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Abstract—Summarizing large influence graphs is crucial for
many graph visualization and mining tasks. Classical graph
clustering and compression algorithms focus on summarizing the
nodes by their structural-level or attribute-level similarities, but
usually are not designed to characterize the flow-level pattern
which is the centerpiece of influence graphs. On the other hand,
the social influence analysis has been intensively studied, but
little is done on the summarization problem without an explicit
focus on social networks. Building on the recent study of the
Influence Graph Summarization (IGS), this paper presents a new
perspective of the underlying flow-based heuristic. It establishes
a direct linkage between the optimal summarization and the
classic eigenvector centrality of the graph nodes. Such a theoretic
linkage has important implications on numerous aspects in the
pursuit of a perfect influence graph summarization. In particular,
it enables us to develop a suite of algorithms that can: 1) achieve a
near-optimal IGS objective, 2) support dynamic summarizations
balancing the IGS objective and the stability of transition in
navigating the summarization, and 3) scale to million-node graphs
with a near-linear computational complexity. Both quantitative
experiments on real-world citation networks and the user studies
on the task analysis experience demonstrate the effectiveness of
the proposed summarization algorithms.

I. INTRODUCTION

Influence, originally indicating the action or fact of flowing
in [1], has extended its scope to the cyberspace to describe
the online dissemination of ideas and opinions. For example,
on the websites such as Twitter and Facebook, one can
post messages, get read and circulated by their friends, and
even accessed by strangers. On the other hand, many kinds of
influence previously happened offline have been brought online
through the digitalization. For example, the research influence
(i.e., scientific impact) by paper citations is now recorded in
electronic databases and becomes viable for analysis. In many
cases, a single dose of influence can be represented by one
directed link from a source to a target, e.g., from one paper
to the paper citing it, and from the user of a Twitter post to
another user forwarding the post. Assembling individual links
on the same subject together generates the so-called influence
graph which provides a holistic picture of the evolution of
the subject. In citation analysis, the influence of one scientific
paper can be roughly measured by its citation count, yet an
open question lies in why and how the paper is influential.

This work was performed when Sibai Sun/Yuan Xuan were SKLCS interns.

In social network analysis, the popularity of one Twitter post
can be estimated by the number of retweets, yet an equally
important question is how the post becomes popular and whom
it has influenced. Understanding the underlying influence graph
can be the key stepping stone to answer these questions.

Making sense of a graph with tens of nodes can be afford-
able for most human users. However, the scale of an online
influence graph can grow millions of times larger. Facebook
has billions of registered users, the scientific knowledge base
in the computer science domain [2][3] has recorded tens
of millions of papers. Interpreting these ultra-large influence
graphs in the full detail is extremely hard for ordinary users,
if not impossible at all. In our earlier work [4], we made a
first attempt on this problem, i.e., the static Influence Graph
Summarization (IGS) in large scale, by formally defining the
problem through an effective flow-based heuristic (refer to
Section III for a review). In short, the objective of IGS aims to
maximize the flow rate among different node groups/clusters,
whereas a typical graph clustering objective aims to maximize
the intra-cluster connectivity and/or minimize the inter-cluster
connectivity. Take Figure 1 as an example, by IGS-based
algorithms, large influence flows and paths can be exposed in
the summarization (top-right of Figure 1), while by the classic
graph clustering, more clusters with dense internal connections
are detected (bottom-right of Figure 1).

In this paper, our contribution can be summarized in three
dimensions. First (optimality), although demonstrating superior
empirical performance, the theoretic optimality of the original
algorithm in [4] remains unknown. By re-formulating the IGS
objective, we derive theoretically near-optimal algorithms to
solve the static IGS problem (Section IV). Second (flexibility),
thanks to the new formulation, we are able to extend the
proposed algorithms on the dynamic IGS problem to balance
the trade-off between the static IGS objective and the stability
of transition upon the user navigation (Section V). Third
(scalability), the worst-case space and time complexity of the
algorithm in [4] is quadratic. In contrast, our newly proposed
algorithm has a complexity of O(n · logn) (Section VI-B). On
all the three technical dimensions, we conducted comparative
evaluations on the IGS objective, computational overhead, and
the usability for visualization (Section VI). Results demon-
strate the effectiveness of the proposed algorithm and the IGS
summarization in real-life analysis tasks.
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Fig. 1. An illustrative example of the summarization M (top-right) from
the maximal influence graph G (left). Large flows are detected in M among
clusters, where the flow rate is visually coded as the link thickness and
displayed in blue labels. The summarization M is equivalent to the node
grouping by their eigenvector centralities in G (labeled in red). A comparative
graph clustering C by the ratio association objective is shown in the bottom-
right part where only intra-cluster large flows are detected.

II. RELATED WORK

Constructing smaller abstractions to represent the large
graph has been a traditional research topic. Most existing meth-
ods focus on summarizing the graph nodes through algorithms
such as graph clustering [5] and community detection [6].
These algorithms work by looking for coherent/homogeneous
node regions in the graph through the optimization of certain
loss functions (e.g., minimizing the inter-cluster connection
[7], maximizing the intra-cluster attribute homogeneity [8],
minimizing the total description cost [9], maximizing the
community modularity [10], etc). Among all these methods,
the thread on the graph compression is the most relevant.
In general, graph compression algorithms try to detect and
reduce redundancies in the graph structure. The pioneering
work dates back to the notion of structural equivalence [11],
which explicitly groups nodes having the same neighbors
together. In a probabilistic version, a node similarity score can
be computed by the SimRank algorithm [12], which is further
used in the structure-based node grouping [13]. In another
MDL-based graph compression [9], the graph is represented
by an aggregated structure plus an error correction list. This
has been proved to be the best summary under the information-
theoretic objective. In the SNAP algorithm [8], user-selected
node attributes are incorporated in the graph summarization.
Navigation interactions are supported to control the resolution
of the summarization and provide drill-down and roll-up
operations. This is very similar to the dynamic summarization
scenario in our work. An extension of the SNAP algorithm
proposed the discovery-driven graph summarization by auto-
matically categorizing numerical attributes and recommending
the most interesting summarization to the user [14]. On the
other hand, Batson et al. proposed the spectral sparsification on
weighted graphs [15], which can be leveraged in our approach
to select useful edges after the summarization. However, on
large influence graphs, the sparsification method alone can
not reduce the visual complexity into a user-interpretable level
because it does not reduce the number of nodes.

