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5 Abstract—Successfully detecting, analyzing, and reasoning about collective anomalies is important for many real-life application domains

6 (e.g., intrusion detection, fraud analysis, software security). The primary challenges to achieving this goal include the overwhelming

7 number of low-risk events and their multimodal relationships, the diversity of collective anomalies by various data and anomaly types, and

8 the difficulty in incorporating the domain knowledge of experts. In this paper, we propose the novel concept of the faceted High-Order

9 CorrelationGraph (HOCG). Compared with previous, low-order correlation graphs, HOCGachieves better user interactivity, computational

10 scalability, and domain generality through synthesizing heterogeneous types of objects, their anomalies, and themultimodal relationships,

11 all in a single graph.We design elaborate visualmetaphors, interactionmodels, and the coordinatedmultiple view based interface to allow

12 users to fully unleash the visual analytics power of the HOCG.We conduct case studies for three application domains and collect feedback

13 from domain experts who apply ourmethod to these scenarios. The results demonstrate the effectiveness of the HOCG in the overview of

14 point anomalies, the detection of collective anomalies, and the reasoning process of root cause analyses.

15 Index Terms—Correlation graph visualization, collective anomaly

Ç

16 1 INTRODUCTION

17 ANOMALY detection is a critical interdisciplinary research
18 area [1] that expands its applications to a variety of
19 strategic domains (e.g., intrusion detection, fraud analysis,
20 software security). If not well contained, the anomalous state
21 often translates into hazardous fatal actions, e.g., compromise
22 of machines for potential attacks, real-life terrorist activities.
23 In this work, we consider one of the most complicated anom-
24 aly types: the collective anomaly. The collective anomaly is
25 identified as coordinated events on a group of interrelated
26 objects, which individually appear to be normal, or of limited
27 suspicion; yet, their co-occurrence is highly anomalous. For
28 example, in software analytics, the stack-overflow and the call
29 function transfer itself can solely be programming tricks or
30 low-risk software bugs. When these two events happen

31sequentially, the normal operation severely upgrades to a
32malicious attack of code injection through the exploitation of
33software vulnerabilities. Another example is the distributed
34denial of service (DDoS) attack onweb servers [2].While a sin-
35gle request to a server is legitimate, numerous connection
36requests occurring simultaneously with a high frequency
37may indicate a collective anomaly.
38The detection of collective anomalies is challenging,
39because their anomalous states are revealed by each indi-
40vidual event on the objects (known as point anomalies), and
41heavily dependent on the relationship among the events.
42The combination of low-risk events with their relationships
43leads to an explosion of potential states to examine for
44anomaly detection algorithms. To overcome this data prolif-
45eration, most techniques on the collective anomaly detection
46focus on a single type of relationship among events, such as
47sequential [3], spatial [4], or graph relationship [5]. For each
48type of relationship, specific feature extraction algorithms
49are designed to reduce the event data and their relation-
50ships into a vector of features within a given feature space.
51The point anomaly detection algorithms are then applied to
52discover the collective anomalies from the extracted feature
53vector. Therefore, these techniques are often limited to a sin-
54gle type of data and application.
55On the other hand, visualizations have been widely
56developed for the purposes of anomaly detection, e.g., the
57correlation graph for agnostic anomaly detection in wireless
58sensor networks [6], [7], or spatiotemporal [8] and informa-
59tion diffusion anomaly visualization [9] over social media.
60These approaches, either directly visualize the raw dataset
61and do not scale to the big data, or are specially designed
62for a certain domain and do not generalize to solve the
63common problem of collective anomaly detection.
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64 In this paper, we study the problem of designing a
65 collective anomaly detection technique to achieve three key
66 objectives. First, to adapt to the versatility of the collective
67 anomalies, the technique should bring users into the loop to
68 combine the power of automatic computation and human
69 analytics. This is conducted to detect the previously unknown
70 collective anomalies. Second, the technique should scale to
71 analyze the dataset with a huge volume and a variety of data
72 types, e.g., time series, sequential, and spatial data. Third, the
73 technique should be generic enough to detect the collective
74 anomalies in different application domains and be able to
75 incorporate the prior domain knowledge from the normal
76 and abnormal datamodels.
77 Motivated by this problem, we propose the novel concept
78 of the faceted High-Order Correlation Graph (HOCG), in which
79 anomalous events detected from the behavior of individual
80 objects at multiple facets are modeled as nodes, while their
81 high-order correlations are modeled as edges. Essentially,
82 HOCG is defined at the multivariate-event level, in compari-
83 son to the lower-order correlation graph [6], which is defined
84 over univariate data variables. There are several advantages
85 to detecting the collective anomalies that fulfill the design
86 objectives. The first is interactivity. The HOCG is fully custom-
87 izable by users and provides the flexibility to analyze data
88 objects and their relationships for an unknown collective
89 anomaly. The second is scalability. Through graph simplifica-
90 tion and object-centric abstraction techniques, large HOCGs
91 can be greatly reduced in the overview visualization, while
92 allowing access to spatial, temporal, and anomaly details
93 upon user interactions. The third is generality. The construc-
94 tion of HOCG follows an analytics framework that can be
95 generalized to different domains and data types, while incor-
96 porating the user’s knowledge through domain-specific
97 anomaly detection algorithms and configurations.
98 The contributions of this work can be summarized as
99 follows.

100 � We formally define HOCG in a domain and data type
101 independent manner. A flexible framework is pro-
102 posed to construct the HOCG by integrating point
103 anomaly detection, multimodal correlation analyses,
104 and anomaly propagation algorithms.
105 � We design novel metaphors to visualize the HOCG
106 concept, and a visual analytics system to display large
107 HOCGs through visual abstraction. The system pro-
108 vides several interaction models to validate the indi-
109 vidual point anomalies, visually detect the collective
110 anomalies, and conduct a root cause and dynamic
111 analysis for the containment actions.
112 � The proposed HOCG framework and the visual ana-
113 lytics system are evaluated through three case studies
114 in the facility monitoring, intrusion detection, and
115 software analysis domains. The case study results and
116 the feedback from the domain experts demonstrates
117 the effectiveness of the system in the visual reasoning
118 of the collective anomalies.
119 Note that this is an extended version of the conference
120 paper published in PacificVis’18 [10].We improve the original
121 work by augmenting the HOCG concept with facets and
122 proposing an enhanced metaphor design to support the scal-
123 able visualization. The other changes in the visual analytics

124framework, the anomaly detection algorithms, and the evalu-
125ation can be found in themain body of this paper.

1262 RELATED WORK

1272.1 Anomaly Detection Algorithms

128Anomaly detection has been extensively studied in the past
129decade.We refer readers to the following surveys [1], [2], [11],
130[12], [13] for a thorough understanding of this area. Many
131types of anomaly detection algorithms have been proposed,
132including classification-based [14], nearest-neighbor-based
133[15], clustering-based [16], statistics-based [17], graph-based
134[18], [19], and information-theoretic techniques [20].
135Among this literature, the most related works to ours are
136the anomaly detection techniques on sensor networks which
137also depend on the underlying graph structure. These tech-
138niques can be further classified into prior-knowledge based
139approaches [21], [22] and prior-knowledge free approaches
140[23], [24], [25]. The prior-knowledge based approaches
141require assumptions or experience to provide a normal pro-
142file for the anomaly detection. Liu et al. [22] assumed that
143the Mahalanobis squared distances between the attributes
144of a sensor network follow a chi-squared distribution. In
145contrast, the prior-knowledge free approaches usually con-
146struct the normal profile through the training process.
147Khanna et al. [24] applied a genetic algorithm to measure
148the fitness of network nodes.
149Compared with the existing approaches, the point anom-
150aly detection method in this work adopts a hybrid strategy.
151It can take a normal profile for a higher detection accuracy.
152It can also be prior-knowledge free when the normal profile
153is unavailable and the anomalies are rare. In the meanwhile,
154our collective anomaly detection method relies on human
155intervention through visual analytics, which does not fall
156into the algorithm-centric category.

1572.2 Visual Analytics for Anomaly Detection

158The visual analytics techniques for anomaly detection have
159gained increasing attention in the visualization community.
160On cybersecurity, Fischer et al. [26] visualized attacks on
161a large-scale network by mapping the monitored network
162as a treemap and the attacking host as an isolated node.
163They did not provide a way to identify the anomalous
164events but instead relied on an external intrusion detection
165system. Teoh et al. [27] applied a statistical model to detect
166anomalies in the Border Gateway Protocol. The anomaly of
167each event is visualized by line graphs and a series of circles
168indicating the time and signature of the event.
169On sensor networks, Shi et al. [7] proposed multiple
170designs to visualize and analyze their anomalies to allow the
171different aspects of data to be investigated. The temporal
172expansion model graph displays the network as a directed
173tree. The correlation graph visualizes the correlations among
174the attributes. And the dimension projection graph maps the
175sensor nodes to a scatterplot. Liao et al. [28] further extended
176this work to consider the membership changes of the node
177communities, so that anomaly detection is less sensitive to the
178activity of each individual node.
179On geospatial intelligence, Liao et al. [29] developed
180GPSva, a visual analytic system to study anomalies in GPS
181streaming traces. The anomalies are detected using the
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182 conditional random field and visualized on a map. Thom
183 et al. [8] detected and visualized spatiotemporal anomalies
184 based on geo-located twitter messages. A cluster analysis is
185 used to distinguish the global and local messages. The
186 aggregated messages are then visualized as the term clouds
187 on a geographic map.
188 On social media, Zhao et al. [9] developed #FluxFlow to
189 visually analyze anomalies in the information diffusion
190 over social media. The anomalous retweeting threads are
191 detected using an one-class conditional random field model.
192 The users involved in the anomalous threads are visualized
193 as circles inside a streamgraph. Coordinated multiple views
194 are designed to allow anomaly detection in both the over-
195 view and the detail.
196 On finance, aka the fraud detection, the visual analytics
197 systems such as WireVis [30] and EVA [31] were developed.
198 They combine multiple coordinated views to illustrate the
199 complex and time-varying behavior of large-scale transac-
200 tions in financial institutions. The objective is to discover the
201 fraudulent events such as the money laundering and the
202 unauthorized transaction. In the VISFAN [32] and TAXNET
203 [33] systems, the financial reports and/or records, e.g., the
204 transactions and the shareholdings, are synthesized to build
205 the financial activity network. The network visualization tech-
206 niques are integrated with the graph clustering and pattern
207 matching algorithms to identify the financial crimes and
208 suspicious activities such as the tax evasion.
209 Among this literature, the correlation graph proposed in
210 Ref. [7] is the closest to ours. However, the correlation graph
211 only considers one sensor node and one type of relation-
212 ship. Our approach scales to analyze the interactions among
213 multiple types of nodes and their multimodal relationships
214 by visually synthesizing all of the information in a single
215 high-order correlation graph. Therefore, our method is
216 more suitable to apply to analyze the collective anomaly in
217 a sophisticated context.
218 Meanwhile, the visualization methods for the multivariate
219 and dynamic graphs [34], [35] are also related to our work.
220 The difference is, the attributes displayed on the nodes/links
221 of HOCG represent the suspicious events happened on the
222 nodes and the correlation among these events. This is
223 designed for the task of anomaly detection. In comparison,
224 the generic multivariate/dynamic graph visualizations dis-
225 play the first-order attributes and relationships of the graph
226 nodes. The work by Wang and Mueller [36] also studied the
227 graph-based visual analytics method to discover causalities
228 from data. Again, their approach constructs the causality
229 graph from the subdivided raw data, which is not used to
230 detect the relationship of the point anomalies hidden in the
231 raw data.

