
Load-Balancing Multipath
Switching System with Flow Slice

Lei Shi, Bin Liu, Changhua Sun, Zhengyu Yin,

Laxmi N. Bhuyan, Fellow, IEEE, and H. Jonathan Chao, Fellow, IEEE

Abstract—Multipath Switching systems (MPS) are intensely used in state-of-the-art core routers to provide terabit or even petabit

switching capacity. One of the most intractable issues in designing MPS is how to load balance traffic across its multiple paths while

not disturbing the intraflow packet orders. Previous packet-based solutions either suffer from delay penalties or lead to OðN2Þ
hardware complexity, hence do not scale. Flow-based hashing algorithms also perform badly due to the heavy-tailed flow-size

distribution. In this paper, we develop a novel scheme, namely, Flow Slice (FS) that cuts off each flow into flow slices at every intraflow

interval larger than a slicing threshold and balances the load on a finer granularity. Based on the studies of tens of real Internet traces,

we show that setting a slicing threshold of 1� 4 ms, the FS scheme achieves comparative load-balancing performance to the optimal

one. It also limits the probability of out-of-order packets to a negligible level (10�6) on three popular MPSes at the cost of little hardware

complexity and an internal speedup up to two. These results are proven by theoretical analyses and also validated through trace-driven

prototype simulations.

Index Terms—Load balancing, traffic measurement, switching theory.

Ç

1 INTRODUCTION

MULTIPATH Switching systems (MPS) play a pivotal role
in fabricating state-of-the-art high performance core

routers. A well-known paradigm is the deployment of Benes
multistage switches in Cisco CRS-1 [1]. Other examples
include the Vitesse switch chip family [3] implementing the
Parallel Packet Switch (PPS), and the Load-balanced Birkh-
off-von Neumann (LBvN) switches [9], [10]. In general, MPS
is built by aggregating several lower speed switches and,
therefore, exhibits multiple internal data paths.

One major open issue in MPS is the load-balancing
problem defined as how to distribute incoming traffic A(t)
across its k internal switching paths f�lgðl 2 ½1; k�Þ to meet
at least three objectives simultaneously:

1. Uniform load sharing. Traffic dispatched to each path
should be uniform. Specifically in MPS, traffic

destined for each output should be spread evenly
to avoid output contention, minimize average packet
delay, and maximize throughput. This requirement
is formalized as

Equalize
�
Al
jðtÞ
�
ðl 2 ½1; k�Þ for any j; ð1Þ

where Al
jðtÞ denotes the traffic rate destined for

output port j through switching path l in MPS.
2. Intraflow packet ordering. Packets in the same flow

should depart MPS as their arrival orders. (Unless
otherwise stated, flow in this paper is defined by
TCP/IP 5-tuple.) This ordering is essential since out-
of-order packets will degrade the performance of
higher level protocols [5], [24]. For any two packets
P1 and P2 in the same flow with arrival time T ðP1Þ,
T ðP2Þ, and departure time DðP1Þ, DðP2Þ, the formula
below should be guaranteed:

DðP1Þ < DðP2Þ if T ðP1Þ < T ðP2Þ: ð2Þ

3. Low timing and hardware complexity. The load-balan-
cing and additional resequencing mechanisms at
MPS should work fast enough to match the line rate,
and should introduce limited hardware complexity.
MPS is most likely to hold hundreds of external
ports operating at ultrahigh speed. To provide such
scalability, the timing/hardware complexity of O(1)
is necessary.

As a rule of thumb, packet-based solutions are advo-
cated where traffic is dispatched packet by packet to
optimally balance the load. However, packets in the same
flow may be forwarded in separate paths and experience
different delays, thus violating the intraflow packet order-
ing requirement. A straightforward solution is to use an
explicit resequencer at each output to restore packet orders.

350 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

. L. Shi is with the IBM Research - China, Building 19, Zhouguancun
Software Park, 8 Dongbeiwang West Road, Haidian District, Beijing
100193, China. E-mail: shijim@gmail.com.

. B. Liu is with the Lab of Broadband Network Switching Technology and
Communications, Department of Computer Science and Technology,
Room 9-416, East main building, Tsinghua University, Beijing 100084,
China. E-mail: liub@tsinghua.edu.cn.

. C. Sun is with the IBM Research - China, Building 19, Zhouguancun
Software Park, 8 Dongbeiwang West Road, Haidian District, Beijing
100193, China. E-mail: sunchanghua@tsinghua.org.cn.

. Z. Yin is with the Computer Science Department, University of Southern
California, 3737 Watt Way, Los Angeles, CA 90089-0781.
E-mail: zhengyuy@usc.edu.

. L.N. Bhuyan is with the Computer Science and Engineering Department,
University of California, 351, Engineering Building II, Riverside, CA
92521. E-mail: bhuyan@cs.ucr.edu.

. H.J. Chao is with the Polytechnic Institute of New York University,
5 Metrotech Center, Brooklyn, NY 11201. E-mail: chao@poly.edu.

Manuscript received 24 Feb. 2010; revised 8 Aug. 2010; accepted 22 Nov.
2010; published online 15 Dec. 2010.
Recommended for acceptance by V. Leung.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-02-0133.
Digital Object Identifier no. 10.1109/TC.2010.279.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

In [17], [30], and [31], timestamp-based resequencers are
developed. They delay each packet at output until the
system delay upper bound is reached. Each packet is time
shifted by the same offset before departing, thus preserving
the arrival order. Nonetheless, the delay equalization
method suffers from a huge penalty in magnifying the
average delay. It is shown in our prototype simulations that
even the latest adaptive resequencer [31] increases the
average delay nearly 10 times to about 10 ms. A route
passing through five such routers will lead to at least 50 ms
average delay, almost violating the QoS requirement for
delay-sensitive applications. Another kind of resequencers
[14], [22], [23] records each packet’s sequence number in the
flow (defined by input, output port, and priority class),
instead of absolute timestamp. By allowing only in-order
packets with expected sequence number to depart, they
preserve packet orders without penalizing packet delays,
but at the cost of maintaining at least N resequencers (N is
the number of input/output port in a square MPS) at each
output, leading to OðN2Þ hardware complexity. In a 1,024-
port/16-plane/8-priority-class three-stage Clos-network-
based MPS, Virtual Input Queue (VIQ) resequencer [4]
should maintain 4M resequencing FIFOs at each output, a
scenario which is nearly impossible to implement.

To avoid the packet out-of-order, another choice is to use
flow-based load-balancing algorithms [7], [15], [20], [26], [29].
They dispatch packets in the same flow to a fixed switching
path by hashing its 5-tuple to path ID. However, hashing
solutions intrinsically suffer from load-imbalance under
every timescale. We give an illustration here using a trace
collected in real life, but actually this behavior is universal
irrespective of the input trace. If we denote the traffic volume
dispatched to path l by AlðtÞ, then we can define load-
Imbalance Factor (IF) as the maximum deviation ratio:

IF ¼MaxfjAlðtÞ � avg½AlðtÞ�j=avg½AlðtÞ�g l 2 ½1; k�: ð3Þ

We use the average of IFs in every nonoverlapped time
period with length T to indicate overall load-imbalance
degree under timescale T .

Three static hashing algorithms (CRC16 [7], XOR, and
H3 [8]) and the dynamic table hashing [7] are evaluated in
load balancing the same trace to eight identical paths.
Results given in Fig. 1 demonstrate that their average IFs
do not go asymptotically to zero as timescale increases, but
stay stable at 0:2-0:3, showing their consistent load
imbalances. This effect can be ascribed to the heavy-tailed

flow-size distribution discussed in [6] and [16]. Adaptive
hashing [20], [26] can be adopted to adjust flow mapping
according to load status at each split path. But this does
not work well for MPS since 1) the load balancer (LB) here
is geographically separated from all the switching paths,
making feedbacks outdated; and 2) there exists dual
conflicting points at both the input and output of MPS
and, therefore, feedback should be initiated from each
input to each output, leading to OðN2Þ complexity.

In summary, previous solutions cannot gracefully deal
with the load-balancing problem in MPS to meet the three
objectives outlined above. In this paper, we develop a new
scheme called Flow Slice (FS) that achieves our load-
balancing goals perfectly. Based on the observations on
tens of broadly located Internet traces, we find that the
intraflow packet intervals are often, say in 40-50 percent,
larger than the delay upper bound at MPS which can be
calculated statistically. If we cut off each flow at every
interval larger than a slicing threshold set to this bound and
balance the load on the generated flow slices, all three
objectives are met simultaneously:

1. Flow slices exhibit small average size, light-tailed
size distribution, and large in total number; hence,
the average load balancing of FS, measured by
average packet delay and loss rate, is only moder-
ately degraded from the optimal load balancing. In
our simulations, FS receives nearly the same loss rate
as the optimal even under a load rate of 0.95. Fig. 1
also depicts the average IF under FS. It indicates that
the load-balancing uniformity improves quickly
toward the optimal value as timescale increases.

