualization
873in a particular time window. In the flip-book mode, there is
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874 a single point selector on the timeline with which users can
875 scroll to any interesting time point. In the movie mode, the
876 selector becomes a two-ended range selector, which enables
877 users to adjust the length of the selector and scroll it to any
878 interesting time window. After the selection on the timeline
879 is fixed, users can again view the influence evolution by
880 clicking “play” and “stop” buttons. The button on the right
881 of the top row allows users to apply variable window sizes
882 determined by the temporal summarization. On top of the
883 timeline, there is a line chart, which shows the change of
884 graph size in the number of new nodes per time frame.

885 6 EVALUATION

886 The Eiffel system consists of two technical components:
887 the IGS and the subsequent flow map visualization. In this
888 section, we evaluate each of these components based on the
889 results of controlled user experiments and then demonst-
890 rate the utility of the whole system by its application to case
891 study scenarios in citation and social influence analysis.

892 6.1 User Experiment on Eiffel Summarization

893 First, we investigate Eiffel’s performance in summarizing
894 influence graphs. In Appendices A and B, we report the
895 quantitative results of the summarization algorithms. Eiffel
896 is shown to achieve a better performance trade-off when the
897 influence graph is no larger than medium in size (	1000),
898 as compared with alternative summarization algorithms.
899 Here, we report on user understanding of the summariza-
900 tion results by comparing the Eiffel visualization with that
901 of a Google Scholar (GS) like interface implemented in our
902 system. The GS interface displays the raw data used in the
903 summarization. The online websites of GS and the Semantic
904 Scholar [48] are not used for comparison because they are
905 based on publication data sources that are not similar to
906 ours (i.e., AMiner and CiteSeerX). The interface and the
907 data used in this experiment are provided in Appendix D,
908 available in the online supplemental material.
909 Experiment Design. We recruited 24 graduate students as
910 subjects, most of whom were PhD candidates majoring in
911 computer science who had a good understanding of the cita-
912 tion influence graph used in the experiment. The experiment
913 involved two sessions. The first was a training session in
914 which subjects completed a study task on a small influence
915 graph (	100 nodes) to ensure that all participants in the test
916 session had a good understanding of the visualization and
917 user task. In the subsequent formal test session, each subject
918 performed the task on two visualizations in turn. To eliminate
919 the learning effect, we selected two influence graphs so that
920 each visualization was applied on a different graph: a large
921 influence graphwith 29324 nodes (I) and amedium influence
922 graph one with 1080 nodes (II). The 24 subjects were parti-
923 tioned into four groups by the sequence of visualization-
924 graph pairs tested, i.e., EI-GII, EII-GI, GI-EII, GII-EI (E=Eiffel,
925 G=Google Scholar, I=Graph I, II=Graph II). Each subject’s
926 answer and completion time for each task was recorded in
927 the formal test session. Measurement of the task completion
928 time began after the subject had read the question.
929 Task. Each subject was asked to analyze the influence evo-
930 lution of one research paper from the IGS (Eiffel) or influ-
931 enced paper list (GS). After the analysis, s/he was told to

932write down the top three topic streams stemming from each
933studied paper, using two to three keywords in sequence for
934each topic stream. Note that these keywords can be obtained
935from both labels beneath each node and the extended list of
936tokens in the group information panel (Fig. 2c). This task
937(AT1) is designed to evaluate whether the subject correctly
938understands the summarization result (the overview task in
939Section 3.3) or the retrieved citation list.
940After the subject had completed the task for each visuali-
941zation, s/he was asked to answer two subjective questions
942based on a 0-6 Likert scale in which 6 is the best and 0 the
943worst.
944AQ1 (Usability): How much did this visualization help you in
945completing the tasks?
946AQ2 (User Experience): How much do you like the experience
947of using this visualization?
948Result and Analysis. We separately analyzed the experi-
949mental results of the Eiffel summarization on the two tested
950influence graphs, as these graph data differ significantly. As
951such, although it was originally designed as a within-subject
952experiment, the experiment then had a typical between-
953subject design in which each subject experienced only a
954single visualization for a particular graph. We set the signif-
955icance level to 0.05.
956First, we analyzed the user answer from task AT1, i.e.,
957the topic keywords. To obtain an objective measure of the
958accuracy of the subjects’ answers, we applied the dynamic
959topic model (DTM) [49], which extracts multiple evolution-
960ary topics from text corpora with timestamps. In our study,
961we merged the title and abstract of each paper included in
962the influence graph into a document, which is used as the
963input to the DTM. The publication year of the paper is used
964as the timestamp of the document. The DTM computes a
965given number of topics and each topic is composed of a list
966of keywords in each year. Each keyword is also associated
967with a time-sensitive likelihood for each topic and year it is
968included in. We fit the topic keywords provided by each
969subject to the DTM model using a maximum likelihood esti-
970mation (MLE) approach. This computes a likelihood value
971for each topic stream answered by the subject. The average
972likelihood of all the three topic streams provided by each
973subject is then used as the measure of the answer accuracy.
974Note that, we tested 5, 10, 15, 20, 25, and 30 topic numbers
975by the DTM. Ten topic numbers achieved the highest aver-
976age likelihood value for all the subject answers, which is
977used in the analysis of the experimental results in AT1.
978Fig. 4a shows the distribution of this likelihood measure
979on a per-keyword, logarithmic scale. Next, we conducted an
980independent t-test to compare the mean topic keyword
981log-likelihood of Eiffel and GS. The study result is divided.
982On influence graph I, we found no significant difference
983between Eiffel (�4.74 
 0.34, 95 percent CI) and GS (�5.42 