232 3 PROBLEM

233 3.1 Definition and Requirement Analysis

234 We consider a group of objects (e.g., facilities, persons, com-
235 puters), whose behaviors are captured by a set of event data
236 (e.g., sensor readings of a facility, movements of a person, net-
237 work traffic of a computer). The events are interconnected by
238 multimodal relationships (e.g., the spatial/temporal closeness
239 between sensors, the role similarity between persons, the net-
240 work traffic between computers).

241Each single event on an object is represented by a 5-tuple:
242{object, facet, space, time, measured value} (refer to the nota-
243tions in Section 4.1). Normally, the number of such events is
244huge as the objects are oftenmeasured on a real-time, continu-
245ous basis. This provides an opportunity to detect abnormal
246events, i.e., on which facet the object behaves anomalously,
247when, where, and how, by comparing the extracted suspi-
248cious events with a large number of normal events of this and
249other objects. Two levels of anomalies are considered: the
250traditional point anomalies and the collective anomalies. The
251point anomalies are defined by the abnormal events on a
252single object-facet pair. The collective anomalies are character-
253ized by synthesizing the point anomalies on multiple object-
254facet pairs having interrelated events. In this work, we focus
255on the analysis of collective anomalies, for which the event on
256a single object-facet pair may not be highly anomalous by
257itself, but several interrelated low-risk events occurring
258together on multiple object-facet pairs can raise the anomaly
259level and become noteworthy.
260Ourwork aims tomeet the following requirements in visu-
261ally detecting, analyzing, and reasoning about the collective
262anomalies.
263R1. Rate individual events. Instead of classifying each
264event as a point anomaly or not, for the detection of the
265collective anomaly, there should be an anomaly score calcu-
266lated on each event to indicate how anomalous the event is.
267The anomaly score serves two purposes: it allows us to
268identify the moderately anomalous events, which poten-
269tially composes the collective anomaly; it also provides a
270criterion for users to rank and filter the anomalous events
271independent of the data type.
272R2. Understand relationships among events. Given that the
273collective anomaly is composed of multiple interrelated
274events, it becomes critical to answer the question of whether
275the two events are related to each other or not. We should
276analyze the correlation between these two events, e.g., their
277spatial/temporal/facet closeness, the underlying objects’
278intrinsic relationship, and the historical interaction among
279the objects.
280R3. Detect and interpret collective anomalies. Knowing the
281anomaly scores of individual events and their relationships,
282the final and most important problem of this work becomes
283determining how to visually detect the collective anomalies
284and further interpret them. In this paper, we consider two
285types of collective anomalies. The first is composed of a
286group of strongly interrelated events that are moderately
287anomalous. The second is composed of a few highly anoma-
288lous events and the other less anomalous events that are
289tightly connected to these strong anomalies. The former
290type identifies the hidden collective anomalies that cannot
291be discovered by the point anomaly detection algorithm
292alone, while the latter type enables the root cause analysis
293after the anomaly detection. A unified design should be
294proposed to represent these two anomaly types simulta-
295neously, and resolve the scalability issue as the number of
296events is huge.

2973.2 User Tasks

298After fulfilling the above requirements, our visual analytics
299system can support several key user tasks in analyzing col-
300lective anomalies. Below we characterize these tasks in the
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302 types of objects are considered: facilities and employees. To
303 monitor the facility, multiple types of sensors are deployed.
304 On the other hand, the behavior of the employees is cap-
305 tured by their measured locations.
306 T1. Overview. Two overview tasks should be supported.
307 The first level is the overview of the anomalous events over
308 time. This helps to answer the question of when the status of
309 the facilities or themovement of the employees exhibits suspi-
310 cious behaviors? With this overview visualization, users can
311 quickly narrowdown to a specific time period for exploration.
312 The second level is the overview of all point anomalies within
313 a selected time period. This helps to answer the questions of
314 which event has the highest anomaly score, which object has
315 the longest period of an anomalous event, and what is the
316 relationship among all point anomalies? These overview tasks
317 depend on satisfyingR1 andR2.
318 T2. Validation of point anomalies. Once the potential anom-
319 alous events are detected in the overview, the users need to
320 validate these anomalies by comparing them with the nor-
321 mal data. For example, to evaluate an abnormal reading of a
322 sensor, the system should present all the related normal
323 readings, as well as their spatial and temporal context.
324 Based on the visual comparison, users can make a better
325 judgment about the degree of the anomaly by incorporating
326 their domain knowledge. This helps to reinforce R1.
327 T3. Visualization of relationships among point anomalies.
328 Given all the point anomalies, users should be able to per-
329 ceive their relationships. At the object level, they need to
330 determine the associated events with the object. At the
331 event level, they need to determine the interrelated events.
332 For example, to reason about the abnormal reading of a
333 sensor, it is helpful for users to understand which facility
334 and/or employee contributes to this anomaly. The interre-
335 lated point anomalies provide a visual hint for users to fur-
336 ther identify the collective anomaly. This task is based on
337 meeting R2.
338 T4. Interactive root cause analysis of collective anomalies.
339 Users should be allowed to zoom and filter point anomalies,
340 and their relationships, to identify the related point anoma-
341 lies for the composition of the collective anomalies. To
342 reveal the less anomalous events which connect to a few
343 highly anomalous events, the anomaly scores could be
344 propagated among the graph of the events. For example,
345 when an employee performs a deliberate harmful action,
346 s/he is likely to disguise herself/himself and behaves nor-
347 mally. To identify these anomalies, the technique should
348 help users to trace back to the detected significant anomalies
349 through the event relationship. This tasks mainly fulfills R3.

3504 HIGH-ORDER CORRELATION GRAPH

351In this section, we first introduce the concept of the High-
352Order Correlation Graph. Next, we provide an overview of
353the visual analytics framework over the HOCG to detect,
354analyze, and reason about collective anomalies. Finally, we
355detail each stage of the framework.

3564.1 Overview

357HOCG.HOCG is defined on a group of objects with multiple
358facets. The behavior of each object is captured by a set of event
359data over the studied time period. As shown in Table 1, each
360event is defined by a 5-tuple F ¼< o; c; s; t; v > . Here o
361denotes the associated object of the event (e.g., a zone/floor
362composed of building facilities, an employee of the company,
363a host computer in the network), c denotes the facet of the
364object on which the event is captured (e.g., a sensor of the
365zone/floor, a listening port/application of the host), s denotes
366the spatial location/region of the event, t denotes the time
367point/interval when the event happens, and v denotes the
368measured value(s) on < o; c > during time t. Each event is
369assigned an anomaly score aðFÞ ¼ A<o;c;s;t> ðvÞ by executing
370the point anomaly detection algorithm.
371Furthermore, the interrelation between the two events Fi

372and Fj, denoted as rðFi;FjÞ, is defined by their high-order
373correlation. To construct the high-order correlation, we con-
374sider four classes of single-type correlations. rSðsi; sjÞ
375denotes the spatial correlation (e.g., happened on the same
376floor), rT ðti; tjÞ denotes the temporal correlation (e.g., hap-
377pened in the same minute/hour), rCðci; cjÞ denotes the facet
378correlation (e.g., belonging to the same group of sensors),
379and rOðoi; ojÞ denotes the object-level correlation (e.g., hav-
380ing traffic flows between the two hosts). These correlations
381are combined by the fusing function rF ðrS; rT ; rC; rOÞ to
382compute the high-order correlation score.
383Finally, HOCG is defined as H ¼ ðV;EÞ. V denotes the
384set of nodes in which each node is an event made up of its
3855-tuple. E denotes the set of edges in which each edge repre-
386sents the high-order correlation between the events. In the
387real usage, HOCG is often studied within a user-specified
388time interval T, which is defined by the dynamic HOCG, i.e.,
389HðTÞ ¼ ðVðTÞ;EðTÞÞ. In another setting, HOCG is extended
390to include the events that are closely related to the existing
391highly anomalous events through the anomaly score propa-
392gation. The extendedHOCG is denoted asHþ ¼ ðVþ;EþÞ.
393Compared with the original concept of the correlation
394graph [7], HOCG is high-order in three aspects. First, each
395individual node of the HOCG is a multivariate event associ-
396ated with several contextual attributes, i.e., object, facet,
397space, and time of the event. This is far more comprehensive
398than using the single measured variable as a node in the
399original correlation graph. Second, the edge between the
400events is composed of multimodal correlations detected
401between the multivariate events, including their spatial,
402temporal, facet, and object-level correlations. In comparison,
403the edges of the original correlation graph only focus on
404the temporal correlation between the measured variables.
405Third, and most importantly, based on the node and edge
406definition, the HOCG detects the point anomaly on each
407single event by computing an anomaly score for each of
408them, and then connects the dots among point anomalies

TABLE 1
Notations Used in This Paper

SYMBOL DEFINITION

F ¼< o; c; s; t; v > An event defined by the 5-tuple
aðFÞ ¼ A<o;c;s;t> ðvÞ The anomaly score of an event
rðFi;FjÞ ¼ rF ðrS; rT ; rC; rOÞ The high-order correlation
Fðoi;TÞ The events related to oi in T
H ¼ ðV;EÞ The high-order correlation graph
HðTÞ ¼ ðVðTÞ;EðTÞÞ Dynamic HOCG at time T
Hþ ¼ ðVþ;EþÞ The augmented HOCG
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410 multiple objects. On the other hand, the original correlation
411 graph detects anomalies from the relationship among the
412 measured variables on a single object. Thus, they are limited
413 to the analysis of point anomalies.
414 Visual Analytics Framework. As illustrated in Fig. 1, we pro-
415 pose a three-stage visual analytics framework to construct
416 and visualize the HOCG for the collective anomaly detection.
417 The raw input is the list of event data (Fig. 1a). In the first
418 stage, we apply the point anomaly detection algorithm on the
419 events at each facet of an object. Each event is assigned an
420 anomaly score, which is indicated by the darkness of the node
421 fill color in Fig. 1b. In the second stage, the correlations among
422 events are discovered, based on which the HOCG is con-
423 structed. Finally, the raw HOCG is abstracted in an object-
424 centric way for an efficient, compact visualization. The graph
425 simplification, based on time and anomaly score filtering, is
426 also supported to reduce the visual complexity. In addition,
427 the mechanism of the anomaly propagation is employed
428 to augment the object-level HOCG. This allows the users to
429 identify the hidden anomalies in the studied dataset.