2. As the slicing threshold is set to the statistical delay
upper bound at MPS, the intraflow packet order is
kept intact as they arrive. Exceptions only occur in
negligible probability (below 10�6) [5]. Hence, there is
no need to use costly resequencing mechanisms.
Throughout the paper, unless otherwise noted, the
statistical delay (upper) bound is defined as a minimal
value t that more than 99.9999 percent packet delays
through MPS are smaller than t.

3. The active flow-slice number drops 1-2 magnitudes
from the active flow number to at most 50 k even
under full load at OC-768c port. As a result, the
flow-slice table size in FS only requires 1.8 MB in
total, which can be placed on-chip to provide
ultrafast access speed. Here, the active flow/flow
slice is defined as the one that has its last packet
arrive within a time-out threshold. According to the
flow/flow-slice table maintenance mechanism, only
the active flows/flow slices are valid and taken into
account for the table space.

At the time of our study, we noticed similar techniques
developed for traffic splitting in multipath routing [28] and
load balancing in the multicore Network Processor (NP)
[25], [27]. Our major improvement over the existing works
is to tailor the FS approach in the MPS scenario by
introducing the offline delay bound calculation, while the
previous solutions either use an empirical slicing threshold,
e.g., 60 ms in [28], or maintain flow context to facilitate the
slicing [25], [27]. The empirical slicing threshold will lead to

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 351

Fig. 1. Average IFs under different timescales.

poor load-balancing performance for MPS, as shown in our
simulations. Maintaining flow context is impractical in the
MPS scenario as it requires a flow table for each input
updated by all the outputs in real time (see Section 2 for
details).

Other contributions besides the FS idea include:

1. The concept of smallest slicing threshold and the
method to compute it. By configuring FS at this
value, we find the best trade-off between the load-
balancing and packet ordering performance.

2. A systematic study of the properties of flow slice.
Based on these properties, the intrinsic reason for
FS solution to achieve high performance is clarified.

3. An evaluation of FS performance, which to the
best of our knowledge, is the first attempt to use
multiport trace-driven switch simulation. The traces
here are collected at backbone links of one of the
largest commercial backbones worldwide, with
average traffic rate beyond 3.5 Gbps. Previous
studies [7], [25], [27], [28] rarely use traces with
average speed beyond 1 Gbps.

The rest of this paper is organized as follows: Section 2
summarizes related works; Section 3 defines flow slice,
studies its properties, and proposes our load-balancing
scheme; Sections 4 and 5 calculate packet delay upper
bound at three popular MPSes and further derive the
smallest admissible slicing thresholds; Section 6 evaluates
FS performance using trace-driven prototype simulations;
Section 7 discusses implementation issues; and finally, we
conclude the paper in Section 8.

2 RELATED WORK

A basic timestamp-based resequencer was proposed by
Turner [30] to deal with the cell out-of-order issue, when
cells within a virtual circuit are allowed to take different
paths in ATM switching systems. In each scheduling, the
resequencer implements a smart contention resolution
mechanism to select the oldest cell and then compares its
age with a predefined threshold equal to the system delay
upper bound. If the selected cell exceeds this age threshold,
it will be sent without disturbing cell orders since all
previously arrived cells have left the system. Henrion
improved the timestamp-based resequencer by introducing
time-wheel-like hardware [17] which does not need to
compare cells’ timestamps at output. It maintains an array
of D pointer lists, where D is larger than delay upper bound
at system measured by timeslots. Each pointer at the list
stores location of a cell waiting for resequencing. At
timeslot t, the pointer list at slot t modulo D is linked to
the tail of the output cell list and removed from the array.
After that, pointers of arrival cells at timeslot t are linked
together and stored in this empty slot (t modulo D) of the
array. This approach delays every cell by fixed D timeslots
with O(1) complexity and strictly guarantees cell orders.

Fixed-threshold timestamp-based resequencers work
well for ATM switching systems where traffic is well
defined and cell delay is moderate. However, in transition
to an IP network, traffic becomes rather bursty, introdu-
cing a higher age threshold on these resequencers and
equalizing cell delay to undesirable level. To cope with the

traffic in the worst case, Turner proposed an adaptive
resequencer [31] that dynamically adjusts threshold ac-
cording to a real-time delay bound. Trace-driven simula-
tions show that the resequencer performs well better than
the fixed-threshold one.

Another kind of resequencer uses sequence number
instead of timestamp. Cells with the same priority from
one input to one output are numbered sequentially at their
arrivals. At the output, an expected sequence number is
maintained for all the packets in the same flow. Only the cells
with an expected sequence can be sent after reaching output,
thus preserving cell order. Predefined path scheduling
protocol known by both input and output, such as Round-
Robin (RR), can be employed to avoid attaching a sequence
number to each cell. Resequencers using VIQ [4], [19], [21]
can be categorized in this class. However, to recover from cell
loss, more complicated mechanisms should be introduced,
such as resequencers developed by Chiussi et al. [14] in
designing Switched Connection Inverse Multiplexing for
ATM (SCIMA) and the solution named Rank [22], which
maintains k-1 fields in each cell header to deal with cell loss.
However, Rank is not scalable for MPS having more than a
hundred internal paths.

Resequencing techniques are also studied in designing
popular MPS. In [18], Iyer et al. have proven that using a
centralized scheduling algorithm, PPS rigorously emulates
an Output-Queued (OQ) switch if only a speedup of two is
provided. This approach does not disorder cells but suffers
from huge communication complexity in sharing informa-
tion among all the inputs and outputs. Another work [19]
by Iyer and McKeown introduced distributed scheduling
that does not exactly emulate OQ, hence also requires
resequencing mechanisms at the output.

In Chang et al.’s work [9], [12], a jitter control mechanism
is inserted before the second stage of LBvN to equalize
delays experienced in its first stage and preserve cell order.
This approach can be categorized into timestamp-based
solution. Later in [11], by setting the configurations of
LBvN’s first and second stages to symmetrical patterns,
each input and output is connected to each Virtual Output
Queue (VOQ) between the two stages (called mailbox) in
period. Then, the buffer lengths of all the VOQs, indicating
cell delay at LBvN, can be known precisely. Each Head-Of-
Line (HOL) cell is scheduled to the proper mailbox where it
will not depart earlier than any previous cell in the same
flow, thus keeps cell order intact. However, this method
degrades throughput to 75 percent. Another solution by
Keslassy and Mckeown [21] uses three-dimensional queues
(3DQs) between LBvN’s two stages. It arranges buffer by
external input/output port and also by internal input port,
with totally N3 FIFOs. Full frames, defined by cells
belonging to same input/output port and going to internal
input 1 through N , are scheduled first (FFF) at LBvN’s
output; hence, it guarantees cell orders in most cases. FFF
can be deemed as a generalization of the VIQ resequencer.

Other solutions on this issue are flow-based algorithms
dispatching traffic of the same flow into a same path, which
natively preserves packet order. In [7], Cao et al. evaluated
the performance of static hashing. It concludes that 16 bit
CRC achieves excellent load-balancing uniformity, but this

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

is only derived under large timescale (0.1 s) and two load-
balancing paths. An adaptive table-based hashing was
proposed by Dittmann and Herkersdorf [15] to deal with
the load-balancing issue in clustered network processors.
Each newly arrived flow is assigned to the NP with the
lightest load. The major bottleneck of this method is to
maintain a per-flow context table, which reaches up to a
million entries at an OC-768c port.

A name-based hashing solution called Highest Random
Weight (HRW) was proposed by Thaler and Ravishankar
[29], which uses names of an object and each server to
generate weights through static hashing. The object is
handled by the server with the highest weight. The unique
features of HRW lie in its graceful dealing with server
failures, and it supports load balancing across heteroge-
neous servers by introducing the scaling vector. In [20],
Kencl and Boudec generalized HRW to the multicore NP.
They developed methods to detect NP’s overload and
optimally adjust a scaling vector to reshape flow distribu-
tion. However, flow remapping has negative impact on
increasing packet out-of-order probability. To alleviate that
problem, Shi and MacGregor proposed the idea of shifting
only aggressive flows [26].

In [28], Sinha et al. found that TCP’s burstiness can be
utilized to improve load balancing. Based on this observa-
tion, flowlet switching [28] and adaptive burst shifting [25],
[27] (by Shi et al.) were developed for traffic distributing at
multipath routing and multicore NP designs. However,
these approaches do not fit well into MPS, since 1) the
slicing threshold at 60 ms [28] does not improve MPS
performance much, and 2) the method in [25] and [27]
records flow context of all the packets in the centralized or
distributed flow table at each input. The method will remap
the flows with all previous packets already departed to
optimize the load-balancing performance. Also, this ap-
proach cannot be extended to MPS, as all the inputs/
outputs of MPS are separated, making the centralized
updates to each input difficult and costly to deploy.