While existing summarization methods can effectively ab-
stract graph structures for storage, computation and repre-
sentation, they mostly base on the notion to summarize the

TABLE I. IGS NOTATIONS.
SYMBOLS DEFINITION

I raw influence graph
f source node initiating the influence
G(f) maximal influence graph of f in I
n, vi # of nodes and the ith node in G
A, aij G’s topology adjacency matrix and the entry in the

ith row and jth column
M(f) influence graph summarization of G(f)
k, πi, |πi| # of clusters in M , the ith cluster and its cluster size
l, ξi, r(ξi) # of flows in M , the ith flow and its flow rate
C(vi), S(ξi), T (ξi) vi’s cluster index, ξi’s source and target cluster index

graph nodes. On the influence graph analysis scenario, the
flow pattern among the node clusters is at least as important
as the node coherence inside the cluster. In the literature, the
influence analysis on graphs and networks has been focused on
the social influence, e.g., the information diffusion over social
networks. For example, Bond et al. [16] used a randomized
trial to verify the social influence on political voting behavior.
Tang et al. [17] presented a Topical Affinity Propagation (TAP)
approach to quantify the topic-level social influence in large
networks. Kempe et al. [18] proposed to use a submodular
function to formalize the influence maximization problem
and develop a greedy algorithm to solve the problem with
provable approximation guarantee. Most of these works focus
on the existence of social influence or the nature of the
information diffusion process and do not consider the sum-
marization problem. Recently, Mathioudakis et al. proposed
the method of influence network sparsification [19], which
extracts the most important social paths based on information
propagation logs. Mehmood et al. proposed CSI [20], a model
that generalizes the classical Independent Cascade model to
the community level. Both the influence network sparsification
and the community-level cascading model can produce similar
visual forms to our work. However, their results are computed
from the information propagation log customized to the social
influence scenario. In comparison, we focus more on the
unsupervised summarization of large influence graphs and we
do not leverage the domain-specific information propagation
model and the associated log data.

III. PRELIMINARIES

In this section, we provide 1) a concise review of the
influence graph summarization (IGS) problem for the sake
of the completeness of the paper, 2) highlight the difference
between IGS and graph clustering problems, and 3) summarize
the open challenges this paper aims to address.

A. Key Notations and Concepts

Table I lists the notations in the IGS definition. There are
two external inputs: 1) the raw influence graph I , e.g., the
graph by reversing the citation relationship among scientific
papers, and 2) the source node f on which we want to study
its influence, e.g., the seminal paper or key researcher who
has a good impact on the research community. Over the input
graph I , we consider the maximal influence graph G(f), which
is I’s induced subgraph composed of all the nodes reachable
from f (including f ) and their internal links. G(f) will be
denoted as G in short. The maximality means that G covers
all the nodes that f can potentially influence. An example of
the maximal influence graph is shown in Figure 1 (Left). Let
G have n nodes, v1, · · · , vn. G’s topology can be represented
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by the adjacency matrix A = {aij}ni,j=1 where aij is the link
weight from vi to vj , aij > 0 indicates a nontrivial link.

The IGS problem is to compute a summarization M(f)
over the influence graph G(f), denoted by M in short. As
shown in the top-right part of Figure 1, M contains k disjoint
and exhaustive node clusters of G, denoted by π1, · · · , πk. The
cluster size is denoted by |π1|, · · · , |πk|, and the clustering
assignment is defined by C(vi), the cluster index of vi in M .
Let M contain l flows, which are the links among all the k
nodes of M (i.e., clusters in G). These flows are denoted by
ξ1, · · · , ξl, and the source and target cluster indices of a flow
ξ are defined by S(ξ) and T (ξ). The flow ξ represents the
collection of all links in G from the nodes in cluster πS(ξ) to
the nodes in cluster πT (ξ). The flow rate of ξ is defined by the
size-normalized aggregation of relevant link weights:

r(ξ) =

∑
vi∈πS(ξ),vj∈πT (ξ)

aij√
|πS(ξ)||πT (ξ)|

(1)

For example, the flow rate is given as blue labels in Figure 1.

B. IGS Problem

PROBLEM 1: INFLUENCE GRAPH SUMMARIZATION

Given: 1) A, the topology adjacency matrix (representing
the maximal influence graph G from the source node f ); 2)
k (k ≤ n), the number of clusters in the summarization; 3) l
(l ≤ k2), the number of flows in the summarization;

Compute: 1) C(vi) (i = 1, · · · , n), the cluster index of all
nodes in G; 2) ξi (i = 1, · · · , l), the l flows kept in the
summarization;

By optimizing the flow rate maximization objective:

max
l∑
i=1

r(ξi) (2)

In our following study, we consider the full IGS summarization
problem (l = k2). The variation on the partial summarization
(l < k2) can be solved by filtering flows additionally.

C. IGS vs. Graph Clustering

We explain briefly the rationale of the flow rate maxi-
mization objective. In the influence summarization scenario,
the user’s central interest is on detecting the flows among the
clusters (e.g, the influence of one paper to several communi-
ties), instead of focusing on grouping nodes into communities.
Mathematically, the proposed IGS objective, though closely
related, bears some fundamental difference from the classic
graph clustering objective. The objective in Equation (2) for the
full IGS summarization can be expanded to reveal the linkage
between IGS and classic graph clustering problems.

k2∑
i=1

r(ξj) =
k∑
i=1

r(ξ̂i) +
k2−k∑
i=1

r(ξ̃i)

s.t. S(ξ̂i) = T (ξ̂i), S(ξ̃i) 6= T (ξ̃i) (3)

The first term by ξ̂i is the sum of all intra-cluster flow
rates, which is exactly the objective of ratio-association graph
clustering. The second term by ξ̃i considers the flow rate

of all inter-cluster flows, which corresponds to the influence
flow among clusters. In this sense, the IGS problem balances
between the classic graph clustering objective and the unique
requirement to highlight the pattern of large flows.

D. Open Challenges

In a pre-work of this paper [4], we have proposed a
matrix decomposition based method to compute the influence
graph summarization. This method also supports incorporating
rich graph attributes. By aligning with the kernel k-mean
clustering, it is proved that the decomposition based method
can approximate the IGS objective under certain conditions.

Despite the success of the existing IGS algorithm, there
remains several open challenges that prohibit its large-scale
deployment for the everyday analytic task of end users. First,
it is still unknown when the optimality of the IGS objective
can be achieved and whether the heuristic IGS algorithm can
provide performance guarantees in approaching the objective.
Second, from the end user’s perspective, the visual summa-
rization can not stay with one static view. Smooth navigations
should be supported to analyze the summarization in multiple
granularities, which is related to a fresh-new dynamic IGS
problem. Third, the complexity of the decomposition based
algorithm constantly exceeds O(n2) time, where n is the
number of nodes in the input graph. It takes a few hours to
process the largest influence graph on the citation network data
set, while the real-world deployment will need to summarize
tens of thousands of such graphs.

In this paper, we reinforce the theoretical foundation of the
flow-based heuristics by presenting a new analysis of the IGS
objective. Our analysis demonstrates that the IGS optimality
has a direct linkage to the eigenvector node centrality on
influence graphs. As shown in Figure 1 (Left), the red label
above each node gives its eigenvector centrality in G. If we
group all the nodes by their similarity on this centrality, the
clustering output is exactly the same with the one by the IGS
algorithm (Figure 1, top-right). We will show in Section IV this
effect is not coincidental, certain equivalence exists between
the flow rate maximization and the eigenvector centrality based
node clustering. By definition, the eigenvector centrality is
a measure of the influence of a node in the graph, and one
node will receive a high centrality if it connects to other high
influential nodes in the graph [21]. Our findings indicate that to
maximize the total flow rate, high-influential nodes should be
placed in smaller clusters and therefore are more prominent
in the summarization, while low-influential nodes should be
aggregated into large clusters showing little details. This again
conforms well to the goal to make large influence flows visible
in the summarization.

