
Coloring Embedder: a Memory Efficient Data
Structure for Answering Multi-set Query

Tong Yang†‡, Dongsheng Yang†, Jie Jiang†, Siang Gao†, Bin Cui†‡, Lei Shi§, Xiaoming Li†
†Department of Computer Science, Peking University, China

‡National Engineering Laboratory for Big Data Analysis Technology and Application (PKU), China
§Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, China

Abstract—Multi-set query is a fundamental issue in data
science. When the sizes of multi-sets are large, exact matching
methods like hash tables need too much memory, and they cannot
achieve high query speed. Bloom filters are recently used to
handle big data query, but they cannot achieve high accuracy
when the memory space is tight. In this paper, we propose a new
data structure named coloring embedder, which is fast, accurate
as well as memory efficient. The insight is to first map elements to
a high dimensional space to almost eliminate hashing collisions,
and then use a dimensional reduction representation, which is
similar to coloring a graph, to save memory. Theoretical proofs
and experimental results show that compared to the state-of-the-
art, the error rate of the coloring embedder is thousands of times
smaller even with much less memory usage, and the query speed
of the coloring embedder is about 2 times faster. The source code
of coloring embedder is released on Github.

I. INTRODUCTION

A. Background and Motivation

Given k sets S1, S2 . . .Sk with no intersection and an

element e from one of those sets, multi-set query is to query

which set e belongs to. The formal definition is as follow.

Multiset query: U is the universe of elements, i.e., U =
{e1, e2, ...ei..., em}, where ei can be a string, an integer, or an

IP address. U can be divided into s disjoint sets S1, S2, ..., Ss,

such that ∀i, j, Si ∩ Sj = ∅, and S1 ∪ S2 ∪ ... ∪ Ss = U . The
membership of e is defined as a function f : U �→ {1, 2, ..., s},
such that f(e) = i if e ∈ Si, where i is also defined as the

set ID of e. For any element e ∈ U , the multi-set query is

to retrieve its set ID, which is denoted as f̂(e). Our goal is
to design an algorithm for multi-set query, which encodes f
into a data structure D, and answer queries based on D. If

the answer f̂(e) for querying e is unequal to f(e), we say

this query incurs an error. In practice, small error is often

acceptable, especially in big data scenarios.

Multi-set query is a fundamental problem in computer

science. It is involved in many applications, including indexing

in data centers [35], distributed file system [5], database

indexing [5], data duplication [28], network packets processing

[11], [43], [41], and network traffic measurement [12], [39].

Below we give two typical use cases.

Use Case 1: Distributed caching. The most classic distributed

caching is the Summary Cache [20]. There are multiple proxy

Co-primary authors: Tong Yang {yangtongemail@gmail.com} and Dong-
sheng Yang {yangds@pku.edu.cn}

caches, and each proxy keeps a compact summary of the cache

content of every other proxy cache. When a cache miss occurs,

it first checks all the summaries to see if the request might be

hit in other caches, and then sends a query message only to

those proxies whose summaries show positive results. This is

a typical multi-set query problem. Due to the significance of

distributed caching, recent works [44], [46] are still optimizing

the performance.

Use Case 2: MAC table query. In data centers, for each

incoming packet, the switch needs to query the MAC table

to find the outgoing port to forward the packet. A query on a

MAC table can be seen as a multi-set query. Each MAC table

entry includes a key (MAC address) and a value (port). In a

typical MAC table [2], there are around ten thousand entries

and tens of ports, while a switch often has limited memory, so

it is challenging to support queries at high line-rate [43]. For

this challenge, many solutions [43], [33] sacrifice the query

accuracy, which means a query may get wrong answer (error).

In the case of MAC tables, such errors are allowed, but may

incur high time penalty.

Above all, the key metrics of multi-set query are query

speed, error rate, and memory usage. High query speed is

critical to catch up with the high throughput of query requests.

Low error rate is highly desired because the time penalty of

error is high. Small memory usage is also important, because

cache is usually small, and data structures should be small

enough to fit into the cache to achieve fast access speed. Prior

works often focus on improving one or two of these three

metrics. The design goal of this paper is to optimize all the

three metrics at the same time.

B. Prior Arts and Limitations

There are mainly two kinds of solutions for multi-set query:

hash table based solutions and Bloom filter based solutions.