3 FLOW SLICE

In this section, we study flow-slice properties using real
traces listed in Table 1 [2]. The traces are collected at
separate locations from the network core to edge/access
points; hence, the traces represent comprehensive Internet
traffic behaviors. Each data set records consecutive packet
headers (TCP/IP) during an observation period of 1-10 min.
The original 5-tuple at each header is remapped, using the
longest prefix-preserving mapping, to new 5-tuple address
spaces, but they still retain the original flow-level char-
acteristics. The timestamp at each packet header has a
resolution of at least 1 microsecond.

3.1 Definition

3.1.1 Flow Slice

A flow slice is a sequence of packets in a flow, where every
intraflow interval between two consecutive packets is
smaller than or equal to a slicing threshold �.

Flow slices can be seen as miniflows created by cutting
off every intraflow interval larger than �. In Fig. 2, we
depict the Cumulative Distribution Functions (C.D.F) of
intraflow intervals in our traces. Most of the traces have
more than 50 percent of their intervals larger than 1 ms, and
more than 40 percent are larger than 4 ms. Two exceptions

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 353

TABLE 1
Real Traces Studied in This Paper

Fig. 2. Intraflow interval C.D.F.

are PSC and FRG. The former is under a light load ð�10%Þ;
the latter is collected from a low-speed OC-12c network
edge link. Thus, their weights are minimized. We denote
the probability for an intraflow interval to be larger than �
by PC and the average packet count in the original flow by
C0. After slicing, the average packet count in flow slice,
denoted by FC , is calculated by

FC ¼ C0=½1þ ðC0 � 1ÞPC � < 1=PC: ð4Þ

Setting � ¼ 1 ms, which leads to PC > 0:5, we obtain
FC < 2. That is, each flow slice has no more than two
packets in average. Even under a modest setting of
� ¼ 4 ms, we still have FC < 2:5. This reveals the very close
load-balancing granularity of FS to the optimal packet-based
solution.

3.2 Properties

The flow-slice characteristics are investigated at different
slicing thresholds between 100 �s-200 ms. Compared with
the original flow, which is equivalent to flow slice with a
slicing threshold of 2 s (set to flow time-out value), three
flow-slice specific properties are observed in all traces.

Property 1 (Small Size). Both the average packet count (FC)
and the average size (FS) of flow slice are much smaller than
those of the original flow.

Figs. 3 and 4 illustrate the average flow-slice packet
count and flow-slice size, which drop linearly in log-log
plot. (PSC/FRG are exceptions. They crest at � ¼ 200 ms
since only flow slices that expire during trace collection
time are counted, so the flow-slice size and packet count at
� ¼ 200 ms or above are smaller than the actual values.)

At � � 4 ms, all traces except PSC/FRG meet
FC � 2:43; at � � 1 ms, they meet FC � 1:92. These results

fit very well to the analysis in Section 3.1. In contrast, the
average metrics of original flow shown as intersections at
the y-axis of Figs. 3 and 4 are much larger. Using the
average flow-slice size in Fig. 4 to indicate load-balancing
granularity, a flow-based algorithm is 3:5-12 times coarser
than a packet-based one (compared with the average
packet length given in Table 1), while a flow-slice-based
algorithm is only 0:41-0:97 times coarser at �¼ 1 ms, and
1:95-2:42 times coarser at � ¼ 4 ms.

This property implies that the number of flow slices is

much larger than the original flows.

Property 2 (Light-Tailed Size Distribution). Flow-slice

packet count/size distributions are light tailed while it is

well-known that original flow-size distribution is heavy tailed.

Figs. 5 and 6 show the SCV of flow-slice packet count

(�2
FC) and flow-slice size (�2

FS). As proven in the later

theorems, the delay bounds at MPS are directly subject to

these metrics. Take �2
FS as an example, at � � 4 ms, it is

below 48; at � � 1 ms, it further drops to below 12. In the

same figure, we observe that the SCV of the original flow

size is much larger; some even beyond 1,000. This reveals

the light-tailed property of flow-slice size distribution.

Property 3 (Fewer Active Flow Slices). The active flow-slice

number is 1-2 magnitudes smaller than that of active flow.

Each flow slice remains active for an average length of

DFS þ �, where DFS denotes its duration, and � denotes

slicing threshold. So, the active flow-slice number, denoted

by AF , can be calculated by (5), where NF denotes the total

number of flow slices in the trace and D stands for the

trace duration.

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 3. Flow-slice packet count.

Fig. 4. Flow-slice size.

Fig. 5. SCV of flow-slice packet count.

Fig. 6. SCV of flow-slice size.

AF ¼ ðDFS þ �ÞNF=D: ð5Þ

Fig. 7 depicts the active flow-slice number. As we reduce
�, it decreases linearly in log-log plot. At � ¼ 4 ms, it drops
to less than 2.8 percent of the active flow number; further at
� ¼ 1 ms, it is less than 1 percent of the active flow.

We also measure packet length distributions in all listed
traces. Its average (L) and SCV (�2

L) are given in Table 1. In
later analysis, we will assume packet length to be i.i.d and
independent of individual flow slices.

3.3 Load-Balancing Scheme for MPS

Fig. 8 illustrates the proposed FS scheme and compares it to
the packet-based and flow-based load-balancing schemes.
We describe the FS scheme in two steps: 1) an introduction
of the mechanism to detect and maintain flow-slice context,
and 2) an algorithm to map new flow slices into individual
switching paths.

First, we implement a hash table to maintain flow-slice
information. Every table entry is expected to record the
context of one active flow slice and is composed of two fields
apart from the table index: Latest Arrival Timestamp (TL),
which holds the exact time of the latest packet arrival of this
flow slice; and Flow-slice Destination Path (PD), indicating the
switching path taken by all the packets in this flow slice.

At any packet Pa’s arrival, its corresponding entry � is

retrieved from the table by hashing Pa’s 5-tuples into the

table index. Denote TL in entry � by TL½�� and Pa’s arrival

time by TA. In case TA-TL½�� � �, Pa should be a successive

packet of an active flow slice; otherwise, Pa should be an

initial packet of a new flow slice. In the former case, Pa is

dispatched to switching path PD½�� as its preceding packets

in the same flow slice and TL½�� is updated to TA; in the

latter case, Pa is dispatched by the new flow-slice load-

balancing algorithm: then both TL½�� and PD½�� are updated

to the latest values: TL½�� to TA and PD½�� to the generated

path ID. With our scheme, each hash table entry will go

dirty silently upon time-out (�) and be updated until the

next packet hashed into this entry arrives, so there is no

need for an extra space free-up mechanism. Note that the

trade-off between table size and hash collision probability is

discussed in Section 7.1.
Second, to load balance new flow slices, a simple round-

robin algorithm called N-FS is applied, where N is the

number of output ports in MPS. Denote the switching paths

in MPS by 1-k; N-FS maintains a pointer Ptj 2 ½1; k� for

output j, serving packets destined for output j. At the

arrival of an initial packet PI representing new flow slice

destined for output j, PI is dispatched to the switching path

pointed by Ptj, and after that, Ptj is updated circularly.
Unless otherwise stated, we use N-FS to name our load-

balancing scheme in the rest of this paper. By N-FS, the

three objectives of the load-balancing issue are achieved

simultaneously:

1. Since N-FS balances the load on the finer-grained
flow slice, the switching performance—measured by
packet delay and loss rate—is greatly improved
from flow-based approaches.

2. Intraflow packet order is natively preserved by
setting slicing threshold to the delay upper bound
at MPS. This is because 1) any two packets in the
same flow slice cannot be disordered as they are
dispatched to the same switching path where FIFO
processing is guaranteed; and 2) any two packets in
the same flow but different flow slices will be in-
order at departure, as the earlier packet will have
depart from MPS before the latter packet arrives.

3. Due to the fewer number of active flow slices, the
only additional overhead in N-FS, the hash table,
can be kept rather small, say 1.6 MB in total even
under the OC-768c line rate, and placed on-chip to
provide ultrafast access speed. This table size
depends only on system line rate and will stay
unchanged even if MPS scales to more than a
thousand external ports, thus guarantees system
scalability. Meanwhile, the time complexity of N-FS
in dispatching packet is shown to be O(1).

Other advantages of N-FS are that

1. It is immune to packet loss, while other solutions like
the VIQ resequencer require additional loss detec-

tion mechanisms.
2. It maintains a hash table to record active flow-slice

context, a redirection mechanism can be added to
provide robustness to system failure. When some
switching path stops working, the load balancer can
simply redirect all the active flow slices going to this
path at their next packet arrivals, still by N-FS.

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 355

Fig. 7. Active flow-slice number.

Fig. 8. FS Scheme and comparisons to Packet-based (PLB) and Flow-based (FLB) load-balancing schemes.

3. It natively supports multicast. Multicast flows are
treated in the same manner as unicast flows and still
preserve packet orders. To load balance multicast
flow, it is required to use (N þMÞ-FS, where M is
the number of multicast destination port group.

4. N-FS supports load balancing across uneven switch-
ing paths by applying weighted round robin.

Now that the most critical remaining issue of N-FS is to
calculate delay upper bound at MPS and determine their
admissible slicing thresholds. This is settled in Sections 4
and 5 beginning with analyses of a basic multiplexer (mux)
and three popular MPSes.