9840.7), tð16:1Þ ¼ 1:91; p ¼ 0:074, effect size¼ 0:43. On influence
985graph II, Eiffel achieved a significantly higher log-
986likelihood (�4.12 
 0.29) than GS (�5.71 
 1.36), tð12:0Þ ¼
9872:52; p ¼ 0:027, effect size¼ 0:59. Note that in these t-tests, we
988used the Welch-Satterthwaite method to make an adjustment
989to the degrees of freedom using because equality of variance
990does not hold.
991With respect to the task completion time, as the assump-
992tion of normality does not hold, we applied the Mann-
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of993 Whitney test to compare the mean completion times of Eiffel

994 and GS. The study result reveals that for influence graph I,
995 there is no significant difference between Eiffel (213.17 

996 83.34) and GS (254.67 
 75.73), U ¼ 59:0; p ¼ :45, effect size
997 ¼ 0:15, with a mean rank of 11.42 for Eiffel and 13.58 for GS
998 (the rank value has a range of 1 to 24). For influence graph II,
999 Eiffel achieved a significantly shorter completion time (189.25

1000 
 81.02) than GS (340.17 
 76.98), U ¼ 22:0; p ¼ :004, effect
1001 size ¼ 0:59, with a mean rank of 8.33 for Eiffel and 16.67 for
1002 GS. The completion time distributions are shown in Fig. 4b.
1003 The subjective ratings are summarized in Figs. 4c and 4d.
1004 Again, the normality assumption does not hold for the sub-
1005 jective ratings, and we applied the Mann-Whitney test to
1006 compare Eiffel and GS. On all rating types and studied
1007 influence graphs, Eiffel achieved significantly higher scores
1008 than GS. With respect to usability, U ¼ 15:0; p ¼ :001 on
1009 graph I, and U ¼ 17:0; p ¼ :001 on graph II. For user experi-
1010 ence, U ¼ 14:0; p < :001 on both graphs.
1011 Based on the experimental results, we can report two find-
1012 ings. First, in some cases (influence graph II), the Eiffel sum-
1013 marization helps users to understand the content and
1014 evolution of research topics, as compared with searching in
1015 raw data. The user accuracies, in terms of the likelihood in the
1016 DTM model, and their completion times, are generally better
1017 with Eiffel than GS, which shows only raw data. On influence
1018 graph I, we observed no significant difference. We hypothe-
1019 size that this is due to the same reason with the result of
1020 Appendices A and B, available in the online supplemental
1021 material. The content summary by Eiffel is more consistent in
1022 small and medium graphs than in large graphs. Nevertheless,
1023 user experiments on more influence graphs are necessary to
1024 validate this hypothesis. Second, in the subjective ratings
1025 (usability and user experience), Eiffel performed better than
1026 GS regardless of the size of influence graphs. Users found Eif-
1027 fel to be more effective in helping them complete the designed
1028 task and would prefer to use Eiffel than GS, although they did
1029 not realize that the two interfaces perform similarly in task
1030 accuracy given some large influence graphs.
1031 Threats to Validity. First, the experiment result could be
1032 further validated by conducting tests on more influence
1033 graphs, albeit with the extra cost of hiring additional sub-
1034 jects. We observed user fatigue after they completed the test
1035 with two graphs as the study task requires considerable cog-
1036 nitive efforts. Second, the analysis of the accuracy result
1037 relies on the DTM model and could be improved with the
1038 use of more advanced models. Third, the subjective rating
1039 could be affected by social expectation that prefers visualiza-
1040 tionwith an attractive appearance than a list-based display.

