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Abstract. Drawings of non-planar graphs always result in edge crossings. When
there are many edges crossing at small angles, it is often difficult to follow these
edges, because of the multiple visual paths resulted from the crossings that slow
down eye movements. In this paper we propose an algorithm that disambiguates
the edges with automatic selection of distinctive colors. Our proposed algorithm
computes a near optimal color assignment of a dual collision graph, using a
novel branch-and-bound procedure applied to a space decomposition of the color
gamut. We conduct a user study to establish the effectiveness and limitations of
this approach in clarifying drawings of real world graphs and maps.
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1 Introduction

Graphs are widely used for depicting relational information among objects. Typically,
graphs are visualized as node-link diagrams [1]. In such a representation, edges are
shown as straight lines, polylines or splines. Graphs that appear in real world applica-
tions are usually non-planar. For such graphs, edge crossings in the layout are unavoid-
able. It is a commonly accepted principle that the number of edge crossings should be
minimized whenever possible, this principle was confirmed by user evaluations which
showed that human performance in path-following is negatively correlated to the num-
ber of edge crossings [18,21]. Later studies found that the effect of edge crossings varies
with the crossing angle. In particular, the task response time decreases as the crossing
angle increases, and the rate of decrease levels off when the angle is close to 90 de-
gree [14,15]. This implies that it is important not only to minimize the number of edge
crossings, but also to maximize the angle of the crossings. Consequently, generating
drawings that give large crossing angles, or even right crossing angles, became an ac-
tive area of research (e.g., [6]). Nevertheless, for general non-planar graphs, there is
no known algorithm that can guarantee large crossing angles for straight line drawings.
Therefore, techniques to mitigate the adverse visual effect of small angle crossings are
important in practice.

In this paper we propose to use colors to help differentiate edges. Our starting point
is an existing layout, and our working assumption is that the graph is to be displayed as
a static image on paper, or on screen. The motivation comes from users of the Graphviz
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[10] software. These users were generally happy with the layouts of their graphs, but
were asking whether there was any visual instrument that can help them follow edges
better. Examining their layouts, we realized that because edges were drawn using the
same color (e.g., black), when there were a lot of edge crossings, it was difficult to vi-
sually follow these edges. Thus the feedback from our users, and our own observation,
echo the findings by Huang et al. [14,15]. When explaining why small crossing angles
are detrimental to the task of following a path, they found, with the help of an eye track-
ing device, that “when edges cross at small angles, crossings cause confusion, slowing
down and triggering extra eye movements.” and that “in many cases, it is crossings that
cause confusion, making all the paths between two nodes, and branches along these
paths, unforeseeable. Due to the geometric-path tendency, human eyes can easily slip
into the edges that are close to the geometric path but not part of the target path.”.

Edge crossing is not the only hindrance to the visual clarity of a graph drawing. An
additional problem is that when an edge from node u passes underneath the label of a
node v and connects to a node w, it is impossible to tell visually whether there is one
edge u↔ w, or two edges u↔ v and v↔ w, when all edges are of the same color (e.g.,
Fig. 3(b)). While these problems can be solved with user interactions by clicking on an
edge of interest, or on a node to bring its neighbors closer (see, e.g., [17]), this involves
an extra step for the user that may not be necessary if edges can be differentiated with
a proper visual cue. Furthermore, there are situations where interaction is not possible,
e.g., when looking at a static image of a graph on screen, or in print. These are the
situations that are of particular interest in this paper.

We believe all the above mentioned problems of visually distinguishing and fol-
lowing edges can be greatly alleviated by choosing appropriate colors or line styles to
differentiate edges. We first identify edge pairs that need to be differentiated (the collid-
ing edges), and represent them as nodes of a dual collision graph. We then propose an
algorithm to assign colors to the nodes of this collision graph, in a way that maximizes
the color difference between nodes that share an edge. Thus our main contributions are:

– A novel branch-and-bound graph coloring algorithm that finds the globally optimal
color embedding of each node with regard to its neighbors, and that works with
both continuous color spaces and discrete color palettes.

– A user study that establishes the effectiveness/limitations of the coloring approach.

2 Related Work

Graph coloring is a classic problem in algorithmic graph theory. Traditionally the prob-
lem is studied in a combinatorial sense. For example, finding the smallest number of k
colors on the vertices of a graph so that no two vertices sharing an edge have the same
color. The difference between this and our work is that in k−colorability problem, a
solution is valid as long as any pairs of vertices that share an edge have different colors,
no consideration is given to maximizing the actual color differences. So in essence, the
distance between colors is binary – either 0, or 1. For our problem we assume that even
among distinctive colors, the differences are not equal, and are measured by color dis-
tances. In the special case when only k colors are allowed, our algorithm degenerates to
find the optimal color assignment among all solutions of the k−colorability problem.



This last problem of optimal color assignment was also studied by Gansner et al. [9]
and by Hu et al. [12], in the context of coloring virtual maps to maximize the color
difference between neighboring regions. In these works, a set of k distinctive colors
are assumed to be given, with k the number of countries in the map. Maps were then
colored by an optimal permutation of the k colors. On the other hand, in this paper we
assume that the color space can be either continuous or discrete, and we select among
all colors in the color space to increase color differences. When applied to map coloring,
our algorithm produces k distinctive colors as a side product.

Dillencourt et al. [7] studied the problem of coloring geometric graphs so that colors
on nodes are as different as possible. The problem they studied is very related to ours,
except that in their case the application is the coloring of geometric regions, while we
are also interested in coloring edges of a graph. Dillencourt et al. used a force-directed
gradient descent algorithm to find a locally optimal coloring of each node with regard to
its neighbors. We propose a new algorithm based on a branch-and-bound process over
an octree decomposition of the color space, that finds a globally optimal coloring for
each node with regard to its neighbors. Furthermore, our approach is more flexible and
works for discrete color palettes, in addition to continuous color spaces.

The angular resolution of a drawing is the sharpest angle formed by any two edges
that meet at a common vertex.In addition to maximizing crossing angles (e.g., [6]),
for the same reason of visual clarity, there have been researches to maximize the an-
gular resolution of the drawing. Most recently, Lombardi Drawing of graphs was pro-
posed [8,3], in which edges are drawn as arcs with perfect angular resolution. However,
Purchase et al. [20] found that even though users prefer the Lombardi style drawings,
straight-line drawings created by a spring-embedder gives better performance for path
following and neighbor finding tasks. For straight-line drawings, while it is possible to
adjust the layout to improve the angular resolution (e.g., [5,11]), the extent to which this
can be done is limited. Although a previous study by Purchase et al. [19] did not find
sufficient support for maximizing angular resolution, we do find that when two edges
connected to the same node are almost on top to each other, it is difficult to tell whether
these are two edges or one. For this reason we consider such edges as in collision too.

We note that a nice way to follow an edge, or to find the neighbors of a node, is to
use interactive techniques such as “link sliding” and “bring & go” [17]. The algorithm
we propose is primarily aimed at disambiguating a static drawing displayed on screen
or on paper, it can nevertheless be used in conjunction with such interactive techniques.

Finally, we were made aware of the work of Jianu et al. [16] after the completion
of this work. Jianu et al. [16] proposed a similar idea of using colors to differentiate
edges. However there are multiple important differences between that work and ours.
The construction of dual collision graph is different: Jianu et al. set the edge weights
among all edges to be the inverse of either the intersection angle, or the edge distance
if the edges do not intersect, which is not optimal since it is perfectly harmless to color
edges that have no conflict with the same color. In fact, their method always results
in a complete collision graph, making it more expensive for relatively large graphs.
Furthermore, because of the complete collision graph, all edges of the original graph
must have different colors. Therefore the drawings in [16], which are all of very small
graphs, always contain a multitude of colors, which is unnecessary. Our collision graph



almost always contains disconnected components.This decomposes the coloring prob-
lem into smaller ones, and allows us to use the same (black) colors for many edges.
Jianu et al. [16] solved the coloring problem using a force-directed algorithm, moti-
vated by Dillencourt et al. [7]. We were kindly given the source code for [16] from one
of the authors. Based on reading the code, we found that it applies force directed algo-
rithm to nodes of the collision graph in the 2D subspace of the LAB color space (the
AB subspace). It then sets a fixed L value of 75 (L is the lightness, between 0 to 100).
This observation is consistent with the drawings in [16], where black background is
used for all drawings due to the high lightness value (see also Fig. 5(d)). This makes the
algorithm limited to a small subset of all possible colors. Finally, the force-directed al-
gorithms of Dillencourt et al. [7] and Jianu et al. [16] can only be applied to continuous
color space in 2D or 3D. Neither works for user specified color palettes, or 1D colors.
Our algorithm works for both continuous or discrete color spaces. Overall, we believe
that the idea of using colors for disambiguating edges are quite natural to think of. It is
how to design appropriate algorithms to make the idea work effectively in practice that
is crucial and that differentiates our work and [16]. Furthermore, we present a first user
study to evaluate results of our algorithm with real users. The results suggest possible
scenarios when our edge coloring approach is effective.

3 The Edge Coloring Problem and a Coloring Algorithm

Appropriate coloring can help greatly in differentiating edges that cross at a small angle.
Fig. 1 (left) illustrates such a situation. With many crossing edges, it is difficult to follow
the edge from node 19 (top-middle, blue) to node 16 (lower-right, blue). In comparison,
in Fig. 1 (right), it is easier to see that 19 is connected to 16 by a blue edge. The objective
of this section is to identify situations where ambiguities in following edges can occur,
and propose an edge coloring algorithm to resolve such ambiguities.

3.1 Edge collisions

Two edges are considered in collision if an ambiguity arises when they are drawn using
the same color. The following are four conditions for edge collision:

– C1: they cross at a small angle.
– C2: they are connected to the same node at a small angle.
– C3 (optional): they are connected to the same node at an angle close to 180 degree.
– C4: they do not cross or share a node, but are very close to each other and are

almost parallel.

We now explain the rationale for considering each of these four conditions as be-
ing in collision. C1 is considered a collision following the user studies described in
Section 1 by Huang et al. [14,15]. When eyes try to follow an edge to its destination,
small crossing angles between this edge and other edges create multiple paths along the
direction of the eye movement, either taking eyes to the wrong path, or slowing down
the eye movement. C2 creates a situation where one edge is almost on top of the other,
making it difficult to visually follow one of these edges.
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Fig. 1. Left: a graph with 20 nodes and 100 edges. It is difficult to follow some of the edges.
For example, is node 19 (blue) connected to node 16 (blue)? Is node 19 connected to 17 (blue)?
Right: the same graph, with the edges colored using our algorithm. Now it is easier to see that 19
and 16 are connected by a blue edge, but 19 and 17 are not connected.

C3 could create confusion as to whether the two edges connected at close to 180 de-
gree are one edge, or two edges, when node labels are drawn. For example in Fig. 1 (left),
it is difficult to tell whether nodes 19 and 17 are connected, or whether 19 is connected
to 20 and 20 is connected to 17. When edges are properly colored (Fig. 1 (right)), it is
clear that the latter is true. Note that if edges are allowed to be drawn on top of nodes,
then an edge between 19 and 17 would be seen over the label of 20, thus this kind of
confusion can be eliminated. Therefore we consider C3 as optional. But drawing edges
over the label of nodes introduce extra clutter and make the node labels harder to read.

C4 causes a problem because when two edges are very close and almost parallel, it
is difficult to differentiate between them. In addition, it can cause confusion when node
labels are drawn. Fig. 3(a) shows two lines very close and almost parallel. While it is
possible to differentiate between the two edges, when node labels are added (Fig. 3(b)),
it is difficult to tell whether there are two edges (1↔ 2 and 3↔ 4), or three edges
(1↔ 2, 1↔ 4 and 1↔ 3), or whether there even exists an edge 3↔ 2. This confusion
can be avoided if suitable edge coloring is applied (Fig. 3(c)).

To resolve these collisions, we propose to color the edges so that any two edges in
collision have as different colors as possible. We first construct a dual edge collision
graph.

3.2 Constructing the dual collision graph

Let the original graph be G = {V,E}. Denote by N(v) the set of neighbors of a node
v. The dual collision graph is Gc = {Vc,Ec}, where each node in Vc corresponds to an
edge in the original graph. In other words, there is a one-to-one mapping e : Vc → E.
Two nodes of the collision graph i and j are connected if e(i) and e( j) collide in the
original graph.
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(c) color vertices of the collision graph (d) color edges of the original graph

Fig. 2. The proposed pipeline for coloring the edges of the Zachary’s Karate Club Graph: (a) the
original graph; (b) the dual collision graph, with each node representing an edge of the original
graph, and positioned at the center of that edge; (c) the collision graph, with nodes colored to
maximize color differences along the edges; (d) the original graph, with edges colored using the
node coloring in (c).