430 4.2 Point Anomaly Detection

431 The point anomaly can be detected by comparing a single
432 data instance with the rest of the data. In our framework, the
433 point anomaly is detected on each event by comparing its
434 measured value with the other events on the same facet of an
435 object. For example, a sensor reading on one building floor is
436 considered anomalous if there have been few similar readings
437 measured on the same sensor and floor previously. There are
438 a number of established point anomaly detection algorithms
439 [1], e.g., the statistics-based, the classification-based, and the
440 nearest-neighbor-based algorithms. In theory, each of these
441 algorithms can be plugged into our framework to detect the
442 point anomalies. We will describe the two algorithms that
443 workwell with the scenarios in our case studies.
444 The input to each algorithm is the list of events on the
445 same facet of an object. We assume there is a set of events
446 known to be normal, or there is no such normal dataset, but
447 the portion of abnormal data is known to be very small. In
448 the latter case, we will use the entire dataset as the normal
449 dataset. The basic idea behind this is to develop a model
450 based on the normal data and estimate the probability for
451 each incoming event to deviate from the normal model. We
452 then translate this probability into a point anomaly score.
453 Two types of events are considered and analyzed using
454 separate models.
455 Events with Continuous Measures. The network traffic vol-
456 ume in the intrusion detection scenario and the measured
457 temperature in the facility monitoring scenario are both

458measured continuously. We apply the Gaussian Mixture
459Model (GMM) [37] to characterize the continuous normal
460event data, which has a probability density function by

P ðvjk;mm; ssÞ ¼
Xk
i¼1

wi � N ðvjmi; siÞ; (1)

462462

463where v denotes the value of the normal event, k is the number
464of Gaussian components,mm and ss are themeans and standard
465deviations, and wi is the weight of each component. The
466GMM model can be estimated by the Expectation Maximiza-
467tion (EM) algorithm [38]. The number of components can be
468determined by the Bayesian information criterion (BIC) [39]
469formodel selection.
470For each incoming event Fj with value vj, we introduce
471the Extreme Value Theory (EVT) [40] to compute the proba-
472bility for vj to deviate from the GMM model. The theory
473essentially estimates the probability for vj to be larger/
474smaller than the maximal/minimal value in all normal data
475instances. The details of the computation will be described
476in three steps.
477In the first step, the Gaussian component closest to vj in
478the GMM model is determined, which is denoted as the
479k�th component. Here the Mahalanobis distance measure is
480applied, in which the distance between vj and the k�th
481Gaussian component is computed by

hk� ðvjÞ ¼ jvj � mk� j
sk�

: (2) 483483

484

485In the second step, this distance is further normalized by
486the number of normal data instances belonging to the k�th
487Gaussian component, denoted asmk� .

ym ¼ hk�ðvjÞ � mm

sm
where (3) 489489

490

mm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnmk�

p
� ln lnmk� þ ln 2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnmk�

p ; sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnmk�

p
: (4)

492492

493

494In the third step, the probability for the measured value to
495deviate from the k�th Gaussian component is computed by

pðvj � max vjjvj � min vÞ ¼ e�e�ym
: (5) 497497

498

499In the final step, the anomaly score of the event is trans-
500lated from the probability by

aðFjÞ ¼ min
� lnð1� pÞ

G
; 1

� �
; (6)

502502

Fig. 1. The workflow of our visual analytics framework on collective anomalies.
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503 where G is the expected highest anomaly score for normali-
504 zation. Note that, the proposed method inherently extends
505 to support the event with multivariate values.
506 Events with Discrete Measures. The employee’s movement
507 data in the facility monitoring scenario takes on categorical
508 values, e.g., F3Z1,1 F3Z2, etc. Because these categorical values
509 are less related to each other than the continuous values, we
510 cannot use the GMM to characterize them. Instead, we intro-
511 duce a histogram based algorithm. In the facility scenario, the
512 event value vi denotes the location of employee oi at time
513 point ti. We compute a daily movement histogram for
514 employee oi in which each bin of the histogram indicates the
515 total time that the employee stays in the corresponding zone
516 on that day. To identify the anomaly score of the employee on
517 an incoming day, we compare the movement histogram of
518 the employee on the incoming day with two normal histo-
519 grams: 1) the average daily movement histogram of the
520 employee on all the days belonging to the normal data; and
521 2) the average dailymovement histogramof all the employees
522 in the same department on the same incoming day. Each
523 histogram can be represented by a discrete probability distri-
524 bution, i.e., P ðvÞ for the distribution on an incoming day to be
525 evaluated, AðvÞ for the average distribution in comparison.
526 The difference between the two histograms is measured by
527 the Kullback-Leibler divergence DKLðP k AÞ from AðvÞ to
528 P ðvÞ [41]. To capture the anomaly of each event, the KL diver-
529 gence is decomposed. The anomaly score of each event with
530 value vj is then computed by

aðFjÞ ¼ min
max log

pðvjÞ
aðvjÞ; 0

� �
G

; 1

0
@

1
A; (7)

532532

533 where pðvjÞ and aðvjÞ are the probabilities of the value vj in
534 the two distributions P ðvÞ and AðvÞ respectively, and G is
535 the maximum anomaly score for normalization. Only the
536 positive anomaly, i.e., pðvjÞ > aðvjÞ, is captured. The larger
537 anomaly score computed from the two comparisons is used
538 as the final score.

539 4.3 Correlation Analysis

540 The correlation between the 5-tuple event data is multimodal
541 in that all the object, facet, space, and time information of the
542 events may be related to each other. These correlations are
543 fused to form the high-order edges in theHOCG.
544 Spatial Correlation. The spatial correlation indicates the
545 closeness of the locations where the events occur. In the facil-
546 ity monitoring scenario, the spatial regions of a facility are
547 defined as three hierarchies, i.e., floors, zones of a floor, rooms
548 of a zone. The spatial correlation is calculated as the probabil-
549 ity of two events occurring in the same region. We apply
550 rS ¼ 1 for the two events occurring in the same room, rS ¼
551 proom=pzone for those events in the same zone, rS ¼ proom=pfloor
552 for those events on the same floor, and rS ¼ 0 for the events
553 that do not share regions at any level. Here proom, pzone, and
554 pfloor are the probabilities for the event being in a particular
555 room, zone, and floor, respectively. Users can incorporate
556 their domain knowledge to refine the spatial correlation. For
557 example, the correlation between an event in the server room

558and any other facility events can be set to at least 0.5, as all the
559facilities can be controlled in the server room.
560Temporal Correlation. The temporal correlation indicates the
561closeness of time in relation to when the events occur.
562Depending on the type of the object and its facet, we consider
563either the overlapping time period of the events or the differ-
564ence between their starting times. For events having a causal
565relationship, e.g., the setpoint of an air conditioner and the
566room temperature, their starting time difference, denoted as
567DT , ismore important. The correlation is formulated as

rT ¼
1; if DT � Tmin

Tmax�Tmin
Tmax�DT

� ��bT
; if Tmin < DT < Tmax

0; if DT � Tmax

8>><
>>:

; (8)

569569

570where Tmin and Tmax are the boundary parameters of DT ,
571beyond which the correlation is set to 1 and 0 respectively.
572bT > 0 is the exponent of the power-law decay between Tmin

573and Tmax.
574For parallel events, e.g., the movement of two employees,
575the length of the overlapping time period, denoted as To,
576is more useful to define the temporal closeness, which is
577formulated as

rT ¼
0; if To � Tmin

Tmax�Tmin
To�Tmin

� ��bT
; if Tmin < To < Tmax

1; if To � Tmax

8>><
>>:

; (9)

579579

580whereTmin, Tmax, bT are the set of parameters similar to Eq. (8).
581Facet Correlation. The facet correlation indicates the close-
582ness of the source of the events. In the facility monitoring
583scenario, this is determined by the hierarchy of the associ-
584ated object-facet category. The sensors of the facilities and
585the movement of the employees are the two categories at
586the highest hierarchy. The sensors are further divided into
587heating-related, air circulation-related, and power-related
588categories. The movements are grouped by the employee’s
589department. The events belonging to the same category at a
590lower hierarchy will be assigned a larger facet correlation
591score because they are closer to each other. The exact corre-
592lation score can be determined by the domain knowledge.
593Object Correlation. The object correlation indicates the
594intrinsic long-term relationship among the objects, in com-
595parison to the opportunistic spatial and temporal correla-
596tion between the short-term events. In separate scenarios,
597we consider two types of object correlation. The first type
598integrates the event data to capture the long-term object
599relationship. The second type leverages the external data to
600model the object relationship.
601In the facility monitoring scenario, we compute the object
602correlation between two employees, denoted by oi and oj,
603by their spatial co-occurrence in the history. Consider a
604time period T, this correlation is defined as the average spa-
605tial correlation weighted by the length of the overlapping
606event time period.

rOðoi; oj;TÞ ¼
1

T
�

X
Fa2Fðoi;TÞ;Fb2Fðoj;TÞ

rSðFa;FbÞkta \ tbk; (10)

6086081. For convenience, we denote zone i on floor j as F j Z i.
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609 where Fðoi;TÞ and Fðoj;TÞ are the sets of movement events
610 for oi and oj during T; Fa and Fb are the events in each set;
611 and ta and tb are their corresponding time periods respec-
612 tively. The object correlation between the sensor readings
613 are not used because this has been captured by the facet
614 correlation.
615 In the intrusion detection scenario, we compute the
616 object correlation of the two hosts by the average network
617 traffic between them. In the software analysis scenario, we
618 use the data flow between the line of codes as their object
619 correlation, which is the external source to the event data.
620 Fusing of Multimodal Correlations. Multiple fusing func-
621 tions are provided to allow users to focus on the different
622 aspects of the correlation. The uniform fusing is as follows:

rF ¼ rS þ rT þ rC þ rO; if rS 6¼ 0 and rT 6¼ 0
0; otherwise

�
; (11)

624624

625 which is the summation of the spatial, temporal, facet, and
626 object correlations when both the spatial and temporal
627 correlations are not zero. To emphasize the impact of time,
628 the time-critical fusing is defined as multiplying the uniform

629 fusing by the temporal correlation, i.e., rTF ¼ r
PT
T rF , where

PT is a user-defined parameter. Similarly, the space-critical,
object-critical, and facet-critical fusings can also be defined as

multiplying the uniform fusing result by the respective

correlations.

630 4.4 Abstraction of HOCG

631 The raw HOCG created by the point anomaly detection and
632 correlation analysis often suffers from an overwhelming
633 visual complexity. This is because the number of nodes
634 (events) and edges (correlation) could be extremely large.
635 Consequently, we introduce two methods to alleviate this
636 effect.
637 Graph Simplification. We provide a filtering scheme that
638 allows users to specify a time period T to generate a
639 dynamic HOCG (HðTÞ) that is smaller than the full-time
640 HOCG (H). The filtering starts from selecting the events
641 whose corresponding time falls into T, i.e., fFijti 2 Tg. To
642 allow users to focus on the anomalies, a threshold on the
643 anomaly score is selected; it is denoted by a0. The events
644 with higher (equal) anomaly scores than the threshold are
645 kept. The correlation analysis is only conducted between
646 these selected events. Similarly, a threshold of the fused
647 correlation score is specified, denoted by r0, so that only the
648 correlations stronger (equal) than the threshold are retained.
649 After the filtering process is conducted, the isolated events
650 on the HOCG will be removed.
651 Object-Centric Abstraction. After filtering the HOCG, the
652 remaining graph may still be large in size and complex in
653 structure. To provide users with a feasible HOCG overview
654 (T1 in Section 3.2), we propose to abstracting the graph by
655 the associated object of each event for visualization. This
656 involves several steps.
657 First, on each object-facet pair < oi; ci > , we retrieve the
658 list of related events fFjg after the time and anomaly filtering.
659 These events are merged together over time to form several
660 continuous anomaly intervals, as shown in Fig. 2a. The merg-
661 ing rule is conducted to combine every pair of consecutive
662 anomaly intervals if they are back to back on the timeline.

663To maintain consistency, we cut each interval at all the time
664points when the event’s measured value changes. The final
665anomaly intervals are denoted as fFkg. On each recon-
666structed anomaly interval, we compute its anomaly score by
667the function aðFkÞ over all the point anomaly scores of this
668interval. By default, we apply the max function to reveal the
669most notable anomaly

aðFkÞ ¼ max
Fj2Fk

ðaðF1Þ; . . . ;aðFjÞÞ: (12)
671671

672

673Second, the events for the same object are abstracted as a
674single object node. The associated events are organized by
675their facets on the object, sorted according to time, and visu-
676alized as the context of the node.
677Finally, we form the object-level edges by merging the
678event-level correlations. As depicted in Fig. 2b, the correla-
679tion between two events will be merged into the correlation
680between the anomaly intervals covering these events, then
681to the correlation between the associated objects. The max
682function is used to compute the object-level correlation
683from the low-level components.