10416.2 User Experiment on Eiffel Visualization

1042In the following, we report the results of the user experi-
1043ment we conducted to evaluate the performance of the Eiffel
1044visualization. The experiment consisted of two formal test
1045sessions, in which the participants completed analysis tasks
1046based on visualizations of static and dynamic influence
1047graphs, respectively. In the static session, we compared two
1048visualizations: a baseline approach using a straight-line
1049node-link graph drawing with a Sugiyama-style layout
1050(GraphVis, as shown in Fig. 1 B.i) and the Eiffel visualiza-
1051tion (Fig. 1 B.ii). In the dynamic session, all tests were con-
1052ducted using Eiffel visualizations and we compared two
1053evolutionary visualization modes: the flip-book and movie
1054modes. In all the approaches compared by the users, the
1055node/edge visual settings were the same.
1056Experiment Design. We invited the same set of 24 subjects
1057described in Section 6.1. In each test session, the experiment
1058featured a within-subject design in which every subject com-
1059pleted analysis tasks by the two visualizations in turn. Each
1060visualization displayed a different influence graph to elimi-
1061nate any learning effect. The two influence graphs usedwere
1062of similar sizes in both the original graph and their summari-
1063zations so that the focus of the evaluation remained on the
1064visualization method. The other aspects of the experimental
1065design followed those described in Section 6.1.
1066Task. Six tasks were presented, three for the static graph
1067analysis session (ST1-ST3, corresponding to the overview
1068task in Section 3.3) and the other three for the dynamic
1069graph analysis session (DT1-DT3, corresponding to the
1070evolution analysis task in Section 3.3). All tasks were con-
1071ducted on medium-sized citation influence graphs similar
1072to those described in Section 6.3.1. For each task, four
1073choices were provided.
1074ST1 (Static graph structure): Determine which paper cluster
1075directly influences the highest number of other paper clusters.
1076ST2 (Static graph in-flows): Determine which paper cluster
1077received the highest number of direct citation influences (i.e., cita-
1078tions of other papers.
1079ST3 (Static graph in/out-flows): Determine which paper clus-
1080ter generated the highest number of net citation influences (i.e.,
1081citation influence sent � citation influence received).
1082DT1 (Local dynamic graph structure): Given one paper clus-
1083ter, determine which year the number of papers in this cluster
1084increased the most.
1085DT2 (Global dynamic graph structure): In a given time range,
1086determine which paper cluster increased by the highest number of
1087papers.
1088DT3 (Local dynamic graph in/out-flows): Given one paper
1089cluster, determine which year this cluster generated the highest
1090number of net citation influences.
1091After the subjects completed all the tasks for each visuali-
1092zation, they responded to the subjective questions described
1093in Section 6.1.
1094Results and Analysis. Static session. Figs. 5a, 5b, and 5c
1095show summaries of the task accuracies, completion times,
1096and subjective scores, respectively, for tasks ST1-ST3. With
1097respect to task accuracy, the results are split. On average,
1098GraphVis achieved a higher task accuracy than Eiffel on
1099ST1 (ST1: 0.92 versus 0.71), but was less accurate on ST2
1100and ST3 (ST2: 0.83 versus 1, ST3: 0.83 versus 0.92). Based
1101on the results of an exact McNemar’s test, the differences in

Fig. 4. User study results comparing Eiffel with the Google Scholar like
interface: (a) Relatedness of user selected topic keywords by their log
likelihood in the DTM model; (b) completion time; (c) usability; (d) user
experience.
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of1102 task accuracy were statistically significant on ST2, p ¼ :05