IV. OPTIMAL IGS

In this section, we present a new theoretical analysis to
derive the optimal condition for the IGS objective. Though this
condition is shown to be infeasible due to the discreteness of
the node clustering, a near-optimal solution has been found to
offer lower-bound guarantees. Based on this solution, both an
exact dynamic programming algorithm and two fast heuristic
algorithms are proposed.
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A. Analysis of IGS Objective and Optimality

Consider the IGS objective in Equation (2), it can be
optimized by a divide-and-conquer approach in two steps: 1)
maximize the objective for l = k2, i.e., the full summarization;
2) select l < k2 largest flows out of all the k2 flows. It is
shown in Ref. [4] that, the top 2k flows in the summarization
can occupy more than 99% of the overall flow rate, so that the
divide-and-conquer approach is effective if only l is large.

As below, we start from the expanded form of Equation
(2) under l = k2 by replacing the flow rate with Equation (1).

max
k2∑
s=1

r(ξs) =
k2∑
s=1

∑
vi∈πS(ξs),vj∈πT (ξs)

aij√
|πS(ξs)||πT (ξs)|

(4)

Because the node clustering is disjoint and exhaustive, Equa-
tion (4) is actually the weighted sum of all the entries in A.

max

n∑
i=1

n∑
j=1

aij√
|πC(vi)||πC(vj)|

(5)

It is important to notice that if we define a nor-
malized cluster size vector x of length n by x =
(|πC(v1)|−

1
2 , · · · , |πC(vn)|−

1
2 )T , the IGS objective in Equation

(5) can be written as the quadratic form:

max

n∑
i=1

n∑
j=1

aijxixj = xTAx = xTA∗x (6)

where A∗ = A+AT

2 is the symmetric version of the adjacency
matrix. By the min-max theorem [22], we have

max
xTA∗x

xTx
= λ1

where λ1 is the largest eigenvalue of A∗ (a real symmetric
matrix). Because xTx is constant by

xTx =
n∑
i=1

|πC(vi)|
−1 =

k∑
j=1

|πj |−1 · |πj | = k

We finally obtain

max xTA∗x = k · λ1 (7)

The optimality is achieved when x =
√
kq1, where q1 denotes

the largest eigenvector of A∗ after normalized to a length of
one. The optimal x is then parallel to this eigenvector. Note
that λ1 and all the components in q1 are guaranteed to be
nonnegative by the Perron-Frobenius theorem [22].

Though the optimal IGS condition has been derived, we
further show that this condition is infeasible in practice due to
the discreteness of the node clustering. By the optimal summa-
rization, we should have xi = |πC(vi)|−

1
2 =
√
kq1i where q1i

is the ith component of q1. This leads to |πC(vi)| = k−1q−21i ,
which means that the optimal cluster size of each node vi can
be computed in close form. In the final clustering, because
C(vi) = C(vj) ⇒ |πC(vi)| = |πC(vj)| where C denotes the
optimal clustering. We should have C(vi) = C(vj) ⇒ q1i =
q1j . This is almost impossible for the vector q1 with continuous
value on all components.

Below we present an analysis to approach the optimality by
maximizing the largest component of the objective. We start
from the eigen-decomposition of the real symmetric matrix A∗
by A∗ = QΛQT , where Λ is the diagonal matrix composed
by diag(λ1, · · · , λn). λi is the ith largest eigenvalue of A∗,
and Q = (q1, · · · , qn) is an orthogonal matrix having QTQ =
QQT = I where qi is the ith eigenvector of A∗. Substitute
the decomposed form for A∗ in Equation (6) and define a new
vector z = QTx which is a linear transformation of the vector
x by the matrix Q, the IGS objective is reduced to:

max xTA∗x = xTQΛQTx = zTΛz =
n∑
i=1

λiz
2
i (8)

Recall xTx = k, we obtain the constraint for (8) as:

zT z = xTQQTx = xTx = k =
n∑
i=1

z2i (9)

Consider this constraint optimization problem, because λ1 ≥
λ2 ≥ · · · ≥ λn where λ1 is ensured to be nonnegative, we
can approach the optimality of the IGS objective by only
maximizing z1. The resulting objective is guaranteed to have a
lower bound compared to the maximal IGS objective of k ·λ1.

Theorem 1 (Performance Guarantee): Define the cluster size
vector to maximize z1 by x∗. For any other feasible cluster size
vector x, the following performance lower bound holds for x∗.

x∗TA∗x∗

xTA∗x
≥ (max z1)2

k
+ [1− (max z1)2

k
] · minni=2 λi

λ1
(10)

Proof: See Appendix A1.

B. k-Segmentation Problem

Now the IGS problem is converted into maximizing z1,
which can be decomposed into

max z1 = qT1 x =

n∑
i=1

q1i|πC(vi)|
− 1

2 =

k∑
j=1

|πj |−
1
2

∑
C(vi)=j

q1i

(11)

We will show in this part that Equation (11) is equivalent to
a k-segmentation problem on the components of q1. Without
loss of generality, we assume vector q1 as sorted, i.e., q11 ≥
· · · ≥ q1n ≥ 0. Then the cluster order lemma holds.

Lemma 1 (Cluster Order): There exists a clustering that
maximizes z1 and satisfies the below inequality.

i ≤ i′ ⇒ q1i ≥ q1i′ ⇒ |πC(vi)| ≤ |πC(vi′ )
| (12)

Proof: See Appendix B.

The cluster order lemma implies that the node with a
smaller index after the descent sorting (i.e., a larger eigenvalue
centrality by the component on q1) should be placed in the
node cluster with a smaller size.

Theorem 2 (k-Segmentation): There exists a clustering that
maximizes z1 and forms a k-segmentation over the full node
index list (i.e., [1,. . . ,n]). The k-segmentation means that the

1The proof of all the lemmas and theorems are available in the Appendix
of http://lcs.ios.ac.cn/%7eshil/paper/ICDE16Long.pdf
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components sorted decreasingly: q11≥ ≥q1n

……
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cluster size increasing: |π1|≤ ≤|πk|

Fig. 2. An illustration of the optimal node clustering strategy. q1, the largest
eigenvector of A∗ is segmented into k continuous intervals.

q1 components sorted decreasingly: q11≥ ≥q1n

1i

GCF
-2

GCF

∑ ISO
0.5ISO

Fig. 3. Example of the proposed algorithms for the k-segmentation.

node indices of each cluster must fill a continuous index
interval. Mathematically, the below inequality holds:

Imin(1) ≤ Imax(1) < Imin(2) ≤ Imax(2) < · · · ≤ Imax(k)
(13)

where Imin(j) (Imax(j)) denote the minimal (maximal) node
index of cluster j. The clusters are indexed incrementally by
their minimal node index Imin(j).