6844.5 Anomaly Propagation

685To fulfill the requirement R3 in Section 3.1 and support the
686task T4 in Section 3.2, other anomalies that are not currently
687in the HOCG should also be considered: 1) the event with a
688low anomaly score, but closely related to many highly
689anomalous events, which is critical for the root cause analy-
690sis; and 2) multiple mildly anomalous events strongly corre-
691lated to each other, which could potentially be a collective
692anomaly. We introduce an anomaly propagation based
693method that can detect these hidden anomaly patterns.
694The basic idea is to propagate and re-distribute the anom-
695aly score over the HOCG so that the anomaly score of the
696events in the above cases could be raised higher than the
697threshold, and be displayed in the visualization. The key chal-
698lenge is that by default the unabstracted HOCG should be
699used as the input of the propagation, which can be extremely
700large at the event level. Moreover, computing the correlations
701among all these events leads to quadratic complexity. To
702tackle the challenges, we apply the anomaly propagation on
703the object-level HOCG after the abstraction. This object-level

Fig. 2. Merging of events and event correlations over time.
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704 HOCG is then augmented by adding the other objectswithout
705 any anomalies higher than the threshold. To avoid the full-
706 scale correlation analysis among the events, we use the object
707 correlation as the edge of the object-level HOCG.
708 The propagation starts from all the objects having their
709 anomaly scores above (equal) the threshold a0. They are
710 denoted as the anomalous node set Oa ¼ fojaðoÞ � a0g. The
711 algorithm of random walk with restart [42] is applied, which
712 computes a similarity between any two nodes in the graph,
713 denoted as wðoi; ojÞ between oi and oj. After the propagation,
714 each object oi having an anomaly score lower than the thresh-
715 old (aðoiÞ < a0) will be updated to a new anomaly score.

a�ðoiÞ ¼ aðoiÞ þ
X
oj2Oa

ðwðoi; ojÞ � aðojÞÞ 8oi =2 Oa: (13)

717717

718 In the augmented object-level HOCG, the objects with the new
719 anomaly score lower than the thresholdwill again be removed.

720 5 VISUALIZATION

721 We designed and implemented a web-based visualization
722 interface of the HOCG (Fig. 3). The interface is composed of
723 four coordinated views: 1) the correlation graph view
724 (Fig. 3c) that displays the HOCG structure for the static
725 anomaly analysis within a certain time window; 2) the over-
726 view+detail timeline selectors (Fig. 3a) that filter the HOCG
727 by the selected time window and enable the dynamic analy-
728 sis; 3) the event view (Fig. 3d) that shows the event time
729 series on interrelated object-facet pairs and helps to examine
730 the root cause of certain anomalies; and 4) the anomaly
731 detail view (Fig. 3e, 3f, 3g) that visually explains the source
732 of each point anomaly and its static/dynamic context.

733 5.1 Design Principles

734 We follow three principles in designing the interface, to
735 optimize the visual analysis process on collective anomalies:

736� From macro to micro: The central idea of this work is
737to detect, analyze and reason about the collective
738anomaly from a large amount of low-risk point
739anomalies. Therefore, it is important to present an
740overview map of the point anomalies first, so that
741users can zoom (on the time axis) and filter (by the
742anomaly and correlation scores) to access the details.
743Essentially this resembles Shneiderman’s visual
744information seeking mantra [43].
745� From static to dynamic: On analyzing the collective
746anomalies, both the static and dynamic patterns are
747critical. The static pattern reveals the relationship
748among the point anomalies. The dynamic pattern
749illustrates their formation and evolution over time.
750In fact, there is an inherent paradigm in the users’
751analysis process: we observe the static relationship
752first and then proceed to discover how it forms.
753Finally, we reason about why it develops. Based on
754this paradigm, the dynamic visualization is built
755over static views in fixed time windows.
756� Building the reasoning path: The ultimate goal of our
757work is to discover the root cause of a certain fatal
758anomaly or failure. This requires detecting a primary
759anomaly path from the fatal anomaly back to the
760potential root cause. The visualization is therefore
761designed to help complete this task. We introduce
762the interactions to manually inspect the point anom-
763alies and the path-based correlation to connect the
764dots among the verified point anomalies.

7655.2 Timeline Selector View

766Both point and collective anomalies evolve over time. In our
767interface, we propose an overview+detail design to filter the
768HOCG according to the selected time window. As illus-
769trated in the top row of Fig. 3a, a first overview chart is dis-
770played to represent the number of anomalous events over
771time. Users can obtain a full picture of what is happening

Fig. 3. The visualization interface of high-order correlation graph (HOCG): (a) double overview+detail timeline selectors; (b) visualization controller;
(c) correlation graph view; (d) the anomaly time series of individual nodes (objects); (e) visual interpretation of a selected point anomaly; (f) the data
value of the selected anomaly; (g) spatial detail view.
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773 tion window can be adjusted to specify the detailed time
774 window to examine.
775 In the bottom row of Fig. 3a, the detailed time window
776 selected in the top row is expanded. To conduct a finer-
777 grained time series analysis, users can choose a subset of
778 the currently selected time window. The HOCG in Fig. 3c
779 will be filtered to the nodes and edges on this subset of
780 time. This double filtering design allows for drilling-down
781 to very small time windows when some critical anomalies
782 occur intensively.

783 5.3 Correlation Graph View

784 The correlation graph view in the center (Fig. 3c) visualizes
785 HOCG as a node-link graph. Each node in the graph repre-
786 sents an object (a room/zone/floor of a facility, an employee
787 of a company, a line of code) onwhich at least one anomalous
788 event happens during the selected time window. Each edge
789 between the two nodes represents their relationship by the
790 multimodal correlation. We apply GraphViz [44] to compute
791 the layout of HOCG, which provides multiple algorithm
792 options, e.g., stressmajorization, hierarchical layout.
793 For each node, a multi-layered wedge-based metaphor is
794 designed to visualize the anomaly time series on this object.
795 As shown in Fig. 4a, 4b, the visual metaphor is composed of
796 an icon in the center, a filled ring surrounding the icon, and
797 multiple layered rings in the outermost section. Each layered
798 ring is further composed of several wedges arranged in a
799 circular layout. The icon in the center of the node represents
800 the object type. For example, the facility measured by sensors
801 is drawn as a camera icon, the employee is drawn as a people
802 icon, and the host is drawn as a computer icon. On the
803 surrounding ring, the darkness of the fill color indicates the
804 average anomaly score of the object in the selected time win-
805 dow. A larger anomaly score will be displayed in a darker
806 color. In the outermost layered rings, each ring is coloredwith
807 a different hue and represents a separate facet of the object,
808 e.g., the cooling/heating setpoint, the air temperature (also
809 shown in the legend of Fig. 3c). Each wedge of a layered ring
810 indicates a time interval having the same anomaly score on
811 the corresponding facet. The starting position of the wedge
812 indicates the beginning time of the interval within the selected
813 time window. The angle of the wedge indicates the length of
814 this anomalous time interval. Each layered ring corresponds
815 to the entire time window selected in Fig. 3a. In this way, we
816 can interpret the node as a clockwith the earliest timemapped
817 to 12 AM. The wedges are displayed on the clock to visualize

818the temporal distribution of the anomalies on each facet. The
819fill color darkness of each wedge indicates the anomaly score
820of the corresponding time interval, using the same color
821mapping as the inner ring.
822The default multi-layered metaphor design in Fig. 4b
823suffers from two drawbacks: 1) the node size will grow
824quadratically as the number of facets increases; and 2) it is
825difficult to perceive the dynamics of all the anomalies on
826the same object. To alleviate these drawbacks, we improve
827the design by folding the layered rings. As shown in Fig. 4a,
828starting from the second layer (yellow), each wedge of the
829ring will be collapsed towards the center of the node if it
830does not overlap with any wedge in the inner rings. By con-
831ducting this folding operation, each node will be displayed
832in a more compact manner, and the overall anomaly time
833series can be easily perceived. A side effect of this design
834lies in the inappropriate visualization of the per-facet anom-
835aly time series except for the first facet. We further intro-
836duce an interaction method, as the user clicks on one outer
837ring, this ring will be switched to the first inner layer so that
838its anomaly time series can be revealed.
839In our design process, we once considered the
840GrowthRingMap [45] as the node metaphor of HOCG. Each
841anomalous event is represented by a filled ring and is
842stacked on the central icon of the node in a radial order
843according to the event time. The color hue and darkness of
844the ring represent the time and anomaly score of the event
845respectively. This ring-based design is later discarded due
846to three limitations: 1) both the event time and the anomaly
847score are at least ordinal variables, which can not be simul-
848taneously displayed in the visual channel of color; 2) the
849design can not visualize the facet information of HOCG; 3)
850the size of the node grows indefinitely with the number of
851anomalies, leading to an unbalanced view with large varia-
852tions on the node size. The multi-layered wedge-based met-
853aphor in our final design applies the clockwise order to
854encode the time and stacks multiple facets in the radial
855order. The node size is bound by the limited number of
856facets and further reduced by the folding design.
857Meanwhile, the edges drawn in the solid line style indi-
858cate the high-order relationship computed in Section 4.3.
859The dashed edge indicates the extended relationship by the
860anomaly propagation in Section 4.5. The edge thickness
861indicates the fused correlation score. The edge direction is
862determined according to the anomalous time intervals
863of the two connecting nodes. By the visual abstraction in
864Section 4.4, the node with an earlier time interval will point
865to the other nodes with later time intervals, except for object
866correlations, where we use their inherent directions. As
867there are cases where two nodes have a bidirectional
868relationship, we draw curved edges to distinguish the edge
869directions.

8705.4 Event View

871On the correlation graph view (Fig. 3c), users can drill down
872to each node with a single click. The anomaly score time
873series of the corresponding object will be displayed as a row
874in the event view (Fig. 3d). Each row visualizes the anoma-
875lies that occurred on the object as stacked bar charts, where
876each stack corresponds to a facet of the object. To reason
877about the root cause of the anomalies, users can click on

Fig. 4. Themulti-layered wedge-based visual metaphor: (a) the node with
stacked wedges, where each colored layer corresponds to a facet of the
object, and each wedge in a layer corresponds to a time interval having
the same anomaly score on this facet; (b) the design without folding; (c)
hovering one wedge of an object, the correlated wedges on the other
objects will be highlighted.
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878 another node that correlates with the anomaly of the previ-
879 ous node. Additional rows are added to the bottom of the
880 view. Links are drawn between the two rows to indicate
881 their relationship, thus forming a reasoning path. When
882 users click on a new node unrelated to the existing reason-
883 ing path, another tab will be opened to illustrate a new path
884 for the root cause analysis.