1103 (1-tailed Exact Sig.), but not on ST1 (p ¼ :063) and ST3
1104 (p ¼ :34). With respect to task completion time, on average,
1105 GraphVis took longer than Eiffel for subjects to complete
1106 tasks (ST1: 33.38s versus 28s, ST2: 26.15s versus 19.6s, ST3:
1107 31.07s versus 25.48s). The difference is significant, as deter-
1108 mined by a paired t-test on ST2 (tð23Þ ¼ 2:21; p ¼ :037,
1109 effect size ¼ 0:45). We found no significant difference for
1110 ST1 (p ¼ :46) and ST3 (p ¼ :16). For the subjective rating
1111 scores, in both measures, the ratings for Eiffel (usability:
1112 5.21, user experience: 5.04) were significantly better than
1113 those for GraphVis (usability: 4.54, user experience: 4.5), as
1114 determined by the Wilcoxon test. For usability, Z ¼ �2:1,
1115 p ¼ 0:036, and for user experience, Z ¼ �1:95, p ¼ 0:05.
1116 From the verbal feedbacks of users, we can draw two
1117 conclusions to interpret these results. First, Eiffel visualiza-
1118 tion outperforms GraphVis in its display of static influence
1119 flow patterns (i.e., significantly better accuracy and comple-
1120 tion time in ST2). This is achieved using a flow map design
1121 that emphasizes flow rate quantity. Second, Eiffel facilitates
1122 the analysis of static influence graphs in a more user-
1123 friendly manner (subjective scores). Users reported that Eif-
1124 fel was less complex and more visually pleasing.
1125 Dynamic Session. Figs. 6a, 6b, and 6c show summaries of
1126 the results for DT1-DT3. With respect to task accuracy, the
1127 flip-book and movie modes achieved a similar average accu-
1128 racies for all tasks with no significant difference, as deter-
1129 mined by the McNemar’s test (DT1: 0.96 versus 1, DT2: 0.96
1130 versus 0.96,DT3: 0.87 versus 0.96). With respect to task com-
1131 pletion time, the flip-bookmode required significantly longer
1132 time to complete than the movie mode on all three tasks (on
1133 average,DT1: 42.8s versus 36.19s,DT2: 40.81s versus 23.97s,
1134 DT3: 68.53s versus 45.63s). The differences are significant, as
1135 determined by the paired t-test: for DT1, tð23Þ ¼ 2:22; p ¼
1136 :037, effect size¼ 0:45; forDT2, tð23Þ ¼ 5:36; p < :001, effect
1137 size ¼ 1:09; and for DT3, tð23Þ ¼ 3:59; p ¼ :002, effect
1138 size ¼ 0:73. For the subjective scores, in both measures, the
1139 ratings for the movie mode (usability: 5.17, user experience:
1140 5.17) were significantly better than those for the flip-book
1141 mode (usability: 3.88, user experience: 4.04) by a Wilcoxon
1142 test. For usability, Z ¼ �3:67, p < 0:001; for user experience,
1143 Z ¼ �3:1, p ¼ 0:002.
1144 The results and the user feedback from the dynamic ses-
1145 sion indicate that: 1) On all the tested dynamic graph tasks
1146 such as the identification of changes in the node/edge size in
1147 the graph, both visualization modes can help users complete
1148 tasks correctly (especially the movie mode, with an accuracy
1149 of at least 0.96); 2). The subjects found the movie mode to be
1150 more efficient (required significantly shorter task time) and

1151user-friendly (better subjective ratings), because this mode
1152allows them to configure a static change view for any
1153selected time range, whereas users must manually compare
1154two flip-book views to perform the same task.
1155Threats to Validity. First, the results were statistically sig-
1156nificant only on a few tasks with respect to accuracy and
1157completion time. This could be due to the relatively small
1158sample size. Second, there may have been the same social
1159expectation bias as that described in Section 6.1.