4 PERFORMANCE ANALYSIS ON BASIC

DEMULTIPLEXERS (DEMUX)

4.1 Notations

The structure of a basic demultiplexer is depicted in Fig. 9a.
It is composed of a load balancer carrying out N-FS and
k LB-FIFOs compensating for rate difference between
external line rate R and internal line rate SR/k. Here,
internal line rate is the rate each smaller switch at a
switching path operates, S denotes its speedup.

We take a worst case assumption that all the arrival
traffic is TCP packet, since the part of non-TCP traffic
requiring in-order delivery can be modeled similarly with
TCP by replacing the TCP/IP 5-tuple with the specific flow
identifier; while the other best-effort non-TCP traffic such as
UDP can be dispatched by the optimal load balancing
without preserving packet order.

Denote packet arrivals at input link I during period T ¼
½t0; t0 þ t� by fP1; P2; . . . ; PCðtÞg and their packet lengths by

fL1; L2; . . . ; LCðtÞg, a total of CðtÞ packets. The aggregated

traffic during T is summed by AðtÞ ¼
PCðtÞ

i¼1 Li. Also denote

the traffic dispatched to link LBj by AjðtÞ. Other definitions

of flow-slice statistics follow those in Section 3: FC and �2
FC

for average packet count and its SCV; FS and �2
FS for

average size and its SCV; L for average packet length, �L
and �2

L for its standard deviation and SCV.
Flow slices that have at least one packet arrival during T

could be partitioned into two classes: new flow slice and
active flow slice. New flow slice is the one with its first
packet arrived during T ; all the others are the active flow
slices. The first packet of a new flow slice is called the initial
packet; all the others are called successive packets. We
denote � to be the ratio of initial packets in all arrival
packets, having � ¼ 1=FC . Given the i.i.d distribution
assumption of the packet length in Section 4.2, � is also
the traffic ratio of the initial packets.

As illustrated in Fig. 9b, N-FS can be deemed as

aggregating N1� FS. The traffic destined for output l,

denoted as AðlÞðtÞ, is load balanced independently by 1-FS.

We start from an analysis of 1-FS’s performance.

4.2 Analysis on Backlog and Delay Bound

Lemma 1 (1-FS Load-Balancing Bound). By 1-FS, traffic

dispatched to link LBj during T is statistically bounded:

AjðtÞ � ½AðtÞ=k� þ FS

þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ=k

p ffi�
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS

q
:

Proof. See Appendix A, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TC.2010.279, and can also be found on

http://s-router.cs.tsinghua.edu.cn/~shilei/Appendix-

FS.pdf. The proof is based on the assumption that the

numbers of active and new flow slices in each link are large

enough to hold the central limit theorem. This is also

examined in Appendix A, which can be found on the

Computer Society Digital Library. tu
Lemma 2 (N-FS Load-Balancing Bound). By N-FS, traffic

dispatched to link LBj during T is statistically bounded:

AjðtÞ � ½AðtÞ=k� þ 5
ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ=k

p ffi
ð�2
LL=FCÞ þ ð�2

FS þ 1ÞFS
q

:

Proof. See Appendix B, which can be found on the

Computer Society Digital Library at http://doi.

ieeecomputersociety.org/10.1109/TC.2010.279, and can

also be found on http://s-router.cs.tsinghua.edu.cn/

~shilei/Appendix-FS.pdf. The assumption is the same

to the proof of Appendix A. tu
Theorem 1 (N-FS Delay Bound at Basic Demultiplexer).

When arrival traffic at input link L is constrained by arrival

curve AðtÞ � Rtþ bI , by N-FS, packet delay at demultiplexer

is statistically bounded by

d1 ¼
5k

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ bI
R

þ 25k

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. In our analysis, we focus on traffic dispatched to

link LBj and study the delay bound at LB-FIFO j.

Denote the length of LB-FIFO j at time t by FLjðtÞ. We

define TB ¼ ½t0; t1� to be a backlog period at LB-FIFO j if

and only if FLjðtÞ > 0 during t 2 ðt0; t1Þ and FLjðtÞ ¼ 0

at t ¼ t0; t1. Obviously, during any backlog period TB,

LB-FIFO j’s length is calculated by FLjðtÞ ¼ ½AjðtÞ �
ðt� t0Þ �RS=k�þ, ½X�þ ¼ maxð0; XÞ. According to Lem-

ma 2 and AðtÞ � Rtþ bI , we derive the statistical upper

bound of FLjðtÞ by

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 9. (a) A basic demultiplexer. (b) N-FS mechanism.

FLjðtÞ

�
½Rðt� t0Þ þ bI �=k�ðt� t0Þ�SR=kþ 5

ffiffiffiffiffiffiffiffiffiffi
N=6

p
�FSþ

5
ffi
½Rðt� t0Þ þ bI �=k

p ffi�
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS

q24 35þ

� 5
ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS þ SbI=k

þ 5
ffi�
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS

q ffi
½Rðt� t0Þ þ bI �=k

p
�ðS � 1Þ � ½Rðt� t0Þ þ bI �=k

" #þ
:

1. When

bI=k �
25

4ðS � 1Þ2
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
; at

½Rðt� t0Þ þ bI �=k ¼
25

4ðS � 1Þ2
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
; FLjðtÞ

reaches its statistical upper bound.

FLjðtÞ � 5
ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS þ SbI=k

þ 25

4ðS � 1Þ
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:
ð6Þ

2. When

bI=k 2
25

4ðS � 1Þ2
;

25

ðS � 1Þ2

" #
�
�
ð�2
LL=FC

�
þ ð�2

FS þ 1ÞFS
�

at ½Rðt� t0Þ þ bI �=k ¼ bI=k; FLjðtÞ satisfies the

bound in (6).
3. Otherwise, FLjðtÞ satisfies

FLjðtÞ � 5
ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS þ SbI=k: ð7Þ

Delay upper bound at demultiplexer is calcu-

lated by d1 ¼Max½FLjðtÞ�=ðSR=kÞ. tu

5 EXTENSION TO MULTIPATH SWITCHING SYSTEM

5.1 Parallel Packet Switches

We consider the PPS model depicted in Fig. 10a, where the
input demultiplexer is the same as in Fig. 9a and the output
multiplexer is illustrated in Fig. 10b. Here, parallel DRAMs

operating lower than line rate are used. Through lay-aside
Buffer Management (BM) module, all packets are virtually
queued at the output according to the flow group ID and
the priority class in a hierarchical manner. The output
scheduler fetches packets to the output line using informa-
tion provided by BM. Packets in the same flow will be
virtually buffered in the same queue and scheduled in FIFO
discipline. Hence, intraflow packet departure orders hold
as their arriving orders at the multiplexer. Central-stage
parallel switches adopt an output-queued model.

By Theorem 1, we derive packet delay bound at first-
stage LB-FIFO. We then study delay at second-stage
switches. Define native packet delay at stage m of an MPS
to be delay experienced at stage m on the condition that all
the preceding m� 1 stages immediately send all arrival
packets out without delay.

Lemma 3 (N-FS Native Delay Bound at Second Stage of

PPS). Assume PPS with N outputs, k parallel switches and
admissible traffic (i.e., traffic at each input is constrained by
AðtÞ � Rtþ bI , and traffic destined for each output is
constrained by BðtÞ � Rtþ bOÞ. By N-FS, the native packet
delay at second stage of PPS is statistically bounded by

ed2 ¼
5k

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ bO
R

þ 25k

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. Focus on the backlogs at OQ iof second-stage switches.

Denote arrival traffic destined for output i during T ¼
½t0; t0 þ t� by B(t). As in Fig. 11, B(t) is composed by arrival

traffic from allN input ports. Denote the part from input l

by BðlÞðtÞ. At first-stage demultiplexer, BðlÞðtÞ is load

balanced to all k second-stage switches by 1-FS. Denote the

part of BðlÞðtÞ going to switch #j by B
ðlÞ
j ðtÞ. Then, traffic of

B(t) dispatched to switch #j, which is aggregated traffic at

OQ i of switch #j, is computed by BjðtÞ ¼
PN

l¼1 B
ðlÞ
j ðtÞ.

SubstitutingBðtÞ,BjðtÞ,BðlÞj ðtÞ, bO forAðtÞ,AjðtÞ,AðlÞj ðtÞ, bI
in the derivation of Theorem 1, the native delay bound at

second-stage switch is calculated by the same technique.tu
Lemma 4 (N-FS Delay Bound at Second Stage of PPS).

Under the same conditions as those of Lemma 3, the packet
delay at the second stage of PPS is statistically bounded by

d2 ¼
10k

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ bI þ bO

R

þ 25k

2SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 357

Fig. 10. (a) PPS model. (b) Output multiplexer in PPS.

Fig. 11. Derivation of Lemma 3.