885 5.5 Detail View

886 In the event view (Fig. 3d), users can drill down to examine
887 each point anomaly by selecting a time point on the anomaly
888 time series. The corresponding event is visualized in the detail
889 view on the right part of the interface (Fig. 3, 3e, 3f, 3g). Note
890 that for different data types, the detail viewwill have custom-
891 ized designs. For example, on the movement data, we depict
892 the histogram of the selected employee’s spatial distribution
893 in Fig. 3f, which is compared with the average employee’s
894 distributions in Fig. 3e for themodel explanation. The location
895 of the selected event is displayed in Fig. 3g.
896 On the sensor data analyzed in the first case study
897 (Section 6.1), the detail view will illustrate all the events on
898 the selected time point. On each event, a line chart in blue is
899 drawn to represent the GMM model of the normal profile
900 (Fig. 6c, 6d, 6e). The measured value of the selected event
901 will be drawn in red on the line chart. This design visually
902 interprets our point anomaly detection algorithm by show-
903 ing how the event deviates from the normal profile, i.e., as
904 an outlier of the model. The measured values surrounding
905 all the selected events are displayed below the chart views
906 as time series (Fig. 6f), which enables the user to drill-down
907 to the level of the raw data.

908 5.6 Interaction

909 In terms of interaction,HOCG supports basic network visuali-
910 zation interactions, including zoom&pan, node drag&drop,
911 and neighborhood highlights, etc. When users select one
912 wedge with a mouse hover action in Fig. 3c, this wedge and
913 all the other wedges having a direct correlation in the event
914 level will be highlighted, as shown in Fig. 4c.
915 In addition, we introduce three advanced interactions for
916 the visual analysis of collective anomalies. The first is the

917network-based HOCG filtering. The original HOCG can
918have a huge amount of nodes/edges, whose visual com-
919plexity hampers the analysis. As shown in Fig. 3b, we build
920node and edge filters that allow users to access point anom-
921alies and correlations above certain anomaly and correlation
922thresholds. Note that the filters are arranged by the node
923type (e.g., employee, facility) and edge type (e.g., mhFilter
924indicates the edges between employees and facilities). The
925other two interactions are the time-based filtering for the
926dynamic anomaly analysis and the node/edge detail access-
927ing for the root cause analysis, which have been introduced
928in Sections 5.2 and 5.5 respectively.

9296 CASE STUDIES

9306.1 Facility Monitoring

931We first consider the facility monitoring scenario released
932by IEEE VAST Challenge 2016 (VC16) [46]. The VC16 data-
933set contains two weeks of operation data for a company’s
934three-floor building. Each floor is divided into multiple
935zones. Two types of monitoring data are collected: the heat-
936ing, ventilation, and air conditioning (HVAC) data for each
937zone; and the movement data for each employee in the com-
938pany. The HVAC data was generated every five minutes by
939fixed sensors, which record the environmental conditions,
940such as the temperature, the concentration level of the
941carbon dioxide and other chemicals, and the heating and
942cooling system statuses, such as temperature set points and
943damper positions. The movement data records the locations
944of the employees who were required to carry a proximity
945card. The proximity card readers in each zone would record
946the proximity card ID, time, and the zone being entered,
947when a card moved from one zone to another. During the
948time of the provided dataset, suspicious activities were con-
949ducted in the building. Detecting, analyzing, and reasoning
950about these activities is the major task of the challenge.
951We apply HOCG to tackle the VC16 challenge, where the
952mapping from data to HOCG has previously been intro-
953duced. In the analysis, we first investigate the suspicious
954employees over the entire two weeks. We filter the HOCG
955to remove all the HVAC anomalies and only show the

Fig. 5. The HOCG containing suspicious company employees and their anomalous events during the entire two weeks: (a) the correlation graph
view; (b) the event timeline of PYoung1; (c) the detailed explanation of PYoung1’s anomaly on June 8.
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956 employees with moderately high anomaly scores (� 0:4). We
957 also enable the propagation of anomaly scores on the graph to
958 identify the hidden anomalies of employees. The resulting
959 correlation graph is shown in Fig. 5a. The graph illustrates
960 that three employees (i.e., RMieshaber1, MBramar1, and
961 PYoung1) have more connections than the others. By investi-
962 gating the anomaly details for the three employees, we dis-
963 cover that PYoung1 is especially suspicious for three primary
964 reasons. First, his anomaly score time series presents a signifi-
965 cantly higher spike on June 2 (Fig. 5b), which is not found for
966 the other two employees. Second, his anomalous events on
967 June 8 and 10 last for almost the entire day (Fig. 5b). Third,
968 there is another employee PYoung2 connected to PYoung1 by
969 propagation (Fig. 5a), due to their high facet correlation. This
970 indicates that two active cards for the employee “PYoung”
971 exist at the same time, which is highly suspicious. By selecting
972 June 8 for a detailed exploration, the histogram of PYoung1’s
973 movement on June 8 is compared to the histogram of all the
974 other employees from the same department and the histo-
975 gramof his ownmovement on other days (Fig. 5c). The behav-
976 ior of PYoung1 is suspicious as he mostly stayed in one zone
977 (F2Z7) for the entire day. This is a zone that he only visited
978 a few times during the other days.
979 We then study the anomalous HVAC events. Due to the
980 large number of HVAC anomalies, we apply an anomaly
981 score threshold of 0.8 so that only the highly suspicious
982 HVAC anomalies are shown. The corresponding HOCG
983 visualization is given in Fig. 6a for the entire two weeks.
984 Multiple types of HVAC anomalies are present. The most
985 frequent HAVC anomalies are temperature-related, i.e., cool-
986 ing/heating set points and thermostat temperature. Among
987 the building zones, F3Z1, which is the CEO’s office, has the
988 highest number of anomalies (the center of Fig. 6a). To better
989 understand the details of these anomalies, we click on the
990 node of F3Z1 to retrieve its event timeline (Fig. 6b). Then we
991 select a typical time of 12:55 PM, June 2 on F3Z1 to access
992 the explanation for the anomaly. The detail views in Fig. 6, 6c,
993 6d, 6e show that all the three temperature-related anomalies
994 have their sensor readings largely deviated from the GMM
995 model of the normal profile. By looking at the raw sensor
996 readings (Fig. 6f), it is revealed that both cooling/heating
997 set points were turned up, from 10/7�C to 35/32�C at

99813:00 PM. The zone temperature followed accordingly. By
999a similar analysis on F3Z1, we conclude that someone was
1000altering the HVAC setting of the CEO’s office repeatedly,
1001which poses a big security threat to the company.
1002After identifying the suspicious employees and HVAC
1003events, it is hypothesized that these two types of anomalies
1004are potentially interlinked. We start to validate this hypothe-
1005sis by investigating each individual event. We first pick the
1006day of June 2 for exploration, when the highest anomaly score
1007is found for PYoung1. We display both the employee’s move-
1008ment events and the building sensor’s HVAC events to reveal
1009their correlations. The resultingHOCGvisualization is shown
1010in Fig. 3c. It is observed that PYoung1 is at the center of the
1011graph leading to most of the HVAC anomalies including
1012those at F3Z1, and his anomaly score also propagates to five
1013highly related employees. We then form the reasoning path
1014from PYoung1 to F3Z1. In Fig. 3d, the event timeline view
1015shows that after a short appearance of PYoung1’s anomalous
1016activity, a new series of anomalies happened at F3Z1 on both
1017the cooling/heating set points, temperature, and coil power.
1018Fig. 3g also indicates that PYoung1’s anomalous activity hap-
1019pened at F3Z7, theHVAC control room,where theHVAC set-
1020ting of all zones can be configured. A further investigation on
1021the entire anomaly timeline of PYoung1 (Fig. 7a) reveals that
1022all the highly anomalous events of PYoung1 occurred at F3Z7,
1023where he potentially overwrote the HVAC setting of the
1024building zones.
1025We then analyze the relationship of PYoung1 with the
1026other five employees detected through propagation. The larg-
1027est correlation happens between PYoung1 and PYoung2, as
1028indicated by the thickness/label of the edge between them
1029(Fig. 3c). This is simply because the two cards belong to the

Fig. 6. The HOCG containing HVAC anomalies during the entire two weeks: (a) the correlation graph view; (b) the event time series at F3Z1; (c)(d)(e)
the detailed explanation of selected anomalies at F3Z1; (f) the raw sensor readings of the selected anomalies.

Fig. 7. The anomalous event time series over the entire two weeks: (a)
PYoung1 and PYoung2; (b) PYoung1 and LBennett1.
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1030 same employee. The second largest correlation is found
1031 between PYoung1 and LBennett1, with a correlation much
1032 higher than the other employees. In Fig. 7a, we find that
1033 PYoung1 andPYoung2 donot exhibit any spatiotemporal cor-
1034 relation during the entire two weeks. Nevertheless, in Fig. 7b,
1035 we discover that almost every appearance of PYoung1
1036 at F3Z7 with a high anomaly score is accompanied by
1037 LBennett1. In addition, Fig. 5c shows that PYoung1 spent
1038 almost the entire day of June 8 and 10 in F2Z7, where
1039 LBennett1’s office is located. These findings suggest that
1040 PYoung1 is closely related to LBennett1. According to the
1041 challenge dataset, PYoung (Patrick Young) and LBennett
1042 (Loretta Bennett) both work in the facility department of the
1043 company. PYoung is LBennett’s manager and has the privi-
1044 lege of visiting the HVAC control room (F3Z7). By summariz-
1045 ing the discoveries, we conclude that themajor security threat
1046 to the company lies in the frequently overwritten HVAC
1047 settings, especially for the CEO’s office. The direct suspect is
1048 identified as PYoung whose visitation to the control room
1049 highly correlates with the HVAC anomalies. It is possible that
1050 he may use two proximity cards to disguise his suspicious
1051 behavior. In the meanwhile, PYoung has one team member
1052 namely LBennett; theymay plan all their activities together.

1053 6.2 Intrusion Detection

1054 We apply HOCG on a typical network intrusion detection
1055 dataset: CTU-13 [47]. The dataset is composed of large-scale
1056 botnet traffic mixed with normal traffic and background traf-
1057 fic. The botnet traffic is generated by executing real-world
1058 malware on the selected hosts of the network (i.e., bots). These
1059 hosts use several protocols to perform malicious actions
1060 (e.g., port scan, click fraud, email spamming). The dataset
1061 considered here contains 90 M packets out of 1.3 M flows
1062 from 20 k hosts, with a duration time of 5 hours. The original
1063 packet data has been translated into the list of directional
1064 flows between the hosts as the rawdata of our system.
1065 The primary objective of the CTU-13 scenario is to better
1066 understand the malware-based intrusion detection in typical
1067 networking environments. The design goal of HOCG fits this
1068 objective well in relation to analyzing malware anomalies.

1069In the application, each host computer with a standalone IP
1070address ismodeled as an object (i.e., node) inHOCG. The pro-
1071tocol that transfers network traffic on this host at a particular
1072(set of) port(s) is considered as a facet of the object, e.g.,
1073TCP:21, UDP:161, IRC:6667. The network traffic to/from each
1074host using a particular protocol:port is considered as events
1075that occurred on this object-facet pair. To reduce the number
1076of events for a scalable analysis, we aggregate all the events
1077into fixed time bins (one minute each in this study), so that
1078each object-facet pair will have only one event in each time
1079bin. For each event, several statistics in the corresponding
1080time bin are computed as the values of the event. These statis-
1081tics include the number of active flows, the number of con-
1082nected hosts, the average number of active flows with each
1083host, the size of the transmitted traffic in bytes, and the aver-
1084age duration of the active flows. The point anomaly detection
1085algorithm in Section 4.2 is applied to each statistic of the event.
1086The highest anomaly score is used as the anomaly score of the
1087event. The dataset in an early time period, when the malware
1088is not executed, is used as the normal data to build the model.
1089Among the events, we treat the directional traffic flows
1090between the hosts using the corresponding protocol:port as
1091their correlations (edges). In other words, only the object cor-
1092relation is used. The spatial/temporal/facet correlations are
1093not considered because the network flows already represent
1094the spatial/temporal/facet affinity between the hosts.
1095The initial HOCG visualization on the whole CTU-13 data-
1096set illustrates a large network consisting of 2976 anomalies
1097detected during the 5-hour time period. This indicates the
1098complex behavior of the studied malware. The anomaly time
1099series in Fig. 8a can be divided into two bursty periods. To
1100examine the first period, we switch to an anomaly threshold
1101of 0.5 to analyze the most significant anomalies and select the
1102two largest spikes from 12:15 PM to 12:35 PM. The correlation
1103graph view then displays a star-like topology in its largest
1104connected component, as shown in Fig. 8b. The node in
1105the center represents the host of 147.32.96.69 (96.69 in short
1106if the IP prefix is repeated). The 10 surrounding nodes
1107represent the hosts of 84.165, 84.191 	 193, and 84.204 	 209.
1108These 10 hosts share similarly shaped wedges on the ICMP

Fig. 8. The HOCG visualization of the CTU-13 dataset. The two largest anomaly spikes from 12:15 PM to 12:35 PM are selected.
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1109 protocol (red wedges), mostly composed of two continuous
1110 anomalous time periods. These two time periods also corre-
1111 spond to the anomaly pattern in the central host. Most of the
1112 network traffic is sent to the central host (96.69). Therefore,
1113 it is highly suspected to be a coordinated attack from the
1114 10 internal hosts (bots) to the central host (server).
1115 We validate this hypothesis by drilling down to the details
1116 of each host. As shown in Fig. 8c, the ICMP anomalies on the
1117 central host and one of the internal host are aligned in the
1118 timeline. There are network flows between them in most of
1119 the anomalous time periods. Furthermore, we click on one
1120 time point of the central host, i.e., the minute of 12:31 PM, to
1121 retrieve the visual explanation of the corresponding anomaly.
1122 Fig. 8d reveals that the number of flows (NF) on the central
1123 host during this minute (99, the red dot) deviates largely from
1124 the GMMmodel built from the normal data. In the timeline of
1125 Fig. 8e, there is also a spike on the NF measure starting from
1126 this minute. By clicking on one of the internal hosts in the
1127 following minute (Fig. 8c), we discover a similar deviation
1128 and spike on the average number of flows per host (ANF),
1129 which accounts for the root cause of the anomaly in the central
1130 host. All the following three minutes share the same pattern,
1131 i.e., a high NF in the central host and a high ANF in the inter-
1132 nal hosts. Finally, the directional flows, as the raw data in the
1133 selected minute, are displayed in Fig. 8f, which lists a large
1134 number of flows of a small size, initiated at 12:31 PM (e.g.,
1135 1 KB). This finding confirms our hypothesis on the DDOS
1136 attack from the internal hosts to the central host using short-
1137 lived ICMPpings.
1138 In another trial, we analyze the second anomalous time
1139 period by selecting 2 	 3 PM on the interface (Fig. 9a). The
1140 HOCG view, as shown in Fig. 9b, reveals a three-layered
1141 structure after applying the hierarchical layout algorithm.
1142 In the central layer, the 10 internal hosts (bots) again exhibit
1143 similar anomaly patterns. Different from the first analysis
1144 trail, the anomalous events now come from three different
1145 facets (protocols:ports) of the objects: ICMP, UDP:161, and
1146 IRC:6667. These internal hosts connect to the same host of
1147 96.69 in the bottom layer, which behaves anomalously in the

1148ICMP and UDP protocol during the similar time periods.
1149Drilling down to the detailed anomaly timeline in Fig. 9c, the
1150ICMP anomalies are found to be the same type of DDOS
1151attack as in the first analysis trail. To better understand the
1152UDP anomalies, we select the minute of 14:15 PM. The visual
1153explanation in Fig. 9, 9d, 9e reveals that the UDP anomalies
1154co-occur with the spikes on the size of the transmitted traffic
1155(NB). These spikes align well with the UDP anomaly time
1156series on the host of 96.69 (the first row of Fig. 9c). This pattern
1157suggests a UDP-based DDOS attack from internal hosts to
115896.69. Different from the ICMP DDOS, the UDP attackers
1159send a much larger volume of traffic to the victim. This can be
1160found in the list of flows in Fig. 9f, where a UDP flow as large
1161as 5.4MB in size is initiated.
1162In the meanwhile, there are 9 external hosts (not in the
1163subnet of 147.32) in the top layer of Fig. 9b. Each external host
1164communicates with 1 	 3 internal bots and has the same
1165anomaly timeline on the IRC protocol as the connected bots.
1166The IRC protocol is notorious as the communication channel
1167between the command-and-control server (C&C) and the
1168bots. Hence, these external hosts are highly susceptible to be
1169the C&C servers. To validate our hypothesis, we drill down to
1170the detail view and find that the anomaly is caused by an
1171extraordinarily long connection time on the IRC protocol,
1172when compared with the normal behavior. The C&C server
1173would take this long time to issue the next batch of commands
1174to the connecting bots. Therefore, the detected collective
1175anomaly can be concluded as the ICMP/UDP DDOS attack
1176on a single server frommultiple internal bots which are coor-
1177dinated by external C&C servers.

11786.3 Software Analysis

1179In another case, we deploy the HOCG to detect the collective
1180anomalies in a runtime execution of software which is known
1181to have certain security vulnerabilities. The raw data are from
1182the monitoring of such runtime executions. Each line of data
1183corresponds to an execution of one line of code in assembly
1184language with the following attributes: “id” is the execution
1185sequence; “eip_addr” is the address of this line of code;

Fig. 9. The HOCG visualization of the CTU-13 dataset. The last hour (14 	 15 PM) is selected for analysis.

YAN ET AL.: VISUAL ANALYSIS OF COLLECTIVE ANOMALIES USING FACETED HIGH-ORDER CORRELATION GRAPHS 13



IEE
E P

ro
of1186 “op_vals” are the operator values; and “src_ids” and

1187 “dst_ids” are the executions affecting, or affected by, this
1188 execution.
1189 For this dataset, we construct HOCG by treating each line
1190 of code as a node, each execution of the code as an event,
1191 and the data flow between executions as the correlation
1192 link. The point anomaly on the events is detected by the
1193 algorithm in Section 4.2. The same software is executed
1194 twice. During the first execution, no compromise of the
1195 security vulnerability is conducted and the execution data
1196 are used as the normal profile. During the second execution,
1197 the software vulnerability is triggered and the execution
1198 data are used to construct the HOCG.
1199 The initial overview of HOCG is shown as Fig. 10a. The
1200 entire dataset contains 6 million lines of executions. We
1201 load the last 400,000 lines, which are close to the crash point
1202 of the software. We first examine the overview panel in
1203 the top row of Fig. 10a. It is clear that there is a surge in the
1204 number of point anomalies close to the final crash point. We
1205 then select a small time window (about 8000 cycles) to
1206 examine the context at the crash point. The HOCG at this
1207 window is visualized in the correlation graph view of
1208 Fig. 10a. In this graph, most anomalies are shown to have
1209 occurred very recently, as indicated by the last wedges on
1210 these nodes. Only the node representing the line of code at
1211 0x4011da (eip) behaves anomalously in a continuous man-
1212 ner, as indicated by a greater number of wedges on the
1213 node than that of the others (the highlighted node at the
1214 center of Fig. 10a). To drill-down to the details, we click on
1215 this node to expand its anomaly events over time. The bot-
1216 tom row in Fig. 10a shows a regular anomaly pattern with
1217 a fixed cycle. We proceed to check the other nodes con-
1218 nected to it. There are two such nodes: eip: 0x401201 and
1219 eip: 0x4011e3. When clicking to expand the reasoning path,
1220 we find that the node of 0x401201, as shown by the row on
1221 top of 0x4011da in Fig. 10a, contains only one anomalous
1222 event at the end of the timeline. We conclude that 0x401201
1223 is the line of code leading to the fatal crash, and that
1224 0x4011da behaves as the direct cause of this crash.
1225 To find out the root cause of this crash, we select a larger
1226 time window of 200,000 cycles before the crash. The corre-
1227 sponding HOCG is depicted in Fig. 10b. The relationship
1228 between 0x4011da and 0x4011e3 is unchanged. By expanding
1229 their anomaly timeline again, it is found that the line of code
1230 at 0x4011da has triggered regular anomalies on 0x4011e3 for
1231 a long time, before leading to the final crash by the code at

12320x401201. We bring our findings to work with a source code
1233analysis expert. Based on our visual analysis result, we are
1234able to restore the situation of this software crash. Initially,
1235the code at 0x401201 and 0x4011e3 (both “mov” instructions)
1236are not related, though their read/write memory address is
1237close to each other. After an abnormal I/O operation, i.e., an
1238invalid user input, the line of code at 0x4011da starts to move
1239an overlong string to its destination memory address. Then
1240the operator of the code at 0x4011e3 becomes overflown and it
1241begins to run anomalously. The code at 0x4011da continues to
1242overflow at its destination address in writing the overlong
1243input string until the function address of the “call” instruction
1244at 0x401201 becomes overflown. This leads to the irreversible
1245software crash.

12467 EXPERT FEEDBACK

1247On applying HOCG to the intrusion detection scenario, we
1248invited three network security experts to a trial study of the
1249CTU-13 dataset using our visualization tool. The study is
1250composed of two sessions: the training session and the test
1251session. In the training session, the experts were provided
1252with a user manual to become familiar with the visualiza-
1253tion tool, including the visual design, data mapping, and
1254interactions. Then they were asked to conduct some simple
1255analyses on the sample data to practice their skills with the
1256tool. We answered all their questions during the training
1257session to ensure an appropriate level of understanding of
1258the visualization tool. During the test session, each expert
1259was provided with a full CTU-13 dataset (5 hours), and was
1260asked to complete three tasks with the visualization tool: (1)
1261identify at least 5 anomalies in the data, and provide details
1262on each anomaly (e.g., time, host, behavior); (2) discover the
1263relationship among these anomalies; and (3) infer the possi-
1264ble root cause of these anomalies. After finishing the tasks,
1265the experts were asked to provide detailed feedback on the
1266pros and cons of the tool, their previous experience in work-
1267ing with a similar scenario, and the potential extensions of
1268the tool on the functionality and application domains.
1269The first expert is the IT manager and network adminis-
1270trator of a large department (	 200 employees), who is
1271responsible for the monitoring and troubleshooting of the
1272department’s Intranet. Initially, it was not easy for him to
1273apprehend the HOCG visualization because most commod-
1274ity tools display the actual network traffic, both normal and
1275abnormal, while ours only displays the anomalous part of