11606.3 Case Studies

11616.3.1 Citation Influence Graph

1162We applied Eiffel to academic citation influence graphs
1163from the AMiner V8 [51] and CiteSeerX [52] data sets. The
1164AMiner data set contains 2.38 million papers on computer
1165science topics up to early 2016, and there are 10.48 million
1166citation links among these papers. Each paper’s record
1167includes its title, abstract, authors, and date of publication,
1168etc. From the AMiner data set, we extracted a citation influ-
1169ence graph of 18010 papers from 37 visualization-related
1170venues.1 We obtained these influence graphs by recursively
1171traversing the influence links (i.e., reversed citation links)
1172from the initial papers. We restricted the influence graph to
1173papers within the visualization domain by early pruning of
1174irrelevant branches: the papers influenced outside the 37
1175VIS venues were included in the graph but were not tra-
1176versed thereafter.
1177In the case studies, we first looked at a paper regarding
1178the Jigsaw visual analytics system in the VAST’07 proceed-
1179ings [50], for which Fig. 2a shows the initial Eiffel view
1180(k ¼ 20). There are five directly influenced paper groups
1181(from top to bottom): 39 papers on user interactions, notably
1182the Apolo CHI’11 work that combines user interaction and
1183machine learning [53]; 5 papers on document entity analy-
1184sis, including an extension of the Jigsaw paper in next year’s
1185IV journal; three seminal works on the reasoning and navi-
1186gation of visualization; 120 papers on data and streams; and
1187106 papers on visual text analytics. By analyzing the multi-
1188hop influence, i.e., the evolution of related research topics,
1189we can identify two backbone topic streams. The first stems
1190from three analytical reasoning studies (labels: “view”,
1191“process”, more details available by drilling down to
1192bigram summarizations) that seek insight into provenance
1193and reasoning processes, and finally split into two branches:
1194the visualization system (e.g., use of eye gaze data), and the
1195user evaluation of the visualization and the analytical

Fig. 5. User performance in static graph tasks. Fig. 6. User performance in dynamic graph tasks.

1. We only looked at papers with more than five direct citations.
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of1196 process. The second backbone topic was triggered by the

1197 120 paper cluster on the data stream and user interface. In
1198 addition to the side branches of the visual text analytics
1199 (also a directly influenced cluster) and 210 miscellaneous
1200 papers, the main stream propagated through the study of
1201 user interfaces (two clusters with 66 and 124 papers) and
1202 finally to human-computer interaction (HCI) research (ges-
1203 tures, citizen science, field studies, etc.). By examining the
1204 influence graph structure, we also identified two

1205outstanding paper clusters. A cluster of three papers (labels:
1206“view”, “process”) including the analytical reasoning paper
1207by Shrinivasan and Wijk appear to be the most influential.
1208This small cluster receives little incoming influence but gen-
1209erates a large influence flow. Another noticeable cluster is
1210that of four papers (labels:“gesture”, “creation”), as indi-
1211cated by the mouse hovering in Fig. 2a. This cluster serves
1212as a gateway between visualization research (left) and HCI
1213research (right), with large flows passing through the
1214cluster.
1215We further analyzed the dynamics of the Jigsaw paper’s
1216influence by Eiffel evolutionary visualization. In a flip-book
1217mode, we displayed in animations the process of how influ-
1218ence propagates, and captured the overall dynamic picture,
1219although it is still difficult to detect and memorize detailed
1220dynamic influence patterns. In another movie mode, by
1221incorporating the temporal summarization result, the evolu-
1222tion of Jigsaw’s influence is divided into three time periods
1223and displayed in more succinctly: i) 2007-2010, when some
1224initial papers on visual text analytics and user navigation
1225process cited the Jigsaw paper (Fig. 7a); ii) 2011-2012, when
1226more indirect influences occurred, but the focus continued
1227to be on text analytics and summarization, as well as the
1228user analysis process and performance (bottom-left and
1229top-right large paper groups in Fig. 7b); iii) recently, 2013-
12302015, the influenced topic became more diversified (Fig. 7c).
1231One emerging topic is “display”. When we selected the
1232major paper group on that topic (the node in the center of
1233Fig. 7c on “study”) and examined their details, we found
1234that most papers had reported studies of an HCI topic called
1235“public display”.
1236The influence of the Jigsaw paper can also be analyzed
1237with respect to the actual topics, their importance, and the
1238associated key authors. In Fig. 8a, we filtered the influence
1239graph to show only papers with high similarity (> 0.7) to
1240the topic of the original Jigsaw paper. The similarity score
1241between any two papers is derived from the word mover
1242distance [54] on the vector representation of their title
1243+abstract. Each vector adopts a distributed representation
1244of words using Word2Vec [55]. By examining the result in
1245Fig. 8a, we found that two initial branches on the graph
1246have a larger ratio displayed in the foreground (i.e., 3/5 and
124768/106), which indicates that the follow-up research on doc-
1248ument entity analysis and the visual text analytics are
1249related more to the original Jigsaw paper. Meanwhile,
1250research on reasoning/navigation (0/3) and their follow-up
1251papers are less relevant (7/27, 18/49, and 20/39). We fur-
1252ther filtered the influence graph to show the papers with at

Fig. 7. Citation influence graph of Jigsaw paper published in VAST’07 [50].