Proof: See Appendix C.

By Theorem 2, the optimal node clustering is equivalent
to a k-segmentation of the ordered component list on q1, as
depicted in Figure 2. An extended analysis is conducted in Ap-
pendix D which shows that the best k-segmentation is achieved
when both between-cluster and within-cluster variances on the
components of q1 are minimized.

C. Algorithms

To solve the k-segmentation problem, three algorithms are
proposed by taking different level of results in our analysis.

Dynamic Programming (DP). Examine the objective in Equa-
tion (11). If we define the gain from a cluster πj = [sj , sj+1)
by F (πj) = |πj |−

1
2

∑
C(vi)=j

q1i = F (sj , sj+1), the ob-
jective is written as the sum of gain from all clusters. The
segmentation problem can be solved by the standard dynamic
programming algorithm [23] under the following equation.

M(j, i) = max
1≤i′≤i−1

[M(j − 1, i′) + F (i′ + 1, i)] (14)

where M(j, i) denotes the maximal objective achieved in seg-
menting the first i eigenvector components into j segments. DP
algorithm can reach the optimality of z1, but the complexity
is as high as O(n2k), which inhibits its usage in large scale.

Greedy Curve Fitting (GCF). Recall Equation (7), the opti-
mal cluster size vector x should be in parallel with the largest
eigenvector of A∗. The GCF algorithm combines this condition
with the k-segmentation requirement and manage to draw the

Algorithm 1: Greedy Curve Fitting ∼ GCF(A, n, k).
Input : A (adjacency matrix), n, k (# of nodes/clusters)
Output: Π = {|πi|}ki=1 (size of each cluster)
q1 ← largest eigenv(A+AT

2 ), sort {q1i}ni=1 dec.1
Len←

√
k, k′ ← 0, best r ← k // init2

while k′ 6= k do3
/* outer iteration to adjust clusters */
s1 ← 1, sk+1 ← n+ 1 // separators, πj = [sj , sj+1)4
for j ← 1 to k do5

/* inner iteration to fit the size of cluster j */
ϕj ← min(b(Len · q1sj )−2c, n+ 1− sj)6
sj+1 ← sj + ϕj7
if sj+1 ≥ n+ 1 or j ≥ k then8

sj+1 ← n+ 1, k′ ← j, break9

Len← Len ·
√

k
k′ , cur r ← |k′ − k| // update10

if cur r < best r then11
best r ← cur r, |π1| · · · |πk′ | ← ϕ1 · · ·ϕk′12

return |π1|, · · · , |πk′ |13

closest line of x to the target eigenvector. An example is
illustrated as the blue dashed lines in Figure 3. The algorithm
starts by adding a horizontal line from the highest eigenvector
component to represent the first cluster. The cluster size is
computed in a greedy manner by |π| = (Len · q)−2 to meet
the parallelism, where Len is the parameter to tune the curve
fitting. The following lines are drawn in a similar way until
all nodes are clustered. After each iteration, the total number
of clusters is computed as k′. The variation of k′ from the
desired cluster number k is used to update the parameter Len
in the next iteration, until k clusters are obtained in the GCF
output. Algorithm 1 gives the algorithm description.

Iterative Stepwise Optimization (ISO). By the analysis in
Appendix D, the IGS optimality is achieved when

q1i =
H

L ·
√
|πj |

s.t. C(vi) = j (15)

where H is constant and L depends on the node clustering.

Under this condition, the desired cluster size for each node
can be explicitly computed from the corresponding component
on q1, though it also relates to the overall clustering assignment
through L. The ISO algorithm starts from the initial clustering
by a uniform k-segmentation and iteratively meets the require-
ment of Equation (15) for each cluster, from π1 to πk. After
each round, L is updated and the iteration is repeated until no
cluster change can increase the IGS objective. The red lines in
Figure 3 illustrates an example of the ISO algorithm. Appendix
D gives a detailed algorithm derivation.

V. DYNAMIC IGS

The previous section has solved the static IGS problem that
given the size of clustering (k), we can compute an optimal
summarization that maximizes the influence flows in the graph.
However, in real-world usages (e.g., on the citation graph),
most users are not satisfied with one static summarization
for each graph. Instead, to complete complex analytical tasks,
they need to access multiple summarizations on the same
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Fig. 4. Illustrative examples on the dynamic visual summarization: (a) by the
algorithm to maximize stability (Γ = 0.75,

∑
r = 6.1); (b) by the extended

IGS algorithm to satisfy the dynamic update rule while gaining a larger total
flow rate (Γ = 0.5,

∑
r = 6.85); (c) by the algorithm that violates the

dynamic update rule (Γ = 0,
∑
r = 5.84).

graph, to examine, compare and reason the flow patterns in
different granularities. Computing static summarizations in
varying k can be a trivial solution, but the user will suffer from
the context-losing problem when the displayed summarization
changes much across different settings. In this section, we seek
computational methods for the dynamic summarization which
ensures the smooth visual transition between summarizations
apart from optimizing the IGS objective.

A. Problem

Before formulating the dynamic summarization problem,
we first define the key measure of visual stability.

Definition 1 (Visual Stability of Transition): Consider
two summarizations M and M ′ on the same graph, whose
clustering results are denoted by

∏
= {π1, · · · , πk} and∏′

= {π′1, · · · , π′k′} respectively. Both πj and π′j denote a
single cluster containing several nodes. The visual stability of
transition from M to M ′ is defined by the ratio of unchanged
clusters in the former summarization M :

Γunweighted(M →M ′) =
|
∏⋂∏′ |
|
∏
|

Γweighted(M →M ′) =
||
∏⋂∏′ ||
||
∏
||

(16)

where | · | denotes the number of clusters and || · || denotes
the number of nodes in all clusters. This definition is valid
mainly because we target at the visualization-level stability.
In the typical unweighted definition, each cluster is drawn as
a single element and the stability is defined as the ratio of
unchanged visual elements. Meanwhile, the stability of the
reversed transition M ′ → M is proportional to the stability
of M →M ′, by a factor of k

k′ . Therefore, the optimization of
the dynamic summarization in both directions will lead to the
same result, and in the following we mainly consider the case
with a increasing number of clusters (i.e., k′ > k).
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Fig. 5. The trade-off between (a) the sum of flow rate and (b) the stability of
transition in dynamic summarizations when the number of clusters increases
from 10 to 80. The result is obtained on a 10892-node graph from ArnetMiner.