Proof. Since packet delay at the first-stage demultiplexer is
bounded by d1 (Theorem 1), traffic arrivals at second-
stage switches destined for output i are actually con-
strained byBðtÞ � Rðtþ d1Þ þ bO ¼ Rtþ ðbO þRd1Þ. Sub-
stituting bO þRd1 for bO in Lemma 3, we prove this
lemma. tu

By Theorem 1 and Lemmas 3 and 4, we have d2 ¼ d1 þ ed2.
It can be generalized as the additivity of a single-stage delay
bound: the packet delay at stage m of MPS is bounded by
the sum of the native packet delay bound at this stage and
the delay bounds of all the m� 1 preceding stages.

Theorem 2 (N-FS Delay Bound at PPS). Packet delay at the
multipath part of PPS is statistically bounded by

dPPS ¼
15k

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ 2bI þ bO

R

þ 75k

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. In our PPS model, the third-stage multiplexer does
not introduce additional packet out-of-order. Hence, the
multipath part of PPS only includes demultiplexers and
second-stage switches. By Theorem 1 and Lemma 4, we
have derived their statistical delay bounds. Then, overall
delay bound holds as the theorem. tu

5.2 Multistage Multiplane Clos Switches

We consider the Multistage Multiplane Clos-network-
based switch by Chao et al. [13] depicted in Fig. 12 (called
M2Clos in brief). It is constructed of five stages of switch
modules with top-level architecture similar to a PPS with
nk external input/output ports. The first and last stages of
M2Clos are composed of nk input demultiplexers and
output multiplexers, respectively, having similar internal
structures as those in PPS. Stages 2-4 of M2Clos are
constructed by p nk� nk parallel switching planes; how-
ever, each plane is no longer formed by a basic OQ switch,
but by a three-stage Clos Network to support large port
count. Inside each Clos Network, the first stage (stage 2 of
M2Clos) is composed by k identical Input Modules (IM).
Each IM is an n�m packet switch, with each output link
connected to a Central Module (CM). Thus, there are a total
of m identical CMs in second stage of the Clos networks

(stage 3 of M2Clos). Each CM is a k� k packet switch.

Symmetrically to IMs at the output side, each CM connects

to k identical Output Modules (OM). Each OM is an

m� n packet switch with n outputs working as outputs of

its central switching plane; k OMs contribute nk outputs to

each switching plane.
As with the modeling of PPS, we design each IM, CM,

and OM as OQ switch. Let the input/output port of M2Clos

run at line rate R and the central switching planes work at

speedup S, and let both stage 1s demux at the transmitting

side and stage 5s mux at the receiving side operate at rate

SR/p. IM has input and output line rate of SR/p and (m/n)SR/

p; CM has input and output line rate of both (m/n)SR/p; and

OM has input and output line rate of (m/n)SR/p and SR/p.
Each input packet at M2Clos selects a path through which

it transfers the switching system, including switching plane

ID (1-p) and CM path ID (1-m). In this paper, we adopt the

nk-FS scheme to load balance traffic. Note that the selections

of switching plane and CM path are computed indepen-

dently by nk-FS scheme.
As in PPS, in M2Clos, the native delay bounds at stages 1

and 4 of M2Clos are calculated from delay bounds at stages 1

and 2 of PPS, respectively. The explicit illustrations are given

in Figs. 13a and 13b. The only difference from analysis in PPS

is the substitution of port number nk for N and switching

plane number p for k. Therefore, by Theorem 1 and Lemma 3,

we obtain native delay bound at stages 1 and 4 of M2Clos by

ed1 ¼
5p

ffiffiffiffiffiffiffiffiffiffiffi
nk=6

p
� FS

SR
þ bI
R

þ 25p

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
;

ð8Þ

ed4 ¼
5p

ffiffiffiffiffiffiffiffiffiffiffi
nk=6

p
� FS

SR
þ bO
R

þ 25p

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

ð9Þ

Lemma 5 (N-FS Native Delay Bound at Stages 2 and 3 of

M2Clos). In M2Clos with nk outputs, p switching planes, and

admissible input traffic, when p and m are relatively prime, the

native packet delays by N-FS at stages 2 and 3 of M2Clos are

statistically bounded by

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 12. Three-stage M2Clos.
Fig. 13. M2Clos delay derivation: (a) Stage 1. (b) Stage 4.

ed2 ¼
5pm

ffiffiffiffiffiffiffiffi
k=6

p
� FS

SR
þ bI
R

þ 25pm

4SðS � 1ÞnR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
;

ed3 ¼
5pm

ffiffiffiffiffiffiffiffi
k=6

p
� FS

SR
þ bO
R

þ 25pm

4SðS � 1ÞnR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. See Appendix C, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TC.2010.279, and can also be found on
http://s-router.cs.tsinghua.edu.cn/~shilei/Appendix-
FS.pdf. tu

Set p ¼ 2a;m as odd; p and m will be relatively prime.

Theorem 3 (N-FS Delay Bound at M2Clos). The packet delay
at the multipath part of M2Clos is statistically bounded by

dM2Clos ¼
5ð6mþ 9

ffiffiffi
n
p
Þp

ffiffiffiffiffiffiffiffi
k=6

p
� FS

SR
þ 12bI þ 3bO

R

þ 75pð3þ 2m=nÞ
4SðS � 1ÞR

��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. According to the additivity of the single-stage delay
bound defined in Section 5.1, we obtain tu

d1 ¼ ed1; d2 ¼ d1 þ ed2; d3 ¼ d1 þ d2 þ ed3; d4

¼ d1 þ d2 þ d3 þ ed4:

Therefore, the delay bound at the multipath part (stages 1-4)
of M2Clos holds as the theorem.

Under a typical setting at M2Clos—m ¼ n ¼ k ¼
ffiffiffiffiffi
N
p
� 1

(N denotes external port number)—Theorem 3 becomes

dM2Clos ¼
5ð6N 3

4 þ 9N
1
2ÞpFSffiffiffi

6
p

SR
þ 12bI þ 3bO

R

þ 375p

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

ð10Þ

5.3 Two-Stage Load-Balanced Birkhoff-von
Neumann Switches

The LBvN switch by Chang et al. [9], [10] was recently
proposed and eliminates the need for input-output match-
ing with online schedulers. It is composed of two identical
switches connected in tandem, with first stage carrying out
load balancing and second stage executing switching.
However, since packets of the same flow may be dispatched
to different switching path at the load-balancing stage,
packet out-of-orders are quite possible to occur if no
additional mechanism is applied.

Next, we demonstrate that the packet delay at LBvN
switch with N-FS scheme is also bounded. We consider the
LBvN switch with multistage buffering [9], as depicted in
Fig. 14. In first stage, arrival traffic at each input is split
into N L-VOQs. Packets in the ith L-VOQ are switched to

output i at first switch. Each output here is connected to a
C-VOQ, which buffers arrival packets according to their
destination ports. Then, second switch retrieves packets
from C-VOQ and forwards them to the correct output.
Both switches set up connections corresponding to peri-
odically changed permutation matrices. For example,
denote switch connection at time slot t by matrix P(t). A
typical P(t) for the LBvN switch could be

Pij ¼ 1ði; j connectedÞ where iþ j ¼ t modulo N

Pij ¼ 0ði; j disconnectedÞ otherwise:

By Theorem 4, we show that packet delay bound at
stages 1 and 2 of LBvN is analogous to those in PPS only by
substituting port number N for switching plane number k.

Theorem 4 (N-FS Delay Bound at LBvN). In LBvN with N
output ports and a speedup S, assume traffic arrival to be
admissible. By N-FS, the packet delay at LBvN is statistically
bounded by

dLBvN ¼
15N

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ 2bI þ bO

R

þ 75N

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

Proof. At first stage of LBvN, traffic at input i is balanced to
all N L-VOQs using N � FS. By Lemma 2, we can
calculate their load-balancing bound. Then, consider the
output process at L-VOQ l in input i, under any backlog
period T ¼ ½t0; t0 þ t�, the departure traffic increases to at
least (SRt/N)-C(N-1)/N, where C is the fixed-size cell
length used internally. Therefore, the statistical backlog
bound at L-VOQ is calculated by that from Theorem 1
plus C(N-1)/N (which can be omitted). Finally, delay
bound at stage 1 of LBvN holds

d1 ¼
5N

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ bI
R

þ 25N

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

ð11Þ

At second stage of LBvN, packet arrival at each
C-VOQs can also be compared to that at OQs of switches
in central-stage PPS. We still substitute N for k, and
derive the native packet delay bound at C-VOQ by

ed2 ¼
5N

ffiffiffiffiffiffiffiffiffiffi
N=6

p
� FS

SR
þ bO
R

þ 25N

4SðS � 1ÞR
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
:

ð12Þ

Overall delay bound at LBvN sums up to 2d1 þ ed2. tu

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 359

Fig. 14. Two-stage LBvN switch.

5.4 Admissible Slicing Threshold

Theorem 5 (Packet Out-of-Order Probability). Setting a

slicing threshold � for MPS with FS scheme, which leads to a

statistical delay upper bound of D1�� in a 1� � confidence

interval, the packet out-of-order probability in MPS is

guaranteed to be no more than �, if only we have � � D1��.