Fig. 8. Multifaceted analysis of the influence of Jigsaw paper.
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1253 least two citations in the database. As shown in Fig. 8b, the
1254 papers on document entity analysis (5/5) and reasoning/
1255 navigation (3/3) are more influential than the other topics
1256 in the same graph. We also studied the influence of Prof.
1257 John Stasko, the leading author of the Jigsaw paper, on this
1258 research topic by displaying the papers he has co-authored
1259 on the graph. As shown in Fig. 8c, after authoring the Jigsaw
1260 paper, he published seven more papers with citation link-
1261 ages to the original paper, which cover most of the branches
1262 in the influence graph. On citation influence analysis, we
1263 also include expert feedback in Appendix F, available in the
1264 online supplemental material to evaluate the usefulness of
1265 Eiffel outside the visualization community.
1266 In another trial, we studied the influence of a survey paper
1267 on hierarchical aggregation for information visualization [56],
1268 as shown in Fig. 9. By configuring the node transparency to
1269 reflect the average number of citations/influence, we identi-
1270 fied two classes out of four directly influenced paper clusters.
1271 The first class is the cluster with 19 papers in the top, which is
1272 large in size but has little average influence. Drilling down to
1273 the content of this cluster reveals a diversified summary rang-
1274 ing from network data to approximation algorithms. The fol-
1275 low up large cluster with 40 papers is similar in its mixed
1276 content and low level of influence. This research thread may
1277 not be the major core field influenced by the source paper.
1278 In the lower area of the figure, there are three small but
1279 highly influential paper clusters directly connected to the
1280 source. The top cluster, i.e., a single paper studying tangible
1281 views for visualization, appears to have the largest influence.
1282 Its follow-up four branches continue to address different
1283 types of tangible interactions, including bending interaction,
1284 tabletop interaction, mobile interaction, and augmented-
1285 reality interactions, etc. The small cluster in the middle area
1286 is a paper on real-time visual queries of big data, and its fol-
1287 low-up works are mostly related to visual queries. The last
1288 smaller cluster at the bottom of the figure contains two
1289 papers, with surprisingly similar titles on TreeMatrix visuali-
1290 zation. We double-checked the data set and found these
1291 papers to be duplicate entries (we have made significant
1292 efforts to reduce duplication, but may not have eliminated
1293 all of them). This provides side evidence of the correctness of
1294 the summarization result: papers with the same citation rela-
1295 tionship are put into the same cluster. The TreeMatrix paper

1296has a few direct influences, but only one about aggregation
1297algorithms has further influenced other papers.

12986.3.2 Social Influence Graph

1299In another case study, we applied Eiffel to a large-scale
1300social influence graph on Twitter, which describes the
1301spread of rumors and announcements regarding the discov-
1302ery of the Higgs boson [57], [58].
1303We constructed the original influence graph by aggregat-
1304ing posts by the same users into nodes and folding the links
1305among posts into influence links among users. An artificial
1306node is inserted into the graph as the influencer. Influence
1307links are added from the influencer to each source user who
1308posted related original tweets during this time. The influ-
1309ence graph was summarized using the Eiffel summarization
1310framework, whose flow rate maximization approach fits
1311well the objective of detecting salient influence diffusion
1312patterns. Meanwhile, the backbone tree extracted by the
1313edge summarization accounts for more than 85.5 percent of
1314the overall flow rate after the node summarization. To
1315reveal the user’s characteristics, the node color transparency
1316is used to represent the average #followers of users in the
1317same cluster. Twitter’s policy forbids the display of further
1318details regarding the identity of users.
1319Fig. 10a shows the overall structure of the social influence
1320graph (k ¼ 20), which is composed of two subgraphs: i) The
1321left area features a two-stage propagation pattern in which the
1322posts of a small portion of users (opinion leaders) were
1323retweeted by a large number of other users (ordinary people).
1324This pattern is validated by Fig. 10b, which shows the average
1325#followers of users by the transparency of their node color.
1326Opinion leaders generally have a higher average #followers,
1327whereas ordinary people have fewer followers. ii) The right
1328area shows the interactions between large groups of people,
1329i.e., the discussions held in small circles of ordinary people.
1330When we switch to analyze the influence graph in the
1331movie mode, we can compare the influence propagation pat-
1332terns in two time periods: i) from July 1st to July 4th before/
1333upon the announcement of the new particle, during which a
1334rumor was spread on Twitter (Fig. 10c); ii) from July 4th to
1335July 7th upon/after the announcement when more discus-
1336sions were posted by Twitter users (Fig. 10d). If we compare
1337these two graphs, we see little difference in their propagation
1338paths, i.e., rumors and news spread on Twitter via similar
1339information channels from opinion leaders to the masses,
1340and later on among the masses themselves. One interesting
1341finding is that whereas the graph size in the second stage is
1342almost three times larger than that of the first stage, the num-
1343ber of opinion leaders remains stable (<50 percent growth)
1344as more discussions arise regarding the confirmed news.