The problem of coloring the edges of G then becomes that of coloring nodes of the
collision graph Gc. Let C be the color space, and c(i) ∈ C be the color of a node i ∈Vc,
we want to find a coloring scheme such that the color of each node in the collision
graph is as different to its neighbors as possible. This task can be posed as a MaxMin
optimization problem:

1
2

3
4

1
2

3
4

(a) (b) (c)

Fig. 3. An illustration of the rationale for collision condition C4. (a) Two edges that do not cross.
(b) When nodes are shown, it is difficult to tell if there are two edges (1↔ 2 and 3↔ 4), or three
edges (1↔ 2, 1↔ 4 and 1↔ 3), or whether there even exists an edge 3↔ 2. (c) After coloring
each edges with a distinctive color, it is clear that there are two edges, 1↔ 2 and 3↔ 4

argmax
c:Vc→C

min
{i, j}∈Ec

wi j‖c(i)− c( j)‖, (1)

where wi j > 0 is a weight inversely proportional to how important it is to differentiate
colors of nodes i and j, and ‖c(i)− c( j)‖ is a measure of the difference between the
colors assigned to the two nodes.



Note that (1) is stated rather generally: C could be a discrete, or continuous, color
space. This is intentional since we are interested in both scenarios. All we assume is
that C sits in a Euclidean space of dimension d.

Once we colored the collision graph, we can use the same coloring scheme for
the edges of the original graph. The complete pipeline of our proposed approach is
illustrated in Fig. 2. Notice that the collision graph in Fig. 2(b) is disconnected. We
apply our algorithm on each component of the collision graph.

3.3 A color optimization algorithm

Dillencourt et al. [7] proposed a force-directed algorithm in a Euclidean color space.
They wanted all pairs of nodes to have distinctively different colors. Consequently their
algorithm used a force model where repulsive forces exist among all pairs of nodes.

Because in our case edges can have the same color as long as they do not collide,
there is no need to push all pairs of nodes of the collision graph apart in the color space.
Therefore we can not use the algorithm of Dillencourt et al. [7] as is. Although it is
possible to adapt their algorithm, we opt to propose an alternative algorithm. One reason
is that we like to be able to use not only continuous color spaces, but also discrete color
palettes.Another reason is due to the fact that even when deciding the optimal color for
one node of the collision graph with regard to all its neighbors, this seemingly simple
problem can have many local maxima.

We give an example to illustrate this point. For simplicity of illustration, within this
example, we assume for that our color space is 2D, and that the color distance is the
Euclidean distance. Suppose we want to find the best color embedding for a node u in
the collision graph with six neighbors, and the six neighbors are currently embedded
as shown in Fig. 4 (left). We want to place u as far away from the set of six points as
possible. Fig. 4 (left) shows a color contour of the distance from the set of six points
(the distance of a point to a set of point is defined as the minimum distance between this
point and all the points in the set, assuming unit weighting factors). Color scale is given
in the figure, with blue for low values and off-white for large. From the contour plot
it is clear that there are seven or more local maxima. In 3D there could be even more
local maxima. A force-directed algorithm such as [7], even with the random jumps and
swaps, is likely to settle in one of the local maxima.

Instead we hope to find the global maximum. A naive way to find the global maxi-
mum position in the color space with regard to a set of points is to search exhaustively by
imposing a fine grid over the color space, and calculating the distance from each mesh
point to the set. However, given that the color space are typically of three dimensions,
even at a resolution of 100 subdivisions along each dimension, we need 106 distance
calculations. This is computationally too expensive, bear in mind that this computation
needs to be performed for each and every node of the collision graph repeatedly until
the overall embedding in the color space converges.

We propose a more efficient algorithm based on the octree data structure (quadtree
for 2D) that does not require evaluations of the distance over all mesh points. Pseudo
code for the algorithm is given in [13]. We give a high level description here. Using
Fig. 4 (left) as an example, we want to find a point in the color space that is of maximal
distance to a target set of points. Define the objective function value of a square to be



Fig. 4. Left: contour plot of the distance to a set of six (white) points in the space [0,0.9]× [0,0.9].
There are seven or more local maxima. E.g., near {0,0.55} and {0.4,0.7}. Right: an illustration
of the quadtree structure generated during our algorithm for finding the global optimal embedding
of a node that is farthest away from the set of six points. The final solution is {0,0} (red point).