Proof. For two packets P1 and P2 arriving in MPS at times
T ðP1Þ and T ðP2Þ having T ðP1Þ < T ðP2Þ, packet delay
dðP1Þ; dðP2Þ, and departure time DðP1Þ; DðP2Þ, the
packets can be reordered in MPS by the FS scheme
only if ½T ðP2Þ � T ðP1Þ� > �. Given � � D1��, this re-
quirement becomes

½T ðP2Þ � T ðP1Þ� > D1��: ð13Þ

By the definition of D1��, for probability of no less
than 1� �, we have

0 � dðP1Þ � D1��: ð14Þ

Combining (13), (14), and dðP2Þ � 0 , we obtain

DðP2Þ �DðP1Þ ¼ T ðP2Þ � T ðP1Þ þ dðP2Þ � dðP1Þ
� T ðP2Þ � T ðP1Þ �D1�� > 0:

ð15Þ

Hence, the packet ordering criterion in (2) is
satisfied for probability of at least 1� �. In other
words, packet out-of-order probability of no more than
� is guaranteed. tu

In this paper, we define a slicing threshold � to be
admissible if it guarantees a packet out-of-order probability
of no more than 10�6. We are most interested in the smallest

admissible slicing threshold (�min), as it provides the best load-
balancing performance while satisfying the packet out-of-
order requirement. By Theorem 5, we calculate �min for all
of the three MPSes with the flow-slice statistics measured in
Section 3 and the delay bound computed in Sections 5.1-5.3.
We assume arrival traffic to be strictly admissible
(bI; bO ¼ 0). (The extreme traffic cases are evaluated in the
simulations and also discussed in Section 8.)

1. PPS. PPS is used to build switching systems with
medium port count and ultrahigh line rate. Hence,
we let N � 32, which is almost the maximal port
number in single switch chip, and let R=k ¼ 5 Gbps,
representing a typical single switch line rate. By
Theorem 2, delay bound at PPS holds

D1�� ¼ 0:0554� FS=S þ 0:03�
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
=SðS � 1ÞðD1��: ms;

L : kB; FS : kB; � ¼ 10�6Þ:
ð16Þ

As in (16), for each trace statistic, delay bound at

certain slicing threshold is only determined by the

offered speedup. Given a larger speedup, the delay

bound will drop and enable a smaller �min. We

calculate the minimal speedups to ensure different

�min by letting dPPS � �min. These results are pre-

sented in Fig. 15. Speedup requirement drops first as

�min increases and then rises as �min is beyond a point

at about 1-10 ms. This is because the delay bound

increases faster than the slicing threshold after this

point.
We observe that a speedup of 1.409 is sufficient to

ensure �min � 2 ms for all traces. Given a slightly

larger speedup of 1.627, �min � 1 ms can be ex-

pected. If we only count results using backbone

traces from CERNET, where a large capacity MPS is

most probable to be deployed, a tiny speedup of

1.215 will ensure �min � 1 ms.
2. M2Clos. M2Clos targets at switching systems with an

ultrahigh line rate as well as large port count. Hence,
we set N � 1;024 and R=p ¼ 5 Gbps. By Theorem 3,
delay bound at M2Clos holds

D1�� ¼ 4:488� FS=S þ 0:15�
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
=SðS � 1ÞðD1��: ms; L : kB;

FS : kB; � ¼ 10�6Þ:
ð17Þ

We depict the minimal speedups for M2Clos to

ensure different �min in Fig. 16a. This time, we only

consider backbone traces from CERNET, since M2Clos

will not likely be deployed in network edge/access

point. Results show that a speedup of 2.112 ensures

�min � 4 ms. Although this speedup is a little large

(CRS-1 actually works at a speedup of 2.5), it only

holds as an upper bound for packet out-of-order

probability of 10�6. In real deployments, smaller

speedups will also provide excellent performance.
3. LBvN. LBvN is designed to replace single-chip

switches by abandoning the use of online schedu-
lers, so that it can support ultrahigh line rate. Hence,
we let N � 32, R � 40 Gbps for LBvN. By Theorem 4,
its delay bound holds

360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 15. Speedup requirements for PPS. Fig. 16. Speedup requirements for (a) M2Clos. (b) LBvN.

D1�� ¼ 0:221� FS=S þ 0:12�
��
�2
LL=FC

�
þ
�
�2
FS þ 1

�
FS
�
=SðS � 1ÞðD1��: ms; L : kB;

FS : kB; � ¼ 10�6Þ:
ð18Þ

We depict speedup requirements for LBvN in Fig. 16b,
still only CERNET traces are considered. For a 32� 32 LBvN,
a speedup of 1.293 can ensure �min � 4 ms, and a speedup of
1.452 will grant a smaller �min of 2 ms. In summary, under
traffic characteristics of backbone traces, a slicing threshold
at 1-4 ms is admissible for N-FS in all of the three MPSes
studied above if only a speedup of no more than 2.112 is
provided.

6 PERFORMANCE EVALUATION

6.1 Prototype Configuration

We establish prototypes for all the three MPSes by software
modeling. Our PPS prototype has the same architecture as
the model given in Fig. 10a, except that there is no modeling
of the queuing inside the multiplexers, since the multiplexers
do not reorder packets. In our prototype, each packet will
depart from PPS after the packet leaves the switching plane.
(There is one exception for PPS with VIQ resequencer: the
multiplexer is simulated since it plays a critical role in this
case.) The PPS prototype has 32 external ports and eight
switching planes. Each port works at a 40 Gbps line rate and
each switching plane operates at 5 Gbps with no speedup.
For the OQ at the central switching plane and the LB-FIFO at
the demultiplexer, each has a buffer size of 10 MB each. Our
LBvN prototype has 32 external ports, each working at
40 Gbps; our M2Clos prototype has 64 external ports
(m ¼ n ¼ k ¼ 8), each working at 35 Gbps, and seven
switching planes (p and m are relatively prime), each
operating at 5 Gbps. The other specifications of LBvN and
M2Clos are the same as those of PPS.

We use homogeneous real traces collected at CERNET
backbone (see Table 1, totally 60 segments) to generate
input traffic. By default (PPS/LBvN), 32 segments are
injected, respectively, to 32 ports of the prototypes. To
operate the 64-port M2Clos, we duplicate four of the
segments. Each segment has similar trace speed on average,
with a maximal deviation of eight percent and an average of
3.5 Gbps. This value is used to set the trace compression
ratio; e.g., to emulate 40 Gbps traffic, each segment is
compressed by 40 Gbps=3:5 Gbps ¼ 11:4 times. Each seg-
ment lasts 57-63 s, so we let prototypes work 55 s in trace
time and measure their performance at 1-55 s. The first
second is granted as warm-up time. Each arrival packet’s
information, including arrival time, packet length, and
5-tuples, is extracted from trace files. Packet’s destination
(output port) is set online according to the desired traffic
pattern. Two patterns are simulated: uniform traffic, where
packets have the same probability going to all 32 (64)
outputs; and unbalanced traffic where packets at input i
have a fixed probability of 0.8, namely, the unbalanced rate,
going to output i. All other outputs average the remaining
probabilities. Approximately 1.2 billion packets (2.4 billion
for M2Clos) are sent to our prototypes in each simulation
slot. Note that the generated traffic is not strictly admissible
but highly bursty. In Fig. 17, we depict the average speed of
one trace segment in multiple timescale to reveal this fact.

Three classes of load-balancing schemes are evaluated.
The first is hashing algorithms, including static hashing by
XORing 5-tuples (S-Hash), dynamic table hashing (T-Hash),
and dynamic table hashing with backpressure (TH-BP). The
hash table here (as well as in FS) is set to 10,000 entries. In
TH-BP, a backpressure signal is sent when the buffer length
of a LB-FIFO increases beyond its half size. It then remaps
all the flows going to the congested path at their packet
arrivals. Another class is the packet-based algorithms,
including RR, RR with adaptive-threshold timestamp-based
resequencer (RRAT) [31], and RR with VIQ resequencer
(RRVIQ). The last class is the FS scheme. Slicing thresholds
are set to 0:1� 4 ms, as well as 60 ms to evaluate the method
in [28]. FS with backpressure is also simulated (FSBP), with
slicing threshold set to 1 ms.

We measure four performance metrics:

1. average packet delay;
2. packet loss rate;
3. intraflow packet out-of-order probability; and
4. average per-flow delay jitter (due to the space limit,

given in Appendix D, which can be found on the
Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TC.2010.279,
and can also be found on http://s-router.cs.tsinghua.
edu.cn/~shilei/Appendix-FS.pdf, as reference).

The packet out-of-order is defined in strict manner: an
expected sequence number is maintained for each 5-tuple
flow by received maximal sequence plus one, any packet
departure is deemed as out-of-order if only its sequence is
not expected. Lost packet’s departure time is set to the loss
time. Note that, as input traces are compressed in the
simulations, each intraflow interval is shortened accord-
ingly, leading to inaccurate out-of-order probabilities. To
handle that, we restore each flow’s packet departure
process by decompressing intraflow intervals and then
obtain the real packet out-of-order probabilities.