13457 DISCUSSION

1346In evolutionary IGS, the number of clusters (k) is fixed. This
1347is mainly because as k increases, the maximal IGS objective
1348achieved (i.e., the overall flow rate) also increases [5]. There
1349may not be an optimal k under the IGS summarization
1350framework. In Eiffel, we compute IGS summarizations with
1351multiple ks (e.g., 10, 20, 40) and allow users to switch
1352between visualizations of different granularities based on
1353their analysis goals (e.g., overview or details). The limitations

Fig. 9. Influence graph of the hierarchical aggregation survey paper in
TVCG [56].
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of1354 of the current design are two-fold: for an overview, the labels

1355 selected for each cluster can be too general to interpret, and
1356 there is no way to drill down to the detailed summarization
1357 of each cluster for further analysis. For a detailed view, the
1358 number of clusters can be so large that the visualization
1359 becomes very cluttered. In future work, to overcome these
1360 limitations, we plan to develop hierarchical summarizations
1361 of influence graphs, in which the visualizations can be fully
1362 customized to display both an overview and the details of
1363 any particular cluster.
1364 Regarding the application of citation influence analysis in
1365 Eiffel, we currently obtain the maximal influence graph of
1366 one source paper by an exhaustive search along its reversed
1367 citation links. This primitive approach can lead to a very
1368 large initial graph in which many nodes (papers) are unre-
1369 lated to the topic of the source paper. Although venue-based
1370 filtering can restrict the graph to pertinent research commu-
1371 nities, it cannot generate topic-based influence graphs. As
1372 the next step in the Eiffel system,we plan to study the seman-
1373 tics of citation links between papers and the computation of
1374 fine-grained topic-based influence graphs.
1375 We showcased this work with the citation influence anal-
1376 ysis as the main application. The same technique can be
1377 also used in a wide range of other scenarios, including
1378 the social influence analysis mentioned in Section 6.3.2, the
1379 functional influence analysis of a suspicious line of code in
1380 the execution of a program, etc. In these applications, users
1381 should first determine the level of basic elements as the
1382 node of the influence graph. We choose the scientific papers
1383 in the citation case and the posting authors in the social case
1384 because they are considered the fundamental unit that gen-
1385 erates the influence. When multiple sources of influence
1386 exist, special treatments should be placed before using our
1387 technique. In the social case, we introduce an artificial influ-
1388 ence node that triggers all the sources of influence. Finally,
1389 the selected granularity of time could also be important for
1390 the success of evolutionary influence graph visualization.
1391 For influence process that develops at a moderate pace, e.g.,
1392 the citation influence, we adopt the granularity of a year or
1393 a month. For other processes that evolve rapidly, e.g., social
1394 influence on Twitter, we can choose a finer granularity of a
1395 day or even an hour.

1396 8 CONCLUSION

1397 In this paper, we presented Eiffel, a system that draws
1398 dynamic influence graphs with evolutionary flowmap visu-
1399 alizations. Eiffel addresses multiple challenges when sum-
1400 marizing structurally complex and time-varying influence

1401graphs, which are formulated as evolutionary influence
1402graph summarization problems. To solve these problems,
1403we proposed scalable matrix decomposition, flow selection,
1404and temporal segmentation algorithms to summarize the
1405influence graph in nodal, relational, and temporal dimen-
1406sions. The flow map of an influence graph summarization is
1407designed to highlight the dominant flow patterns with mini-
1408mal visual clutter while maximizing the information effi-
1409ciency of the influence flows. The results of two case
1410studies, which address academic citation influence graphs
1411and Twitter social influence graphs, demonstrate the useful-
1412ness of the Eiffel system. We conducted a controlled user
1413experiment to compare Eiffel visualization design with
1414baseline static graph visualization. The results confirm the
1415effectiveness of the use of flow map in evolutionary influ-
1416ence graph analysis tasks.
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