the distance from the center of the square to the target set. We start with a queue of one
square covering the color space, and define the current optimal value as the maximal
distance over all squares in the queue to the target set. Taking a square from the current
queue, we subdivide it into four squares. If the distance of one of the four squares to
the point set, plus the distance from the center of the square to a corner of the square,
is less than the current optimal distance, this square is discarded. This is because no
point in this square can have a larger distance to the target set than the current optimal
distance. If the square is outside of the color space, it is also discarded. Otherwise the
square is entered into the queue, and the optimal value updated. This continues until the
half width of all squares in the queue is smaller than a preset threshold ε . The point that
achieves the current optimal value is taken as the optimum. We know that the current
optimal value should be within a value δ = d1/2ε to the global optimal value, where δ

is the half diagonal of the final square in d-dimensional space.
This algorithm is in essence a branch-and-bound algorithm operating on the octree

(quadtree for 2D) decomposition of the color space. When applied to the problem in
Fig. 4 (right), we can see that in the top-left quadrant, the quadtree branched twice and
stopped, because the function values are relatively small in that quadrant. The top-right
and bottom-right quadrants branched 3 and 4 times, respectively. The final optimal point
is found in the bottom-left quadrant. Initially the algorithm homed in on two regions,
one around {0.375,0} and the other around {0,0}, eventually settled around the latter.

Of course this branch-and-bound algorithm only finds the global optimal embedding
for one node. After applying the algorithm to every node of the collision graph once
(one outer iteration), we repeated if the minimal color difference increases, or if it does
not change, but the total sum of color difference across all nodes increases.

We name the algorithm CLARIFY (Edge Coloring for CLARIFYing a Graph Lay-
out) and formally state it in Algorithm 1 in the technical report [13].

4 Implementation and Results

CLARIFY works for both continuous color spaces (RGB and LAB), as well as discrete
color space, including a fixed list of colors. Fig. 5 shows examples of applying CLAR-
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(a) RGB (b) LAB (0≤ L≤ 70) (c) ColorBrewer Accent 8
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(d) ColorBrewer Dark2 8 (e) applying Jianu et al. [16] (f) LAB (L = 75)

Fig. 5. Applying CLARIFY on the Karate graph in RGB and LAB color spaces (a-b), and with
two ColorBrewer palettes (c-d). For comparison we include the result of applying the algorithm
of Jianu et al. [16], vs CLARIFY in LAB color space with fixed lightness of 75 (e-f).

IFY in the RGB color space, the LAB space with intensity 0 ≤ L ≤ 70, and using two
ColorBrewer [2] color palettes. In addition it shows how CLARIFY compared favor-
ably with the result of [16]. CLARIFY can also be applied for coloring of virtual maps.
Fig. 6 shows an author collaboration map (see [9]) colored using CLARIFY with two
color palettes.

Detailed information on implementation, including how CLARIFY is made to work
with both continuous and discrete color spaces, are given in the technical report [13].
CLARIFY is now available from Graphviz [10] as edgepaint (for edge coloring
only; map coloring will be made available soon as part of gvmap).
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Fig. 6. CLARIFY on a virtual map with two ColorBrewer palettes: left: Accent 8, right: Dark2 8.

We now apply CLARIFY to graphs from real applications. Table 1 gives results on
six of the graphs we tested, including running time and objective function (1) (color
diff) achieved in LAB color space. These are from [4] or [10]. We intentionally avoided
choosing mesh-like graphs – such graphs are easy to layout aesthetically. Their layouts



also tend to exhibit a low perceptual complexity, making it relatively easy to follow
edges and paths. Compared with a non-mesh-like graph, a mesh-like graph is easier for
our algorithm because there are typically fewer colliding edges. We ran the experiment
on a Macbook Pro laptop with a 2.3 GHz Intel Core i7 processor.

Table 1. Statistics on the original and dual test graphs, CPU time (in second) and objective
function (cdiff) for CLARIFY. The time in bracket is for constructing the dual collision graph.

graph |V | |E| |Ec| CPU cdiff
ngk 4 50 100 54 0.6 (0.) 122.69

NotreDame yeast 1458 1948 1685 1.3 (0.2) 67.9
GD00 c 638 1020 1847 1.7 (0.1) 64.32

Erdos971 429 1312 4427 2.1 (0.1) 59.3
Harvard500 500 2043 11972 2.3 (0.3) 35.0

extr1 5670 11405 34696 14.5 (7.9) 47.1

It can be seen from Table 1 that for graphs of up to a few thousand nodes and
edges, CLARIFY runs quickly. The majority of the CPU time is spent on color assign-
ment, while the construction of the collision graph takes relatively little time even with
the naive dual graph construction algorithm. The Harvard500 graph gives a large |Ec|
(number of edges in the collision graph) in comparison to the number of edges, because
it has a few almost complete subgraphs, which results in a lot of crossings at small
angles.