6.2 Results

6.2.1 PPS under Uniform Traffic Pattern

Fig. 18 depicts the average packet delay in PPS under a
uniform traffic pattern. As expected, RR exhibits the
smallest delay, as it optimally balances the load. RRVIQ is
nearly the same as RR showing that the VIQ resequencer
does not delay packets much. (However, the resequencer
suffers from huge implementation complexity.) Closely on
top of them in the figure lies the class of FS. At a load rate of
0.85, FS with a slicing threshold of 1 ms only increases the

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 361

Fig. 17. Average speed of a trace segment.

average delay by one time from the optimal RR scheme,
while T-Hash results in a delay of more than six times
larger. FS with a 60 ms slicing threshold performs nearly the
same as T-Hash, revealing the ineffectiveness of method in
[28]. Also, the backpressure mechanism does not reduce
delay for either T-Hash or FS. In this slot, S-Hash and RRAT
perform the worst. They increase average delay one and
two magnitudes, respectively, from RR even at moderate
loads. This validates the load imbalance of static hashing
and the delay penalty suffered by RRAT.

Fig. 19 gives the packet loss rates in PPS. FS schemes begin
to drop packets at a load rate of 0.9, which is better than all
hashing solutions. Fig. 20 depicts packet out-of-order
probability. RR without a resequencer consistently disorders
more than two percent packets, while FS limits packet out-of-
order to a negligible level (below 10�6) if only the slicing
threshold is no less than 1 ms and the load rate is no larger
than 0.8. This load bound corresponds to a speedup of 1.25,
very close to the analytic result of the 1.215 speedup in
Section 5.4.

6.2.2 PPS under Unbalanced Traffic Pattern

Results under unbalanced traffic are given in Figs. 21, 22,
and 23. They are similar to the case under uniform traffic.

At a slicing threshold of 1 ms, FS limits packet out-of-order

probability to below 10�6, under a load rate of no larger

than 0.8.

6.2.3 PPS under Overloaded Traffic

We also test the case in which load rate is set to 2.0 under a
uniform traffic pattern. Results plotted in Fig. 24 show that
both packet delay and loss of all the algorithms are similar
as this time all the buffers are always full, leading to the
largest delay and a 50 percent loss rate. Surprisingly, FS
with a slicing threshold of 4 ms still limits out-of-order

362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 19. Packet loss (PPS, uniform).

Fig. 20. Out-of-order (PPS, uniform).

Fig. 21. Average delay (unbalanced).

Fig. 22. Packet loss (unbalanced).

Fig. 23. Out-of-order (unbalanced).

Fig. 18. Average delay (PPS, uniform).

Fig. 24. Under overloaded traffic (PPS, uniform).

probability below 10�4 in this worst case, which reveals the
excellent robustness of FS.

6.2.4 PPS under More Heavy-Tailed Flow-Size

Distribution

As in Figs. 5 and 6, CERNET traces exhibit the lightest tail in

flow-size distribution. It is also interesting to study how FS
performs if input traffic is heavier tailed. We reiterate our
simulation in the fist slot with traces collected at the campus

gateway link of Tsinghua University to CERNET (see Table 1).
Figs. 25 and 26 depict the average packet delay and out-of-
order probability in this case. Comparing Fig. 25 with 18, we
find that FS receives better comparable performance with

hashing algorithms under more heavy-tailed traffic. Its
average delay is at least five times smaller than those of
T-Hash and TH-BP at a load rate of 0.6. However, in this case,

FS requires a larger speedup of 1.33 (at 1 ms slicing threshold)
to keep packet out-of-order probability below 10�6.

6.2.5 LBvN under Uniform Traffic Pattern

Figs. 27, 28, and 29 depict experiment results of a 32-port

LBvN switch. FS schemes this time achieve even better
performance than in PPS. At a load rate of 0.7, FS lowers the

average delay to 1/3 of hashing algorithms; at a load rate of

0.95, it begins to drop packets at the same packet loss rate as

RR. Setting slicing threshold to 4 ms, FS limits packet out-of-

order to a negligible level under a load rate of no more than

0.75. This is close to the theoretical result of a speedup of

1.293 in Section 5.4. Since 32-port LBvN can be compared to a

32-plane PPS, we can deduce that as plane number increases,

PPS with an FS scheme will become more effective compared

with hashing algorithms.

6.2.6 M2Clos under Uniform Traffic Pattern

Performance metrics of a 64-port M2Clos switch under
uniform traffic pattern are illustrated in Figs. 30, 31, and 32.
They are also similar to those in PPS. This time, FS under a
slicing threshold of 4 ms requires a speedup of 1.25 to retain
a negligible out-of-order probability, which is much smaller
than the theoretical value of 2.112 in Section 5.4. This is
because the latter result is for 1,024-port M2Clos. By (10) and
(17), we recalculate a theoretical speedup of 1.391 for 64-port
case. This speedup is very close to the simulated one.

In summary, in the above cases, the FS scheme outper-
forms hashing algorithms and the adaptive-threshold
resequencer in providing better load-balancing metrics

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 363

Fig. 25. Average delay (Tsinghua egress trace, PPS, uniform).

Fig. 26. Out-of-order (Tsinghua egress trace, PPS, uniform).

Fig. 27. Average delay (LBvN).

Fig. 28. Packet loss (LBvN).

Fig. 29. Out-of-order (LBvN).

Fig. 30. Average delay (M2Clos).

without paying out huge hardware complexity as the VIQ
resequencer does. Under a slicing threshold of 1-4 ms, FS is
able to keep packet out-of-order probability negligible with
the provided speedup of no more than 1.33. These results, on
one hand, reveal the effectiveness of FS; on the other hand,
they validate the theoretical analyses in Section 5.

7 IMPLEMENTATION ISSUES

The major implementation cost introduced by FS is that of
hash table maintaining an active flow-slice context. The size
of this hash table is a trade-off 1) a large hash table reduces
hash collision probability. Here, hash collision is defined as
the situation when more than one flow slices are hashed into
the same entry, which degrades load-balancing uniformity;
while 2) a small hash table is desirable as the table is accessed
in each load-balancing operation and on-chip SRAM with
relatively small size allows higher access speed.

We calculate this trade-off in a Dual Hash Table (DHT)
approach [25]. Assume a hash collision probability below
0.5 percent as negligible, where only one flow slice out of 200
is not load balanced independently. Then, at OC-768c port
with an average packet length of PL � 400B and a slicing
threshold of � � 4 ms, we get the number of table entries,
F � 40 Gbps� 4 ms=400B ¼ 50 k. The hash table size is then
bounded by 50 k� 5:35� 6B ¼ 1:6 MB, where each entry
occupies 6B size. This is small enough to be placed on-chip.
As each FS load-balancing operation only needs one query at
the hash table, O(1) timing complexity is also achieved.

8 CONCLUSION, DISCUSSION AND FUTURE WORK

We propose a novel load-balancing scheme, namely, Flow
Slice, based on the fact that the intraflow packet interval is
often, say in 40-50 percent, larger than the delay upper
bound at MPS. Due to three positive properties of flow slice,
our scheme achieves good load-balancing uniformity with
little hardware overhead and O(1) timing complexity. By
calculating delay bounds at three popular MPSes, we show
that when the slicing threshold is set to the smallest
admissible value at 1-4 ms, the FS scheme can achieve
optimal performance while keeping the intraflow packet
out-of-order probability negligible (below 10�6), given an
internal speedup up to two. Our results are also validated
through trace-driven prototype simulations under highly
bursty traffic patterns.

It is interesting to ask why flow slice exhibits such
properties favoring load-balancing uniformity. Previous
studies [26], [28] provide an answer in TCP’s burstiness;
i.e., a window of packets is transmitted at the very

beginning of each RTT time, followed by a long silent
period. This is the most critical factor when the slicing
threshold is comparable with RTT. However, as the slicing
threshold is set below 4 ms, much smaller than typical RTT,
the dominating factor is most likely to be the random delay
added along the previous routing path. If this delay is
independent for intraflow packets and larger than the
slicing threshold, the slicing probability will be about 0.5
and the average flow-slice packet count will be approxi-
mately two, coinciding with our trace observations.

We have proven FS to be effective under strictly
admissible traffic, but it is also important to know how it
behaves under extreme traffic. Our simulations with bursty
real traces shed some light on this issue and suggest that it
still work well. Actually, if only the slicing threshold is larger
than the delay variation bound at all switching paths, packet
order will be undisturbed. Under bursty input traffic, the
delay at all switching paths may increase synchronously,
leaving its delay variation bound nearly unchanged.

The FS scheme is validated in switches without class-based
queues. As QoS provisioning is also critical in switch designs,
one of our future works will be studying FS performance
under QoS conditions.