Using a hash table is a straightforward solution for the

multi-set query problem. We just use elements as keys and

the set IDs as the values, and then we can build a hash

table for these key-value pairs. Hash table based solutions

are accurate but not memory efficient. Traditional hash table

based solutions [30] achieve O(1) query speed at the cost

of large memory usage, and unbounded query time due to

hash collisions. Perfect hashing based solutions [10], [14]

sacrifice insertion speed for query speed. They have bounded

query time. However, they hardly support fast dynamic update.

1142

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00105

Another notable hashing scheme is called cuckoo hashing [31].

It achieves fast query speed using relatively small memory and

supports slow updating.

A Bloom filter [8] is a compact data structure for member-

ship query problem. It can achieve fast and constant query

speed using very small memory, at the cost of sacrificing

query accuracy. Many prior work [12], [29], [38], [40] focus

on using Bloom filters for multi-set query problem. However,

they suffer from a relatively high error rate because of hashing

collisions. When an element is fully overlapped with other

elements in a Bloom filter, a false positive happens.

In summary, the above two kinds of solutions cannot achieve

the design goal of this paper.

C. Proposed Approach

Towards the design goal, we propose a novel data structure,

named the coloring embedder, which can achieve fast query

speed, small memory usage, and almost no error at the same

time. Similar to hash table based solutions and Bloom filter

based solutions, our coloring embedder is also based on

hashing. Before introducing our solution, let us first consider

the following scenario: given m elements, we randomly map

these elements to n = cm buckets. In this paper, a bucket

means a unit in the memory that can store only one element.

An element cannot be represented by its bucket if this bucket

contains more than one element, and we call such case a

collision. It is obvious that many collisions will occur when

c = 1. To reduce the number of collisions to a considerable

level only by hashing, c has to be very large.

The design principle of the coloring embedder is to almost

eliminate collisions without increasing memory overhead.

There are two challenges to design such a data structure: one is

how to map the elements to eliminate collisions, and the other

is how to use small memory to store the mapping results. To

handle the above challenges, we propose two key techniques.

The first one is hyper mapping, and the second one is coloring

embedding. We first map all elements to a high dimensional

space to almost eliminate hashing collisions, and then we

perform dimensional reduction to embed the high dimension

space into a low dimension space. We use the terminology

of the graph to explain our algorithm. Suppose there are m
elements, we first map them to an empty graph with cm nodes

and (cm/2)2 edge slots, where c is recommended to be 2.2.

Each element is mapped to an edge slot to build an edge, and

the set ID is recorded on the edge. Then we embed the graph

with (cm/2)2 edge slots into a node vector with cm nodes,

while keeping the recorded set IDs of all elements accurate.

In this paper, we propose to use the colors of the nodes to

represent the type of the edges, namely coloring embedding.

To demonstrate the working principle of coloring embedding,

we first consider a simple case where there are only two sets,

set 0 and set 1. For convenience, we name edges mapped

by elements in set 0 as positive edges, and edges mapped

by elements in set 1 as negative edges. The graph is colored

according to two coloring rules:

Fig. 1. Hyper mapping and coloring embedding.

1) If there is a positive edge between any two nodes, those

two nodes should have different colors;

2) If there is a negative edge between any two nodes, they

should have the same color.

If all nodes can be colored according to the two rules, the

coloring embedding succeeds. Then we can answer multi-set

query only with the vector of node colors. When an element in

the sets is queried, we check the two end nodes of its mapped

edge. If the two nodes have different colors, the element is in

set 0. Otherwise, it is in set 1.

For more than two sets, we do not directly encode them in

pairs. On the contrary, we encode the set ID by bits. If there

are totally s sets, then the length of the set ID is 	log(s)
 bits.
As mentioned above, one graph can encode two sets, so one

graph can encode the content of one bit. Therefore, we can

create 	log(s)
 graphs, and each graph encodes one bit of the

binary representation of a set ID. To achieve faster query speed

and better load balancing, we further propose the shifting
coloring embedder which uses only one graph. More

details can be seen in Section IV.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss two types of prior art for

multi-set query. Then, we briefly introduce the property of

random graphs, which is related to our proposed algorithm.

A. Exact-match Data Structures

Exact-match data structures based on hash tables [30] have

no error. However, they need to store element keys in order

to resolve hash conflicts. To reduce hash collision rate while

supporting fast query and update, a large memory is needed.

Perfect hashing [18], [7] achieve little memory redundancy, but

can hardly support insertions. Another notable hashing scheme

is called cuckoo hashing [31]. It achieves fast query speed

using relatively small memory and supports slow updating. It

maps each element to two positions. If both two positions are

occupied by other elements, it expels one of those elements

to make room for the new element, and inserts the expelled

element to the other position of it. When the load factor is

high, the update could fail.

1143

B. Probabilistic Data Structures

Probabilistic data structures for multi-set query are mostly

based on Bloom filters. [8] A Bloom filter is a compact

data structure to represent a set, and supports approximate

membership query, i.e., answering whether an element belongs

to the set, but the answer may be wrong. A Bloom filter

consists of a bit array and k hash functions which map an

element to k bits in the array. To insert an element, k hash

functions are computed and all the mapped k bits are set to 1.

To query an element, the Bloom filter checks the k mapped

bits and returns true if and only if all of them are 1.

To support multi-set query, a straightforward method is to

use multiple Bloom filters, each recording one set [43]. But

this method has low memory efficiency, and slow query speed

because it needs to access multiple Bloom filters. Several work

take efforts to reduce the number of Bloom filters, by letting

each Bloom filter represent a part of the encoded set IDs, such

as Bloom Tree [42], Coded Bloom filter [12], Sparsely coded

filter [29], and etc. Since the optimal length of a Bloom filter is

related to the number of elements, the memory usage of these

methods may be influenced by the distribution of set sizes,

even if the total number of elements is given. There are also

Bloom filter variances which records elements of different sets

in a single filter, such as the Combinatorial Bloom filter [22],

iSet [33], the Shifting Bloom filter [40], and more [17], [15],

[16]. They share an advantage that they are not influenced by

the distribution of set sizes.

Bloom filters are suitable for the scenario where the allowed

error rate is relatively high. If the allowed error rate is very

low (e.g., 10−4), it will need too much memory (19.13 bits per

element using 13 hash functions) to reduce the collision rate

to meet the requirement. By contrast, our algorithm has the

property that if the memory is above a rather small threshold

(2.2 bits per element using 2 hash functions), there will be

almost no error (smaller than 10−4 for 105 elements) at all.

So our algorithm is more memory efficient if the required error

rate is very low.

C. Random Graph and Sharp Threshold

A random graph is generated by randomly connects m pairs

of nodes in an empty graph containing n nodes. Random

graphs have many elegant mathematical properties, a typi-

cal one is the existence of sharp threshold [45], [9]. The

sharp threshold is also called phase transition phenomenon,
which means some properties may suddenly change when

an independent variable is changed. For example, in nature,

water exists in the liquid state if the temperature is over a

threshold, and in the solid state if the temperature is under this

threshold. Similarly, it has been proved that, cycles exist in a

random graph with high probability when m/n is larger than

1, and there are no cycles with high probability when m/n
is smaller than 1 [19]. Therefore, 1 is the sharp threshold of

the existence of cycles. Many properties in random graphs

have phase transition phenomenon, e.g., the emergency of

a giant component, the diameter of the graph [19], [23],

etc. We have found that there also is a sharp threshold of

memory for successful construction of the coloring embedder.

The construction will succeed with high probability when the

memory size is larger than the threshold. This property can be

used for choosing a proper initial memory size for a coloring

embedder.

III. THE COLORING EMBEDDER

In this section, we describe the design of the coloring

embedder in detail. For the ease of understanding, we first

present the coloring embedder for two-set query, and then

present two variances for multi-set query. Table I summarizes

the symbols frequently used in this paper.

TABLE I
SYMBOLS AND ABBREVIATIONS IN THIS PAPER.

Symbol Description
m # edges or # elements
n # nodes or # buckets
e an element

n/m ratio n divided by m
s # sets
h(.) hash functions

S+ the 1st set of elements

S− the 2nd set of elements

m+ # elements in S+ or # positive edges

m− # elements in S− or # negative edges

A. Rationale

The key idea of the coloring embedder is to first map
all elements to a high dimensional space to avoid hashing
collisions, and then perform dimensional reduction to embed
the high dimension space into a low dimension space. There
are two steps to construct a coloring embedder, hyper mapping

and coloring embedding, as illustrated in Figure 1.

In the hyper mapping process, we first build an empty graph

with cm nodes, where m is the number of elements and c
is a constant. Then we map each element to an edge slot

randomly using hash functions. Since there are about (cm/2)2

edge slots, collisions rarely happen. We record the set IDs on

the edges. There are two sets: set 0 (S+) and set 1 (S−), so
there are two kinds of edges in the graph. The edge with set

ID 0 is named as positive edge, and the edge with set ID 1 is

named as negative edge.
In the coloring embedding process, we embed the graph

into a node vector by coloring the nodes in the graph. The

coloring rules are: 1) for each positive edge, the colors of its

two associated nodes should be different; 2) for each negative

edge, the colors of its two associated nodes should be the

same.

To balance the success rate of coloring embedding and

memory usage, we use at most four colors to color the

graph. Although a graph can be successfully colored with

higher probability if we use more than 4 colors, more bits are

required to represent the color of a node, which incurs much

more memory overhead. In addition, three colors cannot save

memory compared to four colors, because three colors also

1144

need 2 bits to encode. Therefore, we choose to use four colors

to color the graph.

If the constructed graph has errors, we can either reconstruct

the graph using other hash functions or allow the errors to

exist because the errors are always quite few. Users can set

a maximum number of attempts for reconstruction depending

on the expected probability of having no error.

B. Implementation

In this subsection, we describe the data structure and the

operations in the coloring embedder, including construction,

query, insertion, deletion, and migration.

Fig. 2. Structure of the coloring embedder.

1) Data Structure:
The coloring embedder consists of two parts: a node array

and an adjacency list. As shown in Figure 2, these two parts

can be stored separately because they are used in different

situations. Below we introduce them respectively.

TABLE II
COLOR FOR EACH STATE OF THE BUCKET.

Bits (0, 0) (0, 1) (1, 0) (1, 1)
Color Red Green Blue Yellow

1) Node Array: The node array is used to store the results of

the coloring embedding. A node array consists of n buckets,

and each bucket consists of two bits denoted by b1 and b2.
Each bit can be set to 0 or 1, so a bucket has 4 states: (0,0),

(0,1), (1,0), and (1,1), corresponding to four colors: red, green,

blue, and yellow, respectively (see Table II). A bucket in the

node array corresponds to a node in the graph. We define

coloring a bucket as setting the values of the two bits in a

bucket. For example, if we color a bucket with green, it means

setting its first bit to 0 and its second bit to 1.

2) Adjacency List: The adjacency list is used to store the edges

of the graph during the hyper mapping process. It is composed

of n linked lists, and the header of each linked list corresponds

to a bucket in the node array. Let ni denote the ith bucket.

If two nodes in the graph are connected by an edge, the two

corresponding buckets in the node array are logically adjacent.
The linked list of the ith bucket stores the positions of all the

buckets that are logically adjacent with bucket ni. For each

item in the linked list, we use a flag bit to indicate whether

the edge is positive or negative. In Figure 2, positive edges are

represented by solid lines, and negative edges are represented

by dash lines. From the adjacency list in Figure 2 we can read

that n3 is logically adjacent to n6 with a negative edge, and

is logically adjacent to n4 with a positive edge.

2) Operations:

Fig. 3. An example of construction.

Construction: Initially, there is a node array with n buckets

and a graph with n nodes and no edge. The ith bucket with

two bits corresponds to the ith node with four colors, and we

use ni to denote them both. For each element e in S+ and S−,
we compute two hash functions to map it to two nodes nh1(e),

nh2(e), and we create an edge between these two nodes. If the

element is in set S+, the edge is a positive edge, otherwise it

is a negative edge. After all elements are inserted, we color

the graph to make all nodes obey the coloring rules mentioned

in Section I-C. Any coloring algorithm can be used, and we

present an algorithm named RDG in Section III-B3. If the

graph is colored successfully, we assign the value of bucket ni
with the color of node ni (1 � i � n). Otherwise, we change

hash functions and repeat construction until it succeed. When

the memory size of the node array is larger than 2.2 bits per

element so that the number of nodes exceeds the threshold, the

construction will succeed in one time with high probability.

Example (Figure 3): Set S+ has two elements e1 and

e2, and set S− has one element e3. First, every element

is mapped to the adjacency list and three logical edges are

created. Two of the them are positive and one is negative.

The three edges are showed in the corresponding graph below

the coloring embedder. Positive edges are represented by solid

lines and negative edges are represented by dash lines. Second,

we color the nodes. As shown in the graph on the right, n1
and n2, n3 and n5 are colored with different colors; n4 and

n5 are colored with the same color. Two colors are enough to

color the graph. After that, we set the values of the buckets

in both the node array and the adjacency list according to the

color of the graph.

1145

Query: The query process only involves the node array. When

querying an element e, we compute the two hash functions

for e and check the colors of the two mapped buckets nh1(x)

and nh2(x). If their colors are different, e belongs to S+.

Otherwise, e belongs to S−.
Example (Figure 3): When querying element e1, we
compute hash functions and get two buckets n1 and n2 with

values (0,1) and (0,0), respectively. Since these two buckets

have different colors, the edge between them is a positive edge.

Thus we report that e1 belongs to S+.

Insertion: There are two steps to insert an element e. First,
we compute the two hash functions and map e to two buckets

nh1(x) and nh2(x). If e belongs to S+, we add a positive edge

between the two buckets in the adjacency list; if e belongs

to S−, we add a negative edge in the adjacency list. Second,

we perform the RDG updating algorithm to make all affected

buckets follow the coloring rules.

Fig. 4. An example of insertion.

Example (Figure 4): A new element e4 from S+ will

be inserted. First, we map e4 to two buckets and add a positive

edge between n2 and n3. Second, we find out that the colors

of bucket n2 and n3 are both red, while their colors should be

different according to the coloring rules. Therefore, we need

to perform the RDG updating algorithm. As a result, the color

of bucket n3 changes from red to blue.

Deletion: To delete an element e, we compute two hash

functions to locate the buckets of e, and then remove the edge

between nh1(x) and nh2(x) from the adjacency list. That means

deleting nh1(x) from the linked list of nh2(x) and deleting

nh2(x) from the linked list of nh1(x). The node array does not

needed to be modified at once.

Migration: Migration means an element e changes its mem-

bership from S+ to S− or vice versa. If e migrates from S+ to

S−, the edge between nh1(x) and nh2(x) changes from positive

to negative; if e migrates from S− to S+, the edge changes

from negative to positive. Then RDG updating algorithm is

performed to color other affected nodes.

e3

n1 n2 n3 n4 n5 n6

n5 n3

n4

n5

S1 S2

n2

n1

n6 n5

n4

n3

n2

n3
migrating e2

e4 e3

n1 n2 n3 n4 n5 n6

n5 n3

n4

n5

S1 S2

n2

n1

n6 n5

n4

n3

e2

n2

n3

e2

e3

e4

e2

e3

e4

e2 e4

Fig. 5. An example of migration.

Example (Figure 5): Element e2 changes its member-

ship from S+ to S− and the edge between n3 and n5 needs

to be changed from positive to negative. As a result, we need

to change the colors of n3 and n5 to make them have the

same color. The RDG updating algorithm is performed, and

the color of n3 changes from blue to green. Other buckets are

not affected in this case.

3) The RDG Coloring Algorithm:

In this section, we describe our coloring algorithm in details.

Coloring problem is a well known NP-hard problem [21],

so we cannot give a polynomial time exact algorithm. Our

coloring algorithm is named as Recursively Delete or Give up
coloring (RDG). It is an extension of the k-core decomposition

algorithm in [6]. It is an approximation algorithm and is fast

and accurate in practice.

Before going to the algorithm details, we introduce a well

known term in graph theory – k-core [24][34][13]: The k-core
is the maximum subgraph in which the degree of every node
is equal or larger than k. Our RDG algorithm is based on

the observation that the graph will be quickly and successfully
colored with k colors if there is no k-core in the graph.

For convenience, we use CSG to represent Connected
SubGraph. Our RDG coloring algorithm is divided into the

following steps:

1) For every pair of nodes directly connected by negative

edges, we merge those two nodes to a single node. After that,

the graph only contains positive edges. An empty stack is built

to record deleted nodes.

2) If all CSGs in the graph have been deleted, go to step

5. Otherwise, for each CSGi that is still not deleted yet, we

compare its number of nodes NCSGi
with the predefined

threshold θ. If NCSGi � θ, go to step 3; If NCSGi > θ, go
to step 4. Typically, we set θ to 16.

3) The incoming CSG is small, so we simply use a depth-

first method to color it. If the coloring succeeds, we delete the

1146

CSG and return to step 2. Otherwise, we report that the graph

cannot be colored with four colors and the algorithm ends.

4) For the incoming CSG, if there is no node with degrees

less than 4, we report that there is a 4-core and the algorithm

terminates. Otherwise, we push all the nodes with degress less

than 4 into the stack and delete them from the CSG. After that

we return to step 2.

5) We pop all nodes from the stack, and color them one by

one. The algorithm ends.

Proof of correctness: Here we prove that if the algorithm

reaches the 5th step, the graph can be colored correctly. If

coloring a node n0 leads to conflicts in the the 5th step,

there must be more than 4 neighbors of n0 already colored.

However, when n0 is pushed into the stack, it has less than

4 neighbors remaining in the graph. Therefore, when n0 is

popped, it also has less than 4 neighbors. As a result, we

can safely draw the conclusion that all nodes can be colored

successfully without conflicts.

Complexity Analysis: In our RDG algorithm, each node en-

ters the stack at most once. The time complexity of processing

each node is related to the number of edges the node has. For

each edge, it is connected to two nodes so it is processed

at most twice. Therefore, the overall time complexity of the

construction is O(n + m). We have to store all nodes and

edges, along with a stack with at most n elements for k-core
decomposition, so the space complexity is O(n+m).

4) RDG Updating algorithm:
Updating refers to inserting or deleting an element into or

from S+ or S−. For the updating of the coloring embedder, we

propose a method named RDN (Recursively Delete Neighbor):
When a node ni needs to change its color, if there is no

candidate color for it, we involve all its neighbors into the

modification and they make up a subgraph. We attempt to

color that subgraph using the RDG algorithm. If the RDG

algorithm fails, the neighbors of nodes in the above subgraph

are all involved into the subgraph. This process is carried on

recursively until a success. If the subgraph cannot be expanded

and cannot be colored, a 4-core is found and the RDG updating

algorithm fails.

C. Coloring Embedders for More Than Two Sets

To classify more than 2 sets, we propose two solutions. The

first one is to apply a coding method and a one memory access

scheme to organize multiple coloring embedders together. The

second one is to use one large coloring embedder associated

with multiple groups of hash functions, and those groups of

hash functions are generated by shifting an original group of

hash functions.

1) Coded Representation of Sets:
A coded coloring embedder is implemented by multiple

coloring embedders. Suppose there are s sets, with IDs ranging
from 1 to s. The IDs can be converted to binary codes,

with maximum length log	s
. To record the membership of

an element, we can record each bit of the set ID binary

code with a coloring embedder. This task can be handled

by totally log	s
 coloring embedders. If the ith bit is 1, the

ith coloring embedder records the element with a positive

edge. Otherwise, it records the element with a negative edge.

The log	s
 coloring embedders are together called the coded

coloring embedder.

Next, we use the One Memory Access Technique to further

optimize the query speed of the coded coloring embedder. In

the above implementation, the number of memory accesses of

a coded coloring embedder is as log	s
 many as a single color-

ing embedder, which slows down the speed of query, insertion

and deletion. To address this problem, we reorganize the layout

of the log	s
 embedders. All embedders are separated into

single bits and the corresponding bits are put together. The ith

bits of each embedder are now in a word, so the binary code of

one element can be fetched with only two memory accesses.

By using this technique, the coded coloring embedder can

work almost as fast as a single coloring embedder.

2) The Shifting Coloring Embedder:
The above coded coloring classifier with one memory access

technique can represent more than 2 sets and reduce the num-

ber of memory access to 2. However, it uses many coloring

classifiers and they suffer from load balancing problem. To

address this issue, we propose the Shifting coloring
embedder, which shares the similar idea with Shifting

Bloom filters [40].

Fig. 6. Shifting coloring embedder.

Given s sets with set ID: 0, 1, 2, ..., s − 1, we build one

shifting coloring embedder. There is only one graph, and log2 s
edges are inserted in the graph for each element. We use

an example in Figure 6 to show how the shifting coloring

embedder works. In this example, there are 8 sets, which

means s = 8 and log2 s = 3. We assign a code for each

set: the code of Si is i in the binary format. For example,

the code of S5 is 101. When inserting an element e which

belongs to set S5, we compute h1(e) and h2(e), and locate

2 log2 s = 6 buckets: nh1(e), nh1(e)+1, nh1(e)+2, and nh2(e),

nh2(e)+1, nh2(e)+2. Because e ∈ S5 and the code of S5 is 101.
The first bit of this code is 1, it corresponds to a positive edge,

we build a positive edge between nh1(e) and nh2(e). It means

that the colors of nh1(e) and nh2(e) need to be different. The

second bit of this code is 0, we build an negative edge, and the

colors of nh1(e)+1 and nh2(e)+1 need to be the same. Similarly,

the colors of nh1(e)+2 and nh2(e)+2 need to be different. When

log2 s is smaller than the length of a machine word, we can

answer multi-set query with only two memory accesses. Also,

there is no load balancing problem because there is only one

data structure to hold all elements.

1147

IV. ANALYSIS

Two types of errors can occur in our algorithm, which

are collision error and color error. Next, we will calculate

the expectation of the number of collision errors and the

probability that no collision error happens. Then, we will

analyze the condition that no coloring error happens. We

suppose that there are n buckets in the node array of our data

structure, m+ elements in S+, and m− elements in S−.

A. Collision error

When two edges of different types overlap, a collision error

happens. The formal definition is as follow.

Collision error: Given a graph G, a negative connected

component is defined as two or more nodes connected by

only negative edges. For each negative connected component

N−, if there are two nodes n1, n2 ∈ N− which are directly

connected by a positive edge, a collision error happens.

1) Simple Cases:
The analysis begins with the simplest case of collision error:

a positive edge overlaps with a negative edge. To discuss the

worst case, we suppose that there are m+ non-overlapped

positive edges and m− non-overlapped negative edges in the

graph. The probability that a negative edge collides with any

positive edge is m+/
(
n
2

)
= 2m+/[n(n− 1)]. To calculate the

upper bound [25], [27], [26] of the expectation of the number

of collision errors, we can directly sum up the probability of

collisions for all negative edges because they follow a binomial

distribution.

E(collision) � m+m−(
n
2

) =
2m+m−
n(n− 1) (1)

Given a negative edge, the probability that it does not

collide with any positive edge is 1 − m+/
(
n
2

)
. Collisions

are independent events for each negative edge because we

suppose they do not overlap with each other, so we can apply

the multiplication principle to get the lower bound of the

probability that there is no collision error.

P (no collision) �
(
1− m+(

n
2

)
)m−

≈
(
1− 2m+

n2

)m−

=

(
1− 2m+

n2

) n2

2m+
× 2m+

n2 m−

≈ e−
2m+m−

n2

(2)

2) General Cases:
In this section, we analyze a more complex situation of

collision error: two nodes are indirectly connected by a list of

continuous negative edges, and are at the same time directly

connected by a positive edge. For convenience, we name the

list of continuous negative edges as an equivalent negative
edge. To calculate the expectation of the number of collision

error, we need to count the number of equivalent negative

edges, which is denoted as m′
−.

Our analysis begins with deriving the number of equivalent

negative edges formed by two negative edges between three

nodes. Given three nodes, the probability that two of them are

directly connected by a negative edge is 3
n × 2

nm−. And the

probability that another pair of nodes is also directly connected

by a negative edge is 2
n × 1

n (m− − 1). So the probability that

three nodes are connected by two negative edges is

12m−(m− − 1)
n4

For all the n nodes, the expectation of the number of equivalent

negative edges formed by three nodes is then calculated by the

following equation.

m′
−(3) =

12m2
−

n4

(
n

3

)
≈ 2m2

−
n

(3)

The number of equivalent negative edges formed by four or

more nodes can be similