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ABSTRACT

Visualizing a scholar’s scientific impact is important for many chal-
lenging tasks in academia such as tenure evaluation and award selec-
tion. Existing visualization and profiling approaches do not focus on
the analysis of individual scholar’s impact, or they are too abstract
to provide detailed interpretation of high-impact scholars. This
work builds over a new scholar-centric impact-oriented profiling
method called GeneticFlow. We propose a visualization design
of scholar’s self-citation graphs using a time-dependent, hierarchi-
cal representation method. The graph visualization is augmented
with color-coded topic information trained with cutting-edge deep
learning techniques, and also temporal trend chart to illustrate the
dynamics of topic/impact evolution. The visualization method is val-
idated on a benchmark dataset established for the visualization field.
Visualization results reveal key patterns of high-impact scholars and
also demonstrate its capability to serve ordinary researchers for their
impact visualization task.

Index Terms: Human-centered computing—Visualization

1 INTRODUCTION

Scholars are the gravity center of academic world and analyzing
their impact has been a fundamental subject in scholarly data anal-
ysis. Understanding and quantifying scholar’s impact are essential
for many real-world tasks such as academic award selection, tenure
evaluation [26], and academic output inference [8]. Here the scholar
impact is defined as one’s scientific contribution (e.g., publications),
as well as their recognition in the community (e.g., citations). The
topic has attracted great attention in both academia and industry,
as exemplified by the field of Scientometrics [10] and the numer-
ous academic platforms such as Google Scholar [4] and Microsoft
Academic Graph (MAG) [1].

Visualizations have been indispensable constituent for scholar
impact analysis. The support of intuitive and interactive analysis ca-
pability fits well with the subjective nature of scholarly impact. For
example, Google Scholar presents dashboard for scholar profiling
by a combination of author-level indicators, such as total citation,
h-index, and i-10 index. They also introduce interactive charts to
depict a scholar’s impact, including citation count time series. Their
approach brings together different aspects of a scholar’s impact, but
does not integrate and interlink them into a single impact analysis
apparatus, nor do they offer detailed interpretation of high-impact
scholars. On the other hand, graph visualizations have long been
deployed to display academic information, such as co-authorship net-
work for collaboration history comprehension [19] and co-citation
network for emerging topic detection [5]. Yet, very few of these
network visualization design focuses on scholar-centric analysis of
academic impact.

This work builds over our latest scholar-centric impact analysis
proposal called GeneticFlow (GF) [23]. The core idea is to ex-
plore the self-citation graph of a scholar which connects all his/her
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publications into a structured context for interpreting scholar’s im-
pact. Moreover, profiling methods are developed to only expose
core papers in the graph that represent one’s own research idea, and
extend-type self-citations delineating one’s idea evolution. This
ensures the resulting GF graph scholar-centric. Nevertheless, the
complexity of GF graphs makes it hard for ordinary users to compre-
hend. In comparison, impact indicators such as h-index are easy to
interpret, and classical bibliometric networks are already familiar to
the community. In this paper, we propose a visualization system for
GeneticFlow which makes following contributions to tackle several
nontrivial challenges:

• We design and implement a visualization method for GF us-
ing time-dependent, hierarchical graph representation. An
elaborate topic generation and color mapping mechanism is
proposed, by applying the cutting-edge deep text embedding
algorithm. The GF visualization is also complemented with
dynamic trend chart and topic map view to support scholar
impact analysis in temporal and topical dimensions.

• We establish a benchmark dataset encompassing top scholars
in the visualization research field, over general-purpose MAG
corpus. Case studies on both award-winning visualization
researchers and ordinary scholar demonstrate the effectiveness
of GF visualization in analyzing scholar’s impact. The core
profile and characteristics of these scholars are easily identified
with the proposed visualization system.

2 RELATED WORK

2.1 Scholar Indicator Profiling
There are many kinds of indicators for evaluating the scientific
impact of a scholar. The representative one is h-index [15], which
only considers papers with high citation counts. Specifically, it
tells that among all papers of a scholar, there are h papers cited
at least h times. In addition, h-index has many variants such as
g-index [6]. g-index refers to the top g papers of the scholar with
the highest number of citations, which are cited at least a total of
g2 times. Although indicators like h-index take into account both
the quantity and quality of papers, it may often lose a lot of other
information important for scientific impact. That said, we may need
to analyze the scholar’s academic data from multiple perspectives
including publication, citation, and collaboration networks. For
example, Egoslider [32] and Egolines [33] distill the evolutionary
collaboration networks to learn the academic interactions. Fung et al.
designed a tree metaphor to visualize one’s publications [9]. Though
intuitive, the above works lack the potential to analyze individual
and social factors that can contribute to career success. Wang et
al. apply a multi-factor impact analysis framework to estimate the
effect of different factors on academic career success over time [31].
In their visualization design, a Impact Timeline is introduced for
comparing the effects of different categories within a factor, and a
CareerLine shows one’s academic career development affected by
multiple factors.

2.2 Career Trajectory Visualization
Google Scholar [4] has the world’s largest source of academic in-
formation, with more than 389 million documents [13]. It provides



Table 1: statistics of the subset of MAG data related to visualization

# of paper # of author # of reference # of paper author

VIS subset 225K 429K 4.7M 664K

a list of publications for each scholar including the year and cita-
tions, which can delineate the scholar’s academic career trajectory.
Systems like AMiner [2] and DBLP [3] also arrange relevant aca-
demic information in an organized manner. More recently, with
the surge of digital libraries on academic publications, various pro-
posals have emerged in the field of visualization for academic data.
Latif et al. used generated natural language text as part of the
visualization of a scholar’s profile to facilitate the exploration of
one’s academic career in VIS [21]. Several other visualization
techniques are also presented, e.g. ego-centric scholar visualiza-
tions [14] [16] [22] [25] [27], but they do not work for impact-
oriented scholar profile visualization. For example, Reitz uses links
in an ego-centric node-link diagram to encode temporal distributions
of the joint work [25]. MENA represents the ego-centric network as
a dynamic graph in small multiples [14]. Fung et al. suggest a botan-
ically inspired tree visualization to summarize the collaborations in
each branch of a time span, with co-authors encoded as leaves [9].

The aforementioned works describe a scholar’s academic ca-
reer from a global perspective via generative text or timeline of
changes. In comparison, our research mainly focuses on constructing
a scholar’s self-citation graph and its core components for building
scientific impact, which help users better understand the evolution
of a scholar’s academic ideas.

3 GENETICFLOW ANALYTICS

3.1 Background
To resolve the impact-oriented scholar profiling problem, GF ana-
lytics is proposed to construct the self-citation graph of each indi-
vidual scholar, which encompasses all publications of the scholar
and the self-citations among the papers. We find that besides its
impact-expanding role, self-citation also serves a crucial function in
delineating the trajectory of a scholar’s innovative flows. This de-
sign allows to integrate multifaceted academic data into a structured
context for scholar-centric impact profiling and also support the
tracking of evolution of scholar’s scientific impact. In more detail,
GF employs an advisor-advisee detection algorithm based on co-
authorship ties to identify a scholar’s core papers, and introduces an
optimized classifier to detect the scholar’s extend-type citations. By
constructing this core GF graph, the approach achieves significantly
better performance on award inference for 6 key fields in Computer
Science, compared to classical indicator-based and network-based
scholar profiling methods [23].

The GF analytics method is composed of two algorithms: node
profiling to detect core papers with this scholar as first or correspond-
ing author, and edge profiling to detect the set of core, extend-type
citation edges that represent the evolution of the scholar’s scien-
tific contribution. In more detail, the GF node profiling method
identifies advisor-advisee relationships on papers published by the
target scholar, using an unsupervised, human-interpretable algorithm.
Then the author order information is used to detect the core papers,
including those with the scholar as first author or the scholar’s stu-
dent as first author. To avoid issues with alphabetically ordered
papers, a statistical method is used to detect and eliminate sub-fields
in CS where alphabetical authorship is heavily used.