By Definition 1, the maximal stability of transition can
reach k−1

k where only one cluster is changed in the previous
summarization. An example is given in Figure 4(a), from M
with k = 4 clusters, the next summarization M ′ with k′ = 6
clusters carries k − 1 = 3 clusters from M without any
change (π1, π2, π3). The other k′ − (k − 1) = 3 clusters in
M ′ (π5, π6, π7) are split from the remaining cluster in M
(π4). When the static IGS objective is considered, the best
guess is that the new summarization after the transition with
the maximal stability can also maximize the sum of flow rate
among all the summarizations with k′ clusters. Unfortunately,
this guess is far from the truth: the experiment result in Figure
5(a) shows that, the summarization algorithm to maximize
the stability (the red line) quickly falls behind the static IGS
algorithm (the black line) in the sum of flow rate, when the
number of clusters increases from k = 10. On the last trial
of k′ = 80, the flow rate of the maximal stability algorithm
is only 54.1% of that of the static IGS algorithm. On another
extreme, the static IGS algorithm maximizing the flow rate
(using Algorithm 1, the greedy curve fitting) does not maintain
the stability of transition. In Figure 5(b), the stability (the black
line) drops to almost zero immediately when the number of
clusters increases. Notice that, the stability is computed in
multiple steps: k′ = 10 ∼ 19 is compared with k = 10;
k′ = 20 ∼ 39 is compared with k = 20; k′ = 40 ∼ 80 is
compared with k = 40.

The preliminary result indicates that the stability of tran-
sition and the sum of flow rate are almost two conflicting
objectives and there is no single algorithm that can optimize
them simultaneously. To be able to reduce these objectives into
a solvable problem, we define the dynamic update rule that
turns the stability requirement into an inequality constraint.

Definition 2 (Dynamic Update Rule): Consider two sum-
marizations M and M ′ on the same graph, whose cluster-
ing results are denoted by

∏
= {π1, · · · , πk} and

∏′
=

{π′1, · · · , π′k′} respectively (k′ > k). The transition M →M ′

is said to satisfy the dynamic update rule if for any cluster in
M ′, denoted by π′j′ ∈

∏′, there exists only one cluster in M ,
denoted by πj ∈

∏
, that meets πj ⊇ π′j′ .

The key of this rule is to suggest that for the dynamic
summarization with an increasing size, the clusters can only
be split, but not merged. Conversely, for the case with a
decreasing size, the original clusters can only be merged, but
not split. For example, the summarization by the dynamic
IGS algorithm in Figure 4(b) obeys this rule, while the
counterexample in Figure 4(c) violates the rule with both split
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and merge of clusters in the transition. Compared with the
method to maximize stability, the dynamic update rule loosens
the requirement into a stability lower bound.

Lemma 2 (Stability Lower Bound): For any transition from
the summarization M with k clusters to the summarization M ′
with k′ clusters (k′ > k), there exists a lower bound of 2− k′

k
for the stability of transition, if only the transition satisfies the
dynamic update rule.

Proof: See Appendix E.

Figure 5(b) depicts this stability lower bound. Notice that,
the bound will drop below zero when k′ > 2k. Therefore, we
do not apply the dynamic summarization when the number of
new clusters is too far from the initial setting. This is the reason
why we examine the stability of transition by steps in Figure
5(b). Now we formally define the dynamic summarization
problem as a constrained optimization problem.

PROBLEM 2: DYNAMIC INFLUENCE GRAPH SUMMARIZATION

Given: 1) A, the topology adjacency matrix of the maximal
influence graph G; 2) an initial summarization M specified
by the cluster index of all nodes in G, denoted by C(vi) (i =
1, · · · , n, |C(vi)| = k ≤ n); 3) k′ (n ≥ k′ > k), the expected
number of clusters in the dynamic summarization M ′;

Compute: C ′(vi) (i = 1, · · · , n) where |C ′(vi)| = k′, the
cluster index of all nodes in the dynamic summarization M ′;

By optimizing constrained flow rate maximization objective:

max
k′2∑
i=1

r(ξ′i) s.t. M →M ′ obeys Definition 2 (17)

where ξ′i (i = 1, · · · , k′2) denotes all the flows in M ′. Notice
that we do not consider the selection of flows here because this
has been solved in the second stage of the static IGS problem.

Solving the dynamic IGS problem leads to a better trade-off
between the flow rate objective and the stability requirement,
as illustrated in the example of Figure 4(b). A preview of the
performance measure is shown in Figure 5. The dynamic IGS
algorithm (the blue line) obtains a larger flow rate compared
with the algorithm to maximize stability (Figure 5(a)), and
achieves a flow rate of at least 70.3% of the static IGS
algorithm. When the computation is performed in 3 steps
(10∼19, 20∼39, 40∼80), the total flow rate increases to 82.3%
of the static IGS algorithm at a minimum (the dashed line in
Figure 5(a)). In Figure 5(b), the stability of the dynamic IGS
is between the static IGS and the maximal stability, and higher
than the theoretical lower bound in Lemma 2.

B. Solution Framework and Analysis

To solve the dynamic IGS problem, we propose a bottom-
up solution framework. Compared with the straightforward
method that starts from a high-level summarization and grows
the number of clusters in a top-down manner, our framework
takes an opposite strategy. We start from a fine-grained low-
level summarization and agglomeratively merge the node clus-
ters to obtain coarser-grained summarizations in a bottom-
up manner. The reason for this bottom-up summarization
framework is two-fold. First, by this design, both the theoretic

Fig. 6. The agglomerative dynamic summarization framework.

analysis and the summarization algorithm can be naturally ex-
tended from those in solving the static IGS problem, ensuring
a coherent methodology in our work. Second, through the
experiments in Section VI, the bottom-up framework enjoys
a much lower computational complexity and better trade-offs
in the quantitative performance, compared with the top-down
dynamic summarizations.

Figure 6 illustrates the detailed steps of the proposed
framework. In Stage I, we pick a number of cluster (k∗) that
is large enough for the user’s analysis task, then the static
IGS algorithm in Section IV is applied to compute an optimal
summarization. In the next stage, we decrease the number of
clusters to create multiple dynamic summarizations in coarser
granularities (e.g., k∗ → k1 → · · · → k5). The result is the
clustering tree shown in the center of Figure 6. Users are
plugged in from Stage III, in which they start from an initial
granularity of summarization (e.g., k = 2). The framework
supports two user interactions for smooth navigation of the
summarization. In the first interaction scenario (Stage IV.A),
the user can select a set of nodes in the current summarization
and expand them locally into the next hierarchy according to
the clustering tree (e.g., the cluster π). In the second interaction
scenario (Stage IV.B), the user can specify a larger number of
clusters to enrich the graph globally (e.g., k = 6).

By this agglomerative summarization framework, the dy-
namic IGS problem can be analyzed as the same quadratic
optimization problem with Section IV-A. Take the first-level
dynamic summarization in stage II as an example, the input is
the optimal summarization M∗ with k∗ clusters, and define the
desired output as the new summarization M with k clusters
(k∗ > k). According to the dynamic update rule, the clusters
in M∗ can only be merged but not split. Therefore, the
dynamic summarization from M∗ to M can be seen as the k-
clustering over the aggregated graph of M∗, with the objective
to maximize the sum of flow rate in M .
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According to (5), the sum of flow rate in M is written as:
n∑
i=1

n∑
j=1

aij√
|πC(vi)||πC(vj)|

(18)

where πi (i = 1, · · · , k) denote the clusters in M , C(vi) (i =
1, · · · , n) defines the clustering of all the nodes in M .

Define a k∗ × k∗ flow rate matrix B as the output of the
optimal summarization M∗ where each entry bij has

bij =

∑
s∈π∗i

∑
t∈π∗j

ast√
|π∗i ||π∗j |

(19)

where π∗i (i = 1, · · · , k∗) denote the clusters in M∗.
If we define a dynamic cluster size vector by y =

(

√
|π∗1 |
|πC(π∗1 )|

, · · · ,
√

|π∗
k∗ |

|πC(π∗
k∗ )
| ), then the total flow rate in (18)

can be constructed as the quadratic form again:
k∗∑
i=1

k∗∑
j=1

bijyiyj = yTBy = yTB∗y (20)

where B∗ = B+BT

2 is the symmetric version of the flow rate
matrix. The objective becomes a similar form to the static IGS.

max yTB∗y s.t. yT y = k (21)

Applying the same analysis with Section IV-A, the maximality
is achieved when y =

√
kq1, parallel to the unit vector q1,

which is the largest eigenvector of B∗.

C. Algorithm

Due to the similarity with the static IGS problem, the
principle of the algorithms proposed in Section IV-C can be
extended to solve the dynamic IGS problem. In Algorithm
2, we adapt the GCF algorithm to the dynamic scenario.
Three changes are made for such an adaptation: 1) the input
adjacency matrix A of G is replaced by the flow rate matrix
B of M∗ (line 2); 2) the sorting applies on { q1i√

|π∗i |
}k∗i=1 now

(line 3); 3) the initial cluster size of |π∗i | is taken into account
when fitting the requirement of the target clusters (line 10).

There is another notable difference from the static IGS
problem: Theorem 2 is violated because the initial clusters
have unequal size now. Therefore, it is not necessary to stay
with continuous segmentations over the sorted eigenvector. In
other words, GCF is not guaranteed to approach the optimality
in the dynamic scenario. With this observation, we propose
another packing-based algorithm for more elaborate clustering.
Though the performance is slightly improved in some cases
on the flow rate objective, this tiny gain does not justify its
increased complexity in computing more elaborate dynamic
summarizations (Section VI).

VI. EVALUATION

We evaluate the proposed methods in four dimensions:
1) the performance measures (e.g., flow rate and stability)
achieved by both the optimal and the dynamic IGS algorithms;
2) the algorithm scalability by complexity analysis and the em-
pirical computation time; 3) the usefulness of static/dynamic
influence summarizations by case studies; 4) the effectiveness
in completing real-life tasks through user studies.

Algorithm 2: Dynamic GCF ∼ GCF GCF(A, n, k∗, k).
Input : A (adjacency matrix), n (# of nodes), k∗, k (#

of initial/target clusters)
Output: Π∗ = {|π∗i |}k

∗

i=1 (size of initial clusters),
Π = {|πi|}ki=1 (size of target clusters)

Π∗ ← GCF(A, n, k∗) // initial clustering1
B ← new flowrate matrix(A,Π∗)2
q1 ← largest eigenv(B+BT

2 ), sort {q1i/
√
|π∗i |}k

∗

i=13
Len←

√
k, k′ ← 0, best r ← k // init4

while k′ 6= k do5
/* outer iteration to adjust clusters */
s1 ← 1, sk+1 ← k∗ + 1 // separator, πj = [sj , sj+1)6
for j ← 1 to k do7

/* inner iteration to fit the size of cluster j */
Φj ← (Len · q1sj )−2, ϕj ← 08
while ϕj ≤ k∗ − sj and Φj > 0 do9

Φj ← Φj − |π∗sj+ϕj |, ϕj ← ϕj + 110
sj+1 ← sj + ϕj11
if sj+1 ≥ k∗ + 1 or j ≥ k then12

sj+1 ← k∗ + 1, k′ ← j, break13

Len← Len ·
√

k
k′ , cur r ← |k′ − k| // update14

if cur r < best r then15
best r ← cur r, |π1| · · · |πk′ | ← ϕ1 · · ·ϕk′16

return Π∗ = {|π∗i |}k
∗

i=1, Π = {|πi|}ki=117

TABLE II. SAMPLE INFLUENCE GRAPHS BY CITATION RELATIONSHIP.

Source paper title Venue/Year Node Link
Manifold-ranking based image
retrieval

ACM Multi-
media 2004

598 895

Stochastic High-Level Petri
Nets and Applications

IEEE TC
1988

2509 5256

Mining Frequent Patterns with-
out Candidate Generation

SIGMOD
2000

10892 22301

On Power-law Relationships of
the Internet Topology

SIGCOMM
1999

33494 86398

A. Performance Comparison

We collect influence graphs over the paper citation re-
lationship from two mainstream academic search databases,
ArnetMiner [3] and CiteSeerX [2]. Each database contains
multi-million papers/citations. To compare with the result
in Ref. [4], we start from the same citation graphs from
ArnetMiner, as listed in Table II. Four static summarization
algorithms are executed initially: Greedy Curve Fitting (GCF)
and Iterative Stepwise Optimization (ISO) which we propose
to approximate the optimal IGS objective, Dynamic Program-
ming (DP) which is proved to achieve the optimality, and the
algortihm using the symmetric version of Nonnegative Matrix
Factorization (NMF) in Ref. [4], which has been shown to
greatly outperform classic graph clustering algorithms on the
flow rate objective. GCF/ISO/DP are tested in single thread on
a modern desktop with 4-core Intel i7-4790 CPU and 16GB
of memory. NMF is run in 32 threads with the same setup as
Ref. [4], on a server with two 8-core 2.9GHz Intel Xeon E5-
2690 CPU and 384GB of memory, because NMF requires large
memory and parallel computing environment to complete. On
each graph, we test four number of clusters: 10, 20, 40 and
80. The flow rate is summed from all flows, i.e., l = k2.
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Fig. 7. Sum of flow rate in the static summarization of sample citation influence graphs (ArnetMiner).
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Fig. 8. Sum of flow rate and stability by the dynamic summarization algorithms (ArnetMiner).
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Fig. 9. Sum of flow rate in 1296 citation influence graphs (CiteSeerX).

Figure 7(a)∼(d) depicts the achieved IGS objective on
four sample graphs. The solid lines in different symbols/colors
show the result from each of the four algorithms. GCF, ISO and
DP are quite close in every sample, with the largest difference
of 7.5% happened at k = 80 on the 598-node graph (the case
with the smallest per-cluster number of nodes). The result by
NMF is significantly different from our proposed algorithms.
In most cases, NMF leads to a much smaller flow rate, less
than 50% of the proposed algorithms. The only exception
happens again on the case with the smallest per-cluster number
of nodes. The three dashed lines on top of the solid lines
depict the largest component (L.C.) of the flow rate by the
proposed algorithms, i.e., λ1z21 in (8). In two cases, the largest
component is almost the same with the flow rate (less than 2%
difference); in the other two cases, the largest component is
moderately higher. This shows that our algorithms to maximize
the largest component of flow rate is valid, because either the
largest component can represent the flow rate, or the other
smaller components (eigenvalue) are possibly negative. The
topmost dotted line shows the theoretical upper bound (kλ1)
of the total flow rate. Though our analysis proves the upper
bound can not be achieved, the performance result indicates

that the actual flow rate obtained is comparable and in most
cases larger than 50% of this bound.

Figure 9 provides more results on the data set of CiteSeerX.
We collect all ICDE/TKDE papers in CiteSeerX that can influ-
ence more than 1000 papers both directly and indirectly. This
generates 1296 influence graphs with size varying from 1001 to
75847. We categorize these graphs into groups by an interval of
1000-node in graph size, i.e., [1001, 2000],· · · ,[75001, 76000].
The graph size has a near-Gaussian distribution with a heavier
head, as shown in the red line at the bottom of Figure 9. The
other two solid lines plot the average flow rate achieved in
each group by GCF and ISO. The result shows that on more
cases in the CiteSeerX dataset, the two proposed algorithms
still achieve almost the same performance on the flow rate
objective. Again, the largest component is very close to the
sum of flow rate, from the group of 1000 to 50000 nodes, the
average difference is below 10%. For the group beyond 50000
nodes, the group size is too small to provide stable results, as
shown by the large jitters at the end of all lines. We do not
compare with DP and NMF in more samples because of their
high computational complexity.

In another scenario, we test four IGS algorithms to generate
dynamic influence graph summarizations as the number of
clusters increases from k = 10 to k = 80 with an increment
of 5. All the algorithms use GCF to compute the initial
static summarization at k = 80 (or k = 10). Two dynamic
algorithms by cluster packing (GCF PACK) and iterative GCF
(GCF GCF) start from k = 80 and incrementally merge clus-
ters until k = 10. Another is the reversed version of GCF GCF
(GCF GCF INC), by starting from the smallest setting of
k = 10 and invoking a constrained version of GCF to compute
summarizations in larger k. The last algorithm implements the
static GCF, i.e., running an independent result at each k. Figure
8(a)(b) shows the sum of flow rate achieved by each algorithm
as the number of clusters changes. The two merge-based
dynamic algorithms obtain better results than the split-based

1082



10 20 30 40 50 60 70 80
0.01

0.1

1

10

100

1000

10000

To
ta

l C
om

pu
ta

tio
n 

Ti
m

e 
(s

)

# of Cluster (k)

 GCF  ISO
 DP  NMF

# of Node = 10892

(a)

10 20 30 40 50 60 70 80

0.1

1

10

100

1000

10000

100000

# of Node = 33494×30

To
ta

l C
om

pu
ta

tio
n 

Ti
m

e 
(s

)

# of Cluster (k)

 GCF  GCF (×30)
 ISO  DP  NMF

# of Node = 33494

(b)

10 20 30 40 50 60 70 80

0.01

0.1

1

10

100

1000

Sp
lit

 T
im

e 
(s

) /
 #

 o
f I

te
ra

tio
n

# of Cluster (k)

 GCF_eigen_time  GCF_sort_time
 GCF_iter_time  GCF_#Iteration
 ISO_iter_time  ISO_#Iteration

# of Node = 33494

(c)

10 20 30 40 50 60 70 80
1E-3

0.01

0.1

1

To
ta

l C
om

pu
ta

tio
n 

Ti
m

e 
(s

)

# of Cluster (k)

 GCF
 GCF_PACK
 GCF_GCF
 GCF_GCF_INC

# of Node = 33494

(d)
Fig. 10. Total computation time in summarizing sample citation influence graphs (ArnetMiner).

TABLE III. COMPUTATIONAL COMPLEXITY OF IGS ALGORITHMS.

Algorithm Time Complexity Space
Matrix Oper. IGS Opt. Dynamic Update Complexity

DP O(n · logn) O(n2k) O(n2k) O(nk)
ISO/Pack. O(n · logn) O(n ·#I) O(k∗2 ·#I) O(n)

GCF O(n · logn) O(k ·#I) O(k∗2 · logk∗) O(n)
NMF O(n2) O(nk2 ·#I) O(n2) O(n2)

algorithm. These two algorithms also achieve moderately close
performance to the independent optimal IGS algorithm. On
the stability measure between the dynamic summarizations, as
depicted in Figure 8(c)(d), all three dynamic IGS algorithms
perform much better than the static GCF without considering
the stability. GCF GCF is generally better in most cases.

B. Algorithm Complexity

In Table III, we list the theoretical complexity of the three
static algorithms proposed here, and the NMF algorithm in
Ref. [4] for comparison. The input maximal influence graph is
assumed to be sparse, i.e., the number of edges is in a similar
scale with the number of nodes (n). The time complexity in
each static summarization is mainly composed of two parts: 1)
the operations on matrix, including the decomposition and the
sorting of eigenvector; 2) the iteration for IGS optimization.
The dynamic update refers to the dynamic computation time
of each k′ after the initial static summarization (Section V).

On the three static algorithms, the time for the matrix
operation is the same. Both finding the largest eigenvector [24]
and sorting it takes O(n·logn) time. NMF requires O(n2) as it
computes AAT . In the second part, DP takes O(n2k) time to
complete all iterations. ISO and GCF require O(n) and O(k)
time in each iteration respectively. The number of iterations
(#I) is unpredictable, but as shown in Figure 10(c), GCF takes
much less iterations than ISO. NMF spends O(nk2) time in
each multiplicative iteration and the number of iterations can
be hundreds of times larger than ISO/GCF algorithms.

On the dynamic summarization, DP and NMF do not
explicitly support, so they take the same time with the static
algorithm, using the highest complexity between the matrix
operation and the IGS optimization. GCF takes a similar
complexity form to its static version, but the number of nodes
is replaced by k∗ (the largest number of clusters in the dynamic
update), leading to O(k∗2·logk∗) (the eigenvector computation
time, because the initial summarization graph can be dense).
ISO takes the same eigenvector time, but it requires O(k∗2)
time in each iteration of the IGS optimization, which in total
can be larger than the eigenvector time.

On the space requirement, ISO/GCF only stores one sparse
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Fig. 11. Computation time to summarize 1296 citation graphs (CiteSeerX).

matrix in O(n) size. DP explicitly requires O(n2) to store the
table F , but it can be reduced to O(nk) by trading-off the
computation time. NMF needs to store a near-dense matrix of
AAT , so the space complexity is O(n2).

We also evaluate the algorithm complexity through ex-
periments. On the total computation time, Figure 10(a)(b)
depicts the comparison among four IGS algorithms. Though
DP achieves the maximal flow rate, it suffers from the high
computation overhead of O(n2k). NMF is one magnitude
better, because it requires O(nk2) time for each iteration, and
the sparsity of the matrix reduces the decomposition time.
However, we caution that the performance of NMF is obtained
on a server machine with 32 threads, and even then, it requires
an hour to compute on a 30000-node graph. This is not feasible
to deploy in the large-scale influence summarization website
hosting more than 100,000 graphs of such size. Alternatively,
the proposed algorithm of ISO is two-magnitude faster than
NMF, and GCF is three-magnitude faster, aligning well with
the theoretical analysis. GCF only spends 0.46 seconds to
compute the summarization of a 30000-node graph. Though
the influence graph in our data set seldom exceeds a size of
30000 nodes, we proceed by replicating the 33494-node graph
30 times. As shown in the dashed line of Figure 10(b), the
GCF algorithm only takes 16∼18 seconds to summarize the
million-node graph under all cluster size settings. This makes it
feasible to be deployed in large scale. The split time in Figure
10(c) shows that the major time cost of GCF is spent on the
eigenvector computation and the iterative IGS optimization.
We have repeated the performance test on 1296 graphs from
the CiteSeerX dataset. As shown in Figure 11, the computation
time by GCF and ISO is only slightly larger than the linear
time to the number of nodes, which corresponds well to the
above sampled test and the complexity analysis.
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Fig. 12. Dynamic summarizations by the GCF algorithm in varying settings of k.

(a) k=5 (b) k=7 (c) k=12
Fig. 13. Static summarizations by the NMF-based method in varying settings of k.

On dynamic IGS algorithms (Figure 10(d)), both the static
GCF and the split-based GCF (GCF GCF INC) have a nearly
constant computation time at each number of clusters (k).
Their dynamic computation will suffer from a huge increase of
time cost when every k is to be executed. On the other hand,
the dynamic IGS by merge-operations spends much shorter
time after the initial computation on the largest k. The best
algorithm by the iterative GCF (GCF GCF) only requires less
than 0.1% of the initial computation time at each smaller k.
Computing the dynamic IGS from k = 79 to k = 10 takes
almost the same time with only computing k = 80.

In summary, due to the better trade-off on the flow rate
objective, the visual stability and the computational complex-
ity, we recommend GCF in the static computation of influence
graph summarization, and the iterative version of GCF for the
dynamic update of influence graph summarizations.

C. Case Study

We apply our GCF method on the winner of ICDE’11 Influ-
ential Paper Award entitled “The Skyline Operator”, which was
published in ICDE 2001. This paper opened a new research
topic by framing the skyline concept in the database setting.
Figure 12(a) gives an initial high-level summarization of this
paper’s influence in the CiteSeerX database. All the 7435
papers directly or indirectly citing this work are grouped into
5 clusters. The largest cluster highlighted in red contains 7418
papers which are mostly loosely related to the skyline topic,
e.g., web information retrieval (the main keyword displayed),
sentiment analysis, etc. The other four clusters are on the
core topic of skyline query, which are further divided into
two hierarchies. When we drill down to finer granularities by
setting k = 10, 15 in Figure 12(b)(c), more closely related
skyline works are split from the large cluster and they construct

a more detailed two-hierarchy influence pattern. As shown in
Figure 12(c), the first hierarchy contains three other influential
papers on this topic: “Shooting stars in the sky” in VLDB’02,
“An optimal and progressive algorithm for skyline queries”
in SIGMOD’03 and “Efficient distributed skylining for web
information systems” in EDBT’04. In the second hierarchy,
most of the four clusters published in 2006∼2011 are related
to the skyline subspace analysis, varying from retrieval to
optimality and bandwidth.

In comparison, we apply the previous NMF method on
the same influence graph. Figure 13 gives the summarization
result in three similar settings. Quite differently, these graphs
group all the skyline works in the same cluster, one-hop from
the original ICDE’01 paper. Multiple hierarchies are detected,
which stress more on the research indirectly influenced by
the skyline technique. For example, in Figure 13(c), after the
skyline research, two main threads are detected, both related to
web retrieval and large-scale processing. Though we can not
judge which method (GCF or NMF) is better for various types
of end users, in the objective of analyzing the original topic
evolution on the source paper, the GCF method proposed here
is more relevant. As discussed in Ref. [4], NMF is equivalent to
the kernel k-mean clustering, which tries to preserve a balanced
cluster size, so that more influence on multiple hops can be
summarized. In contrast, the GCF method optimizing the total
flow rate isolates the most influential nodes in the graph to
create small clusters and provide a finer granularity on the
most related nodes to the source.

Another difference comparing Figure 12 and Figure 13
lies in the stability of the dynamic summarization. The GCF
method maintains a much better mental map in switching from
the high-level picture of Figure 12(a) to more details in Figure
12(b)(c), while the summarization results by NMF are less
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(a) Influence Path Similarity (b) Completion Time

Fig. 14. User study results on comparing stable and unstable summarization.

stable in both graph structure and the composition of clusters.

D. User Experiment

We conduct a controlled experiment to quantify the impact
of graph stability on the user’s ability to understand the influ-
ence patterns and evolvements. On the same influence graph,
we apply the static and dynamic version of GCF algorithms
separately. Two groups of summarization are generated, each
with five graphs in increasing granularities. The first group
corresponds to the stable summarization and the second group
is unstable. We recruited 20 users with prior knowledge on
the node-link graph and asked them to read the graphs and
write down at most four influence paths from the source paper
(by the topic keyword). The study follows a between-subject
design with 10 users on each group.

Figure 14(a) depicts the pairwise cosine similarity be-
tween the user answered influence path vector. The stable
group in the left has a relatively larger average similarity
and smaller variance (0.89±0.084) than the unstable group
in the right (0.82±0.11). Figure 14(b) indicates that both
the average and the standard error of the task completion
time in the stable group (258.4±53.0) is smaller than the
unstable group (327.5±89.2), though the difference is not
statistically significant, F (1, 18) = 2.243, p = 0.152. These
results suggest that by the stable summarization, the user is
more likely to retrieve consistent information than working
with the unstable summarization. Users also require more
cognitive efforts reading the unstable summarization.

VII. CONCLUSION

This paper proposes a new suite of algorithms for the in-
fluence graph summarization. Through an in-depth analysis on
the IGS objective, it is shown that the flow rate maximization
objective implicitly advocates separating and augmenting the
flow pattern of key influencers in the summarization, defined
by their eigenvector centrality in the graph. Compared with the
sparse existing work in this area, our method bears superiority
in several aspects, including the consistently better optimal-
ity, the near-linear computational complexity that allows the
processing of million-node influence graphs, and the dynamic
summarization finding a good trade-off between the summa-
rization quality (i.e., the sum of flow rate) and the viewing
stability upon user’s interactive navigation. Experiment results
on real-life citation networks validate the theoretical result
and suggest the advantages of our method for end users.
First, it helps focus on the topic-relevant part of the influence
graph, and second, the consistency of the information gain is
improved when the dynamic summarization method is applied.
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