5 User Study

We conducted a controlled experiment to study the effect of edge coloring on user’s per-
formance in fundamental graph-related tasks, such as visually following edges, finding
neighbors and calculating the shortest path. Generally we compared two approaches,
defined as two visualization types: the baseline graph drawing in black-white (B/W)
and the improved graph drawing with edges colored by our algorithm (Color).

Experiment design. We recruited 12 participants (8 male, 4 female) for this paper-
and-pencil experiment. 10 of the participants were graduate students majoring computer
science and the other 2 of them were department assistants with no technology back-
ground. Half of the participants had experiences on node-link graphs, one student was
even an expert on graphs. The other half did not have previous knowledge with the
node-link graph. The experiment followed a within-subject design with every partici-
pant doing all tasks with both visualization types. To eliminate the learning effect over
the same task, we used two different layouts of the same graph data. We had a full
factorial deign on the choice of two visualization types and two graph layouts. Each
participant entered the same task four times in total. The experiment order was random-
ized across participants. Half of them completed the tasks first with the B/W approach
and then with the Color approach. Another half adopted the opposite order. Further, in
half of the time when participants were given the colored drawing, the algorithm is fixed



to use the LAB palette. In another half, the participants selected their favorite palette
and completed tasks with the colored drawings generated by this palette.

Data and task. Two layouts of the Zachary’s Karate Club Graph were used. One
was exactly the layout in Fig. 2. Another was rotated and re-labeled. Three types of
graph-related tasks were designed:

T1 (Connectivity): Determine whether two nodes are connected by a direct edge;
T2 (Neighbor): Estimate the number of nodes a particular node connects directly;
T3 (Path): Estimate the minimum number of hops from a particular node to another,

including the source and destination.
On each type, four tasks were selected on each graph layout with similar difficulty

levels. To eliminate user’s visual node querying time from their task completion time,
we annotated the related nodes in each task on the corresponding graph layout before
participants took the task.

Result. Results were analyzed separately on each task type. Detailed analysis and
error bar charts are given in the technical report [13]. The major findings are that on
connectivity tasks, the average task error of the Color group is less than 30% of the
B/W group, and is statistically significant. Performance difference on neighbor/path
tasks and color palettes were not statistically significant.

6 Conclusions

Edge crossings, particularly those at small crossing angles, are known to be detrimental
to the visual understanding of graph drawings. This paper proposes an edge coloring al-
gorithm for disambiguating edges that are in collision because of small crossing angles
or partial overlaps. The algorithm, based on a branch-and-bound procedure applied to
a space decomposition of the color gamut, generates color assignments that maximize
color differences of the colliding edges, and works for both continuous color space and
discrete color palettes. The algorithm can also be applied to generate coloring for dis-
ambiguating virtual maps. Our user study found that coloring edges in graph drawings
helped user’s performance in 1-hop graph connectivity task significantly. Consequently
we have made the CLARIFY code available as part of Graphviz open source software.

The approach of coloring edges for disambiguating drawings has its limitations. Our
working assumption is that the drawing is to be displayed as a static image on paper or
screen. When an interactive environment is available, techniques such as “link sliding”
and “bring & go” [17] could be more effective. In such a situation, the algorithms pro-
posed here can be used as an additional visual aid to the interaction.

While the algorithm proposed here can run on relatively large graphs, our experi-
ence is that for graphs with a lot of edges, a static image is insufficient to allow the user
to clearly see and follow each edge. Therefore our approach is best suited for small-
to medium- sized graphs. Typical usage scenarios are illustrations of diagrams, such as
computer or biological networks.

Finally, we note that sometimes edge colors are used to encode attributes on the
edges. To apply our approach without interfering with the need to display such at-
tributes, edges can be differentiated using dashed lines of different style and/or thick-
ness, using CLARIFY through mapping different line styles to 1D or 2D spaces.
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