The GF edge profiling method detects extend-type citations by
synthesizing existing studies on citation type classification [29]
[30] [18]. In short, supervised learning techniques are applied on
a labeled dataset combining those in the literature, with manually
labeled extend-type and other citations. Four categories of raw
features, including metadata of cited and citing papers, features ex-
tracted from their citation networks, temporal correlation measures,

Table 2: Statistics of GF Graphs for top-1000 visualization scholars

Full graph Core graph Ratio of core

average papers 35 20 57%
average citations 31 17 55%

and content and lexical patterns from the citation context and full
text, are hand-crafted and evaluated for their significance in differ-
entiating extend-type and non-extend citations. Twenty features are
finally selected based on correlation analysis and significance tests.
The Extra-Tree model [11] is selected as the best classifier, achieving
an F1 score of 0.646 with 10-fold cross-validation.

More details can be found in Ref. [23] (the algorithm paper).

3.2 Academic Data Source
We mainly use MAG, the largest open academic data source nowa-
days. MAG contains papers and their metadata (authors, citations,
fields of study, etc.) from all disciplines, including computer science,
physics, biology, etc. In total, over 237 million papers, 240 million
authors, and 1.63 billion citations are recorded. Therefore, MAG
offers most of the required data to build GF profiles.

To derive GF profile for the scholars in the visualization field,
we also conducted preprocessing on the raw dataset. We selected
four primary fields of study in the MAG topic hierarchy related
to visualization, which collectively cover almost all papers in the
visualization field. With these papers as starting point, we further
obtain all authors in the field. All citation links associated with visu-
alization papers are extracted from MAG to build the self-citation
graph of visualization scholars. Statistics of this specific dataset are
listed in Table 1.

3.3 GF Graph Processing
Given the large number of scholars in the field of visualization, we
rank them by their paper counts in the field and select top-1000
scholars for further analysis. The GF node/edge profiling algorithms
are applied to obtain the GF profile of these top scholars. As listed
in Table 2, the number of core papers for each scholar decrease to
43% of the full GF graph in average, and the number of extend-type
citations are estimated to be 45% of all citations.

MAG has a built-in topic hierarchy pre-trained on its large data
corpus [1]. Each paper is provided with one or more topic tags in the
hierarchy. However, we found that the research topics provided by
MAG do not match well with the reality. Therefore, we do not apply
the MAG topic tags but used a BERT-based topic modeling approach
instead. We collected the titles and abstracts of all visualization
papers in MAG as text data, and used a pre-trained BERT model to
generate the text embeddings. The BERTopic implementation [12]
is used as it performs well on academic data sets. A list of 90 topics
were obtained on the visualization field. We then cluster similar
topics into higher-level topics to create a topic tree. Each paper is
mapped to a single topic at the leaf of the tree. The UMAP algorithm
[24] is applied to reduce the dimensionality of text embedding for
clustering. After the clustering, 11 top-level topics are formed,
resulting a two-level topic hierarchy.

4 SCHOLAR-CENTRIC IMPACT VISUALIZATION

Over GF analytics, we propose an interactive system to visualize
GF profiles of top scholars in a given field. Here we introduce the
system design, showcased in the visualization field.

4.1 Design and Implementation
GeneticFlow graph visualization. The main interface of Genet-
icFlow is composed of multiple coordinated views, as shown in
Fig. 1. For a specific scholar, the left panel provides his/her de-
mographics such as paper/citation count and h-index (Fig. 1(b)),
and the node/edge statistics of corresponding GF graph (Fig. 1(c)).
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Figure 1: GeneticFlow visualization interface (Prof. Keim’s graph): (a) system control panel; (b) scholar demographics; (c) graph statistics; (d) GF
graph visualization; (e) topic distribution map; (f) author/paper/citation detail panel.

Figure 2: The impact of Prof. Keim’s “recursive pattern” paper.

This design inherits the merit of classical scholar profiling platforms
such as Google Scholar, which help to gain an overview of the
scholar’s scientific impact. In the right panel of our interface, a topic
map presents the distribution and strength of all topics learned on
the scholar’s paper (Fig. 1(e)). A detail panel in the bottom right
(Fig. 1(f)) provides expanded bibliographic information about the
selected scholar, paper (node in GF), or citation (edge in GF).

The key visualization design lies in the display of GF graph
as a hierarchical graph with one layout dimension attached to the
paper publication year (Fig. 1(d)). Each node in the GF graph
represents one paper published by the displayed scholar. The color
and thickness of the node border represent the amount of citations
of the paper, with darker red and thicker border representing more
citations. The paper with more than 50 citations will be illustrated
in the most thick/red outline. Due to possibly long paper titles, we
depict node labels as “publication year + first word in paper title”.
Users can hover the nodes to display the full paper title. The node
fill color represents the topic of corresponding paper, with analogous
color mapped to similar research topics. Among paper nodes, curved
edges are drawn to indicate self-citation relationship. On the left
side of GF graph visualization, a timed list of bar charts are designed

to display the topic distribution of the scholar’s research over time.
Each bar chart is stacked with mini-bars representing the strength of
each topic in a year, sorted by the topic’s overall significance in the
target scholar’s career.

To determine color mapping for all the topics, we first apply high-
dimensional embeddings to project topic keywords into a new 2D
space. Moreover, we choose the HSV color space to represent the
color of each topic. The selection of HSV space is to ensure that
topics with similar semantics will have similar colors. In the HSV
color space, we fix the brightness of the HSV color to 1, and obtain a
2D color subspace. This subspace is mapped with the 2D projection
of topics. The color hue is computed by the rotated angle of topic
vector. The color saturation is computed by the length of topic
vector. To help users gain a clear view of the topic distribution of top
scholars and research fields, we also design a topic map visualization
for coordinated analysis with GF graph visualization. As shown in
Fig. 1(e), the projection view on the right displays the distribution of
topics of the selected scholar by default, with the size of each topic
circle indicating topic intensity.

We apply a hierarchical layout algorithm to arrange the paper
nodes where each node is placed in the layer corresponding to its
publication year. To layout the self-citation edges between papers
in the graph, we add dummy nodes at each layer so that each edge
only connects to nodes in adjacent layers. Each edge is drawn
as a third-order Bezier curve for a smooth and aesthetic display.
The user is provided with citation context when clicking on the
directed edges in the graph. In order to reduce edge crossings in the
graph, the nodes in the same layer is re-arranged by a Sugiyama-
style algorithm [28]. The popular package of GraphViz (with dot
command) [7] is introduced to implement our layout algorithm.

Interactive visual analysis. Considering that most scholars have
published a large number of papers, the GF graph can be too cluttered
to perceive. In our design, we apply GF profiling methods to filter
out insignificant papers and citations, which is interactively adjusted
through two sliders. The node filtering is by the probability of being
a core paper and the edge filtering is by the probability of being
extend-type citations. A drop-down box is available to remove
isolated node from GF graph. Users can better focus on the idea
flow and topic evolution of the selected scholar, by working with
the extracted core GF graphs. Upon a click on the graph node, more
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Figure 3: Prof. Liu’s GF visualization: (a) full GF graph, including isolated nodes; (b) core GF graph.
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Figure 4: Prof. Shi’s GF visualization: (a) full graph; (b) topic map.

detailed info about the paper, including abstract and research topics
can be expanded for analysis. As the default view showing all 90
low-level topics can be cluttered, we introduce another drop-down
option to switch to the top-level topics with 11 classes.

System implementation. In the system interface, we list most
important author-level impact indicators, including citation count,
h-Index, and paper count. Additionally, we build a search page and
retrieval system for users to perform query for interested scholar
names and proceed to the scholar’s GF graph visualization after that.

4.2 Case Study

We apply the GF visualization system to study the scientific impact
of top visualization researchers. As junior researchers rely more
heavily on citing/extending other’s research idea, GF method could
be less effective in profiling their impact. We also note that our
method focuses on delineating an objective-at-best scholar profile
with openly published academic data. Hence, the case study is done
in the third-person view, without interviews on the studied scholars.

First, we consider Prof. Daniel Keim who is one of pioneers in
visualization and visual analytics research. Fig. 1 illustrates his GF
graph with the default setting to exclude non-core papers/citations
and isolated nodes. It can be observed that Prof. Keim’s research on
visualization began from 1995 when most of his early year’s work
were highly influential (in red and thick node outlines, indicating
# of citations > 50). His research topics in these years include
pixel-oriented database visualization (cyan) and multidimensional
data visualization (light yellow), which can be expected because
he was an academic descendant of Hans-Peter Kriegel, the famous
database scientist. Later, his research came at peak by the number of
papers during 2004∼2013. The research focus shifted to both visual
analytics (purple) and information visualization on multiple data
types (light yellow) such as text and time series. Prof. Keim’s career
echoed a historical trend in the field, from the direct visualization of
classical multidimensional data to visual analytics on new types of
data, combining automatic data analysis algorithms.

Drilling down to the detail of Prof. Keim’s research, we find that
his “Recursive Pattern” paper [20] in 1995 had the most compre-
hensive impact. As shown in Fig. 2, the longest self-citation edge
crosses 22 years, and the influenced topics have covered most of
Prof. Keim’s research areas: database visualization, visual analytics,
time series visualization, etc.

In another case, we study Prof. Shixia Liu’s GF graph, another
senior researcher in the visualization field. Fig. 3(a) depict her
full GF graph with all isolated papers included. The full graph is
quite difficult to comprehend as too many papers are linked together.
Using the functionality of GF analytics, we extract the core paper-
s/citations of her GF graph. Fig. 3(b) presents a much clearer view
of her research topic evolution. Importantly, the survey paper in
Fig. 3(a) (purple node at 2014) has been removed because of lacking
extend-type citation links. Fig. 3(b) indicates that Prof. Liu focused
on the text and document visualization topic (light yellow) during
2009∼2016, according to the side bar on the left side of GF graph.
Many of these works are highly influential (# of citations > 50).
This finding corresponds well with the fact that she was elevated to
IEEE fellow for the primary contribution on visual text analysis. It
also implies a key pattern for high-impact scholars: the existence of
well-connected, highly-cited core graph in his/her GF profile.

Our method is also useful for ordinary researchers. As illustrated
by the GF graph of Fig. 4, the last author of this work ever focused
on network visualization research before 2015. This experience is
captured by a few paper clusters in green (egocentric network) and
other isolated papers in cyan (graph drawing) and purple (security
networks). Most recently, he turned to work on visual analytics
applications, so that the topic color distribution becomes diversified
and the works are quite isolated without self-citations. The GF
approach precisely demonstrates the trait of one’s research evolution
as well as their magnitude of scientific impact.

5 CONCLUSION AND DISCUSSION

This paper presents GeneticFlow visualization, the method that il-
lustrates structural, topical, and evolutionary context of a scholar’s
scientific impact. It is developed based on a suite of new analyt-
ics methods that extract core papers and extend-type citations out
of the scholar’s self-citation graph. The visualization design also
incorporates multiple coordinated views to display the distribution
and temporal dynamics of research topics, as well as detailed de-
mographics of the scholar and associated publication/citation lists.
We build an online system over a well-curated academic dataset
of the visualization community. Case studies on top visualization
researchers both reveal essential patterns on high-impact scholars
and demonstrate its capability to benefit ordinary researchers with a
clear view of their academic impact.

Our work does have limitations. First, we choose MAG instead
of VIS-specific data sources such as VisPubData [17] due to the
broader coverage of MAG. The result could be disturbed by potential
data error and incompletion, though MAG has been the best open
academic data source for all disciplines. Second, we only showcase
the application in the visualization community. Deployments in
more research fields would be demanding. Third, self-citation links
can be absent due to various reasons, e.g., published in the same year.
Admitting more links in the graph by topic affinity criterion beyond
self-citations could be a direction for better impact visualization. We
plan to address these limitations in future.
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