ACKNOWLEDGMENTS

This work was done while Lei Shi, Changhua Sun, and
Zhengyu Yin were with Tsinghua University. This work
was partially supported by NSFC (60625201, 60873250),
Tsinghua University Initiative Scientific Research Program,
and the Specialized Research Fund for the Doctoral
Program of Higher Education of China (20100002110051).

REFERENCES

[1] Cisco CRS-1, http://www.cisco.com/go/crs/, 2011.
[2] Real Traces from NLANR, http://pma.nlanr.net/, 2010.
[3] Vitesse Intelligent Switch Fabrics, http://www.vitesse.com, 2011.
[4] A. Aslam and K. Christensen, “Parallel Packet Switching Using

Multiplexors with Virtual Input Queues,” Proc. Ann. IEEE Conf.
Local Computer Networks (LCN), pp. 270-277, 2002.

[5] J. Bennett, C. Partridge, and N. Shectman, “Packet Reordering Is
Not Pathological Network Behavior,” IEEE/ACM Trans. Network-
ing, vol. 7, no. 6, pp. 789-798, Dec. 1999.

[6] N. Brownlee and K. Claffy, “Understanding Internet Traffic
Streams: Dragonflies and Tortoises,” IEEE Comm. Magazine,
vol. 40, no. 10, pp. 110-117, Oct. 2002.

[7] Z. Cao, Z. Wang, and E. Zegura, “Performance of Hashing-Based
Schemes for Internet Load Balancing,” Proc. IEEE INFOCOM,
pp. 332-341, 2000.

[8] L. Carter and M. Wegman, “Universal Classes of Hashing
Functions,” J. Computer and System Sciences, vol. 18, no. 2,
pp. 143-154, 1979.

364 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 32. Out-of-order (M2Clos).Fig. 31. Packet loss (M2Clos).

[9] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load Balanced Birkhoff-von
Neumann Switch, Part II: Multi-Stage Buffering,” Computer
Comm., vol. 25, pp. 623-634, 2002.

[10] C.S. Chang, D.S. Lee, and Y.S. Jou, “Load Balanced Birkhoff-von
Neumann Switches, Part I: One-Stage Buffering,” Computer
Comm., vol. 25, pp. 611-622, 2002.

[11] C.S. Chang, D.S. Lee, and Y.J. Shih, “Mailbox Switch: A Scalable
Two-Stage Switch Architecture for Conflict Resolution of Ordered
Packets,” Proc. IEEE INFOCOM, 2004.

[12] C.S. Chang, D.S. Lee, and C.Y. Yue, “Providing Guaranteed Rate
Services in the Load Balanced Birkhoff-von Neumann Switches,”
IEEE/ACM Trans. Networking, vol. 14, no. 3, pp. 644-656, June 2006.

[13] H.J. Chao, P. Jinsoo, S. Artan, S. Jiang, and G. Zhang, “TrueWay: A
Highly Scalable Multi-Plane Multi-Stage Buffered Packet Switch,”
Proc. IEEE Workshop High Performance Switching and Routing
(HPSR), 2005.

[14] F.M. Chiussi, D.A. Khotimsky, and S. Krishnan, “Generalized
Inverse Multiplexing of Switched ATM Connections,” Proc. IEEE
Conf. Global Comm. (GLOBECOM), pp. 3134-3140, 1998.

[15] G. Dittmann and A. Herkersdorf, “Network Processor Load
Balancing for High-Speed Links,” Proc. Int’l Symp. Performance
Evaluation of Computer and Telecomm. Systems (SPECTS), 2002.

[16] A.B. Downey, “Evidence for Long-Tailed Distributions in the
Internet,” Proc. ACM SIGCOMM Workshop Internet Measurement
(IMW), 2001.

[17] M. Henrion, “Resequencing System for a Switching Node,” US
Patent, 5,127,000, June 1992.

[18] S. Iyer, A. Awadallah, and N. McKeown, “Analysis of a Packet
Switch with Memories Running Slower than the Line Rate,” Proc.
IEEE INFOCOM, pp. 529-537, 2000.

[19] S. Iyer and N. McKeown, “Analysis of the Parallel Packet Switch
Architecture,” IEEE/ACM Trans. Networking, vol. 11, no. 2, pp. 314-
324, Apr. 2003.

[20] L. Kencl and J.-Y.L. Boudec, “Adaptive Load Sharing for Network
Processors,” Proc. IEEE INFOCOM, pp. 545-554, 2002.

[21] I. Keslassy and N. Mckeown, “Maintaining Packet Order in Two-
Stage Switches,” Proc. IEEE INFOCOM, pp. 1032-1041, 2002.

[22] D.A. Khotimsky, “A Packet Resequencing Protocol for Fault-
Tolerant Multipath Transmission with Non-Uniform Traffic
Splitting,” Proc. IEEE Conf. Global Comm. (GLOBECOM),
pp. 1283-1289, 1999.

[23] D.A. Khotimsky and S. Krishnan, “Evaluation of Open-Loop
Sequence Control Schemes for Multi-Path Switches,” Proc. IEEE
Int’l Conf. Comm. (ICC), pp. 2116-2120, 2002.

[24] L. Shi, W. Li, B. Liu, and X. Wang, “Flow Mapping in the Load
Balancing Parallel Packet Switches,” Proc. IEEE Workshop High
Performance Switching and Routing (HPSR), pp. 254-258, 2005.

[25] W. Shi and L. Kencl, “Sequence-Preserving Adaptive Load
Balancers,” Proc. ACM/IEEE Symp. Architecture for Networking
and Comm. Systems (ANCS), 2006.

[26] W. Shi and M.H. MacGregor, “Load Balancing for Parallel
Forwarding,” IEEE/ACM Trans. Networking, vol. 13, no. 4,
pp. 790-801, Aug. 2005.

[27] W. Shi, M.H. MacGregor, and P. Gburzynski, “A Scalable Load
Balancer for Forwarding Internet Traffic: Exploiting Flow-Level
Burstiness,” Proc. Symp. Architecture for Networking and Comm.
Systems (ANCS), 2005.

[28] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s Burstiness
with Flowlet Switching,” Proc. ACM SIGCOMM Workshop Hot
Topics in Networks (HotNets), 2004.

[29] D.G. Thaler and C.V. Ravishankar, “Using Name-Based Mappings
to Increase Hit Rates,” IEEE/ACM Trans. Networking, vol. 6, no. 1,
pp. 1-14, Feb. 1998.

[30] J.S. Turner, “Resequencing Cells in an ATM Switch,” Technical
Report WUCS-91-21, Feb. 1991.

[31] J.S. Turner, “Resilient Cell Resequencing in Terabit Routers,”
Technical Report WUCS-03-48, June 2003.

Lei Shi received the BS, MS, and PhD degrees
in computer science from Tsinghua University in
2003, 2006, and 2008, respectively. He is now
the research manager of visual analytics team in
IBM Research - China where he joined in 2008.
His research interests include information visua-
lization, visual analytics, network science, and
networked systems.

Bin Liu is now a full professor in the Department
of Computer Science and Technology, Tsinghua
University. His current research areas include
high performance switches/routers, network
processors, high-speed security, and greening
the Internet. He has received numerous awards
from China including the Distinguished Young
Scholar of China.

Changhua Sun received the PhD degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China, in
2009. He is now a staff researcher in IBM
Research-China.

Zhengyu Yin received the bachelor’s degree
from the Department of Computer Science,
Tsinghua University, Beijing, China. He is now
a graduate student in the Department of
Computer Science, University of Southern Cali-
fornia. He is currently a member of TEAMCORE
research group focusing on multiagent systems
directed by Professor Milind Tambe.

Laxmi N. Bhuyan is a distinguished professor
and the chairman of the Computer Science and
Engineering Department at the University of
California, Riverside (UCR). He joined UCR in
January 2001 as a professor. Prior to that, he
was a professor of computer science at Texas
A&M University (1989-2000) and the program
director of the Computer System Architecture
Program at the US National Science Foundation
(1998-2000). He has also worked as a con-

sultant to Intel and HP Labs. His current research interests are in the
areas of computer architecture, network processors, Internet routers,
and parallel and distributed processing. He has published more than 150
papers in related areas in reputed journals, and conference proceed-
ings. He was the Editor-in-Chief of the IEEE Transactions on Parallel
and Distributed Systems (TPDS) from 2006 to 2009. He is a fellow of the
IEEE, a fellow of the ACM, and a fellow of the AAAS.

H. Jonathan Chao is the department head and
a professor of electrical and computer engineer-
ing at Polytechnic Institute of New York Uni-
versity, Brooklyn, where he joined in January
1992. He has been doing research in the areas
of terabit switches/routers, network security,
network on the chip, and quality of service
control in high-speed networks. He is a fellow of
the IEEE for his contributions to the architecture
and application of VLSI circuits in high-speed

packet networks. He has published three networking/switching books.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHI ET AL.: LOAD-BALANCING MULTIPATH SWITCHING SYSTEM WITH FLOW SLICE 365

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