Fig. 10. Software analysis case study: (a) the initial HOCG view selecting a smaller time window close to the crash point; (b) zooming out to a large
time window for the root cause analysis.
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1277 after the 30-minute training session. During the test session,
1278 the first expert quickly identified the victim of most attacks
1279 (i.e., 96.69), and several true attackers (i.e., bots) in accor-
1280 dance with the ground truth, as we only asked him to locate
1281 five anomalies. He also concluded with the correct root
1282 cause of these anomalies: the ICMP DDOS attack. The UDP
1283 and IRC anomalies were noticed, but the three-layered
1284 anomaly structure at the end of the dataset was not found.
1285 During the analysis, his most praised feature of the tool was
1286 the ability to generate alerts for the administrators and dis-
1287 play them on the network topology. He thought it will be
1288 straightforward to illustrate these alerts in real time. The
1289 suggestions he provided focused on the integration of
1290 our design with the mainstream network monitoring tools
1291 (i.e., nagios, zabbix, cacti) by adding the classical network
1292 traffic visualization (e.g., time series charts). He also sug-
1293 gested distributing the node anomalies into the edges,
1294 which fits better with the administrator’s expectations.
1295 The second expert is a researcher in computer security,
1296 who is also the adjunct network administrator of his lab.
1297 This expert has extensive experience managing networking
1298 devices (e.g., routers, firewalls). He quickly understood the
1299 correlation graph view and the event view. Though not
1300 required as a user, he was also interested in understanding
1301 the GMM model behind our anomaly detection algorithm.
1302 During the real test, and similar to the first expert, the
1303 second expert was able to locate the central victim, a few
1304 bots, and the type of DDOS attack using ICMP and UDP.
1305 Compared with the firewall log analysis tools he was using
1306 as his role of the network administrator, he thought our tool
1307 provided a unique global view of the network anomalies.
1308 The correlation analysis was also valuable in linking these
1309 anomalies together. For future extensions, he suggests ana-
1310 lyzing the content of the network traffic. The content data
1311 was not available in the currently studied dataset.
1312 Our third expert is a senior engineer on network security
1313 products, who is knowledgeable with the mainstream soft-
1314 ware features on the analysis of network anomalies. He could
1315 also quickly locate the timeline of the anomalies, from which
1316 he found the victim and some of the bots in the attack. He
1317 called the ICMP/UDP scanning a “flood attack”. He did not
1318 notice the three-layered structure. During the analysis, the
1319 third expert found that the interaction design of the tool was
1320 convenient, compared with the existing network administra-
1321 tion tools. The commodity software, e.g., the security gate-
1322 way, relies on the previously defined models of a network
1323 anomaly, including the known incidences, firewall rules, and
1324 security knowledgebase. Our tool has the potential to work
1325 with unknown anomalies by incorporating the flexibility of
1326 human intelligence. This is critical in the networking scenario
1327 because the network traffic is in general bursty and complex,

1328making it difficult to be governed by a few models. In the
1329suggestions, the third expert recommended extending the
1330analysis to include more security information (e.g., the state
1331of the hosts, the packet content, the firewall logs), which are
1332intensively analyzed by the existing security products. He
1333would like us to develop our tool as the decision-making
1334software, beyond the general “data presentation” software in
1335themarket.
1336In summary, all the experts could use the tool successfully
1337after the training. All of them could correctly detect the ICMP
1338or UDP DDOS attack through the linked view of the anoma-
1339lous hosts. No one seemed to notice the IRC C&C channel, as
1340they seldom select a large time window for analysis. On the
1341positive side, the experts mentioned a few features of our
1342visualization that accelerate their analysis tasks, including the
1343flexible visual analysiswithout knownmodels, the interactive
1344global anomaly view, and the (real-time) alert visualization
1345together with the topology network. On the other hand, all of
1346them mentioned the importance of customizing the HOCG
1347visualization in the network administration domain, includ-
1348ing adding the network traffic charts, analyzing detailed
1349network information (e.g., packet content), and incorporating
1350a networking and security knowledgebase.

13518 DISCUSSION

1352The evaluation of our visualization framework reveals sev-
1353eral limitations of the HOCG and suggests interesting future
1354directions.
1355First, our framework can scale to analyze a huge amount of
1356raw data. In the case of facility monitoring (Section 6.1), there
1357are 40 types of sensor readings collected on 38 zones in more
1358than 4,000 time periods, summing up to 6M+ data entries. As
1359shown in Table 2, all the data processing carried out offline
1360takes 48.1 minutes on a cloud server with four virtual CPUs
1361and 16 GB of memory. The online computations for a typical
1362graph of Fig. 3c take less than one second, which applies the
1363object-centric abstraction to simplify theHOCG.
1364Despite the scalability in the data analytics, the HOCG
1365visualization can still suffer from overwhelming visual com-
1366plexity when the number of objects is extremely large. The
1367introduction of the facet field in the event modeling helps to
1368reduce the visual complexity. A higher-level object hierarchy
1369can be selected as the node of theHOCG to reduce the number
1370of nodes/edges in the HOCG. For example, in the facility
1371monitoring case study, we use the zones containing multiple
1372sensors as nodes of the HOCG, rather than using the individ-
1373ual sensors as nodes in the conference-version design. The
1374direct sub-hierarchies of the object can be defined as the facets
1375to illustrate the extended information on the object, i.e., the
1376sensors installed on the zones. In the future work, allowing
1377the users to set and navigate the object hierarchy will be

TABLE 2
The Computation Time of HOCG Analytics and Visualization in Section 6.1

Stage Offline (all computations) Online (the computation for Fig. 3c)

Measure Point anomaly detection
(a � 0:2)

Correlation analysis
(r � 0:2)

HOCG generation Anomaly propagation Layout

#Node (#Anomaly)/#Edge 7072/— —/13253 44/38 15/23 20/28
Time (second) 2.55 2882 0.17 0.33 < 0:01
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1378 a valuable extension for the HOCG design. The visualization
1379 can then be configured by the users to manage the visual
1380 complexity through setting the appropriate object hierarchy
1381 as nodes of the HOCG (e.g., the floors containing multiple
1382 zones). On the other hand, when there are only a few objects
1383 in the HOCG, the point anomalies detected on each pair of
1384 objects could be re-distributed into the links between the
1385 objects for a finer-grained analysis. For example, the overly
1386 high traffic flows between the hosts could be visualized as the
1387 anomalies on the link between theHOCGnodes.
1388 Second,while theHOCGvisualization focuses on the anom-
1389 alies extracted from the everyday data, in many scenarios, the
1390 normal data pattern plays an equally important role in analyz-
1391 ing the collective anomaly. For example, the average traffic
1392 chart over time helps to identify the core of a computer net-
1393 work (i.e., routers/servers), which are vulnerable to the distrib-
1394 uted attacks identified as collective anomalies. It is a nontrivial
1395 problem to effectively abstract the normal data pattern and
1396 integrate this patternwith the existing anomaly visualization.
1397 Third, the experts in our study mentioned domain-specific
1398 requirements. To apply HOCG to a real-world scenario, it
1399 is critical to construct the HOCG visualization template for
1400 different domains (e.g., our design in Section 6.2 for analyzing
1401 the anomaly of computer networks). For the applications in
1402 the same domain, the final adaptation can be achieved by fur-
1403 ther designating a different set of parameter values, e.g., a low
1404 point anomaly threshold for more steady data center net-
1405 works and a high threshold for the campus network due to its
1406 traffic randomness.
1407 The video demonstration of this work can be found at
1408 http://lcs.ios.ac.cn/	shil/share/HOCG-TVCG.mp4, and the
1409 code repository is hosted at https://github.com/visdata/
1410 HOCG/tree/TVCG/.

1411 9 CONCLUSION

1412 In this paper, we describe a visual analytics framework
1413 based on the concept of the faceted High-Order Correlation
1414 Graph to detect, analyze, and reason about collective anom-
1415 alies. The HOCG captures the multimodal relationships
1416 among the heterogeneous types of objects and events. It can
1417 be generalized to various kinds of applications by providing
1418 domain-specific anomaly detection methods. By leveraging
1419 the random walk method, the anomaly scores of events
1420 can be propagated from the detected ones to the others to
1421 identify the collective anomalies. In addition, we design an
1422 interactive visualization interface that allows the flexible
1423 and scalable exploration of detected point anomalies, their
1424 multimodal relationships, and the potential root cause of
1425 the overall collective anomaly. Users can drill down to the
1426 raw data in the detail view to validate their discoveries.
1427 We demonstrate the effectiveness of the HOCG concept,
1428 the analysis framework, and the visualization system with
1429 three real-world applications. Expert feedbacks were also
1430 reported, which confirm the usefulness of our technique
1431 and recommend several future research directions.

1432 ACKNOWLEDGMENTS

1433 This work was supported by NSFC Grants 61772504,
1434 U1836117, U1736209, 61572483, 61602122, 71731004, U.S.
1435 NSF Grant IIS-1455886, DUE-1833129, and NSF Shanghai
1436 No. 16ZR1402200.

1437REFERENCES

1438[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
1439A survey,” ACM Comput Surveys, vol. 41, no. 3, pp. 15:1–15:58,
14402009.
1441[2] M. Ahmed, A. N. Mahmood, and J. Hu, “A survey of network
1442anomaly detection techniques,” J Netw. Comput. Appl., vol. 60,
1443pp. 19–31, 2016.
1444[3] P. K. Chan and M. V. Mahoney, “Modeling multiple time series
1445for anomaly detection,” in Proc. 5th IEEE Int. Conf. Data Mining,
14462005, pp. 1–8.
1447[4] G. G. Hazel, “Multivariate Gaussian MRF for multispectral scene
1448segmentation and anomaly detection,” IEEE Trans. Geoscience
1449Remote Sens., vol. 38, no. 3, pp. 1199–1211, May 2000.
1450[5] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in
1451Proc. 9th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
14522003, pp. 631–636.
1453[6] X. Miao, K. Liu, Y. He, D. Papadias, Q. Ma, and Y. Liu, “Agnostic
1454diagnosis: Discovering silent failures in wireless sensor networks,”
1455IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6067–6075,
1456Dec. 2013.
1457[7] L. Shi, Q. Liao, Y. He, R. Li, A. Striegel, and Z. Su, “SAVE: Sensor
1458anomaly visualization engine,” in Proc. IEEE Conf. Visual Analytics
1459Sci. Technol., 2011, pp. 201–210.
1460[8] D. Thom,H. Bosch, S. Koch,M.W€orner, andT. Ertl, “Spatiotemporal
1461anomaly detection through visual analysis of geolocated twitter
1462messages,” in Proc. IEEE Pacific Vis. Symp., 2012, pp. 41–48.
1463[9] J. Zhao, N. Cao, Z. Wen, Y. Song, Y. R. Lin, and C. Collins, “#Flux-
1464Flow: Visual analysis of anomalous information spreading on
1465social media,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12,
1466pp. 1773–1782, Dec. 2014.
1467[10] J. Tao, L. Shi, Z. Zhuang, C. Huang, R. Yu, P. Su, C. Wang, and
1468Y. Chen, “Visual analysis of collective anomalies through high-
1469order correlation graph,” in Proc. IEEE Pacific Vis. Symp., 2018,
1470pp. 150–159.
1471[11] M. Xie, S. Han, B. Tian, and S. Parvin, “Anomaly detection in
1472wireless sensor networks: A survey,” J. Netw. Comput. Appl.,
1473vol. 34, no. 4, pp. 1302–1325, 2011.
1474[12] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly
1475detection and description: a survey,” Data Mining Knowl. Discov-
1476ery, vol. 29, no. 3, pp. 626–688, 2015.
1477[13] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and
1478N. F. Samatova, “Anomaly detection in dynamic networks:
1479A survey,”WIREs Comput. Statist., vol. 7, no. 3, pp. 223–247, 2015.
1480[14] C. De Stefano, C. Sansone, and M. Vento, “To reject or not to reject:
1481That is the question-an answer in case of neural classifiers,” IEEE
1482Trans. Syst. Man Cybern. Part C (Appl. Rev.), vol. 30, no. 1, pp. 84–94,
1483Mar. 2000.
1484[15] S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for
1485categorical data: A comparative evaluation,” in Proc. SIAM Int.
1486Conf. Data Mining, 2008, pp. 243–254.
1487[16] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar, J. Srivastava,
1488and P. Dokas, “MINDS - Minnesota intrusion detection system,” in
1489Next Generation Data Mining. Cambridge, MA, USA: MIT Press, 2004,
1490ch. 3, pp. 199–218.
1491[17] E. Eskin, “Anomaly detection over noisy data using learned
1492probability distributions,” in Proc. 17th Int. Conf. Mach. Learn.,
14932000, pp. 255–262.
1494[18] L. Akoglu, M. McGlohon, and C. Faloutsos, “Oddball: Spotting
1495anomalies in weighted graphs,” in Proc. Pacific-Asia Conf. Knowl.
1496Discovery Data Mining, 2010, pp. 410–421.
1497[19] L. Akoglu, R. Chandy, and C. Faloutsos, “Opinion fraud detection
1498in online reviews by network effects,” in Proc. Int. AAAI Conf. Web
1499Soc. Media, 2013, vol. 13, pp. 2–11.
1500[20] S. Lin and D. E. Brown, “An outlier-based data association
1501method for linking criminal incidents,” Decision Support Syst.,
1502vol. 41, no. 3, pp. 604–615, 2006.
1503[21] W. R. Pires, T. H. de Paula Figueiredo, H. C. Wong, and
1504A. A. F. Loureiro, “Malicious node detection in wireless sensor
1505networks,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2004,
1506Art. no. 24.
1507[22] F. Liu, X. Cheng, andD.Chen, “Insider attacker detection inwireless
1508sensor networks,” in Proc. 26th IEEE Int. Conf. Comput. Commun.,
15092007, pp. 1937–1945.
1510[23] I. Onat and A. Miri, “A real-time node-based traffic anomaly
1511detection algorithm for wireless sensor networks,” in Proc. Syst.
1512Commun., 2005, pp. 422–427.

16 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. X, XXXXX 2019

http://lcs.ios.ac.cn/~shil/share/HOCG-TVCG.mp4
http://lcs.ios.ac.cn/~shil/share/HOCG-TVCG.mp4
https://github.com/visdata/HOCG/tree/TVCG/
https://github.com/visdata/HOCG/tree/TVCG/


IEE
E P

ro
of

1513 [24] R. Khanna, H. Liu, and H.-H. Chen, “Reduced complexity intrusion
1514 detection in sensor networks using genetic algorithm,” in Proc. IEEE
1515 Int. Conf. Commun., 2009, pp. 1–5.
1516 [25] E. C. Ngai, J. Liu, and M. R. Lyu, “An efficient intruder detection
1517 algorithm against sinkhole attacks in wireless sensor networks,”
1518 Comput. Commun., vol. 30, no. 11, pp. 2353–2364, 2007.
1519 [26] F. Fischer, F. Mansmann, D. A. Keim, S. Pietzko, andM.Waldvogel,
1520 “Large-scale network monitoring for visual analysis of attacks,” in
1521 Proc. Int.WorkshopVis. Comput. Secur., 2008, pp. 111–118.
1522 [27] S.-T. Teoh, K. Zhang, S.-M. Tseng, K.-L. Ma, and S. F. Wu,
1523 “Combining visual and automated data mining for near-real-time
1524 anomaly detection and analysis in BGP,” in Proc. ACM Workshop
1525 Vis. Data Mining Comput. Secur., 2004, pp. 35–44.
1526 [28] Q. Liao, L. Shi, and C.Wang, “Visual analysis of large-scale network
1527 anomalies,” IBM J. Res. Develop., vol. 57, no. 3/4, pp. 13–1, 2013.
1528 [29] Z. Liao, Y. Yu, and B. Chen, “Anomaly detection in GPS data
1529 based on visual analytics,” in Proc. IEEE Symp. Visual Analytics
1530 Sci. Technol., 2010, pp. 51–58.
1531 [30] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma,
1532 C. Ziemkiewicz, D. Kern, and A. Sudjianto, “Wirevis: Visualization
1533 of categorical, time-varying data from financial transactions,” in
1534 Proc. IEEE Symp. Visual Analytics Sci. Technol., 2007, pp. 155–162.
1535 [31] R. A. Leite, T. Gschwandtner, S. Miksch, S. Kriglstein, M. Pohl,
1536 E. Gstrein, and J. Kuntner, “Eva: Visual analytics to identify fraud-
1537 ulent events,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 1,
1538 pp. 330–339, Jan. 2018.
1539 [32] W. Didimo, G. Liotta, F. Montecchiani, and P. Palladino, “An
1540 advanced network visualization system for financial crime
1541 detection,” in Proc. IEEE Pacific Vis. Symp., 2011, pp. 203–210.
1542 [33] W. Didimo, L. Giamminonni, G. Liotta, F. Montecchiani, and
1543 D. Pagliuca, “A visual analytics system to support tax evasion
1544 discovery,”Decision Support Syst., vol. 110, pp. 71–83, 2018.
1545 [34] S. Hadlak, H. Schumann, and H.-J. Schulz, “A survey of multi-
1546 faceted graph visualization,” in Proc. EuroVis STAR, 2015, pp. 1–20.
1547 [35] F. Beck, M. Burch, S. Diehl, and D. Weiskopf, “A taxonomy and
1548 survey of dynamic graph visualization,” Comput. Graph. Forum,
1549 vol. 36, no. 1, 2017, pp. 133–159.
1550 [36] J. Wang and K. Mueller, “Visual causality analysis made
1551 practical,” presented at the IEEE Visual Analytics Sci. Technol.,
1552 Phoenix, AZ, USA, 2017.
1553 [37] D. Reynolds, “Gaussian mixture models,” Encyclopedia Biometrics,
1554 pp. 827–832, 2015.
1555 [38] A. P.Dempster, N.M. Laird, andD. B. Rubin, “Maximum likelihood
1556 from incomplete data via the em algorithm,” J. Roy. Statistical Soc.
1557 Series B (methodological), vol. 39, pp. 1–38, 1977.
1558 [39] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist.,
1559 vol. 6, no. 2, pp. 461–464, 1978.
1560 [40] S. J. Roberts, “Novelty detection using extreme value statistics,” IEE
1561 Proc.-Vis. Image Signal Process., vol. 146, no. 3, pp. 124–129, 1999.
1562 [41] S. Kullback, Information Theory and Statistics. North Chelmsford.
1563 MA, USA: Courier Corporation, 1997.
1564 [42] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
1565 restart and its applications,” in Proc. 6th Int. Conf. Data Mining,
1566 2006, pp. 613–622.
1567 [43] B. Shneiderman, “The eyes have it: A task by data type taxonomy
1568 for information visualizations,” in Proc. IEEE Symp. Visual Lang.,
1569 1996, pp. 336–343.
1570 [44] E. R. Gansner and S. North, “An open graph visualization system
1571 and its applications to software engineering,” Softw. - Practice
1572 Experience, vol. 30, pp. 1203–1233, 2000.
1573 [45] P. Bak, F. Mansmann, H. Janetzko, and D. Keim, “Spatiotemporal
1574 analysis of sensor logs using growth ring maps,” IEEE Trans. Vis.
1575 Comput. Graph., vol. 15, no. 6, pp. 913–920, Nov./Dec. 2009.
1576 [46] IEEE VAST Challenge 2016. (2016). [Online]. Available: http://
1577 vacommunity.org/VAST+Challenge+2016
1578 [47] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical com-
1579 parison of botnet detection methods,” Comput. Secur., vol. 45,
1580 pp. 100–123, 2014.

1581Jia Yan received the PhD degree from the University
1582of Chinese Academy of Sciences, in 2015. He is
1583an assistant professor with TCA/SKLCS, Institute
1584of Software, Chinese Academy of Sciences. His
1585research interests include visualization for security,
1586malware analysis, and software security.

1587Lei Shi received the BS, MS, and PhD degrees
1588from the Department of Computer Science and
1589Technology, Tsinghua University, in 2003, 2006,
1590and 2008, respectively. He is a professor with the
1591School of Computer Science, Beihang University.
1592Previously, he was a professor with SKLCS, Insti-
1593tute of Software, Chinese Academy of Sciences.
1594His research interests include information visuali-
1595zation, visual analytics, and datamining.

1596Jun Tao received the PhD degree in computer
1597science from Michigan Technological University,
1598in 2015. He is a postdoctoral researcher with
1599the University of Notre Dame. His major research
1600interests include scientific visualization, espe-
1601cially on applying information theory, optimization
1602techniques, and topological analysis to flow
1603visualization and multivariate data exploration.

1604Xiaolong Yu received the BS degree in computer
1605science from Fudan University, in 2017. He is now
1606working toward the master’s degree in computer
1607science at Fudan University, and a visiting student
1608at the State Key Laboratory of Computer Science,
1609Institute of Software, Chinese Academy of Sciences.
1610His research interests include social computing and
1611datamining.

1612Zhou Zhuang received the BS degree from the
1613School of Computer Science, Fudan University, in
16142018. He is working toward the master’s degree in
1615CS Department, Columbia University. He has been
1616a research assistant with the State Key Laboratory
1617of Computer Science, Institute of Software, Chinese
1618Academy of Sciences since 2016. His research
1619interests include information visualization and
1620machine learning.

1621Congcong Huang received the BS degree from
1622the Department of Computer Science, Sichuan
1623University. She is working toward the graduate
1624degree in the State Key Laboratory of Computer
1625Science, Institute of Software, Chinese Academy
1626of Sciences. Her research interests include data
1627mining, data visualization and visual analytics.

YAN ET AL.: VISUAL ANALYSIS OF COLLECTIVE ANOMALIES USING FACETED HIGH-ORDER CORRELATION GRAPHS 17

http://vacommunity.org/VAST+Challenge+2016
http://vacommunity.org/VAST+Challenge+2016


IEE
E P

ro
of

1628 Rulei Yu received the BS degree from the College
1629 of Microelectronics, Xidian University, in 2017. He
1630 is currently a student in the State Key Laboratory of
1631 Computer Science, Institute of Software, Chinese
1632 Academy of Sciences. His research interests
1633 include information visualization and visual analyt-
1634 ics for deep learning.

1635 Purui Su received the PhD degrees from the
1636 University of Chinese Academy of Sciences. He
1637 is a professor with TCA/SKLCS, Institute of
1638 Software, Chinese Academy of Sciences. His
1639 research interests include malware detection,
1640 program analysis, and software security.

1641Chaoli Wang received the PhD degree in com-
1642puter and information science from The Ohio State
1643University, in 2006. He is an associate professor of
1644computer science and engineering with University
1645of Notre Dame. Prior to joining Notre Dame, he
1646was an assistant professor of computer science
1647with Michigan Technological University. His main
1648research interests include scientific visualization, in
1649particular time-varying multivariate data visualiza-
1650tion, flow visualization, and information-theoretic
1651algorithms and graph-based techniques for big
1652data analytics.

1653Yang Chen received the BS and PhD degrees from
1654the Department of Electronic Engineering, Tsinghua
1655University in 2004 and 2009, respectively. He is an
1656associate professor with the School of Computer
1657Science, Fudan University, China. Before joining
1658Fudan, he was a postdoctoral associate with the
1659Department of Computer Science, Duke University
1660and a research associate with the Institute of Com-
1661puter Science, University of Goettingen, Germany.
1662His research interests include online social net-
1663works, internet architecture, andmobile computing.

1664" For more information on this or any other computing topic,
1665please visit our Digital Library at www.computer.org/publications/dlib.

18 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 25, NO. X, XXXXX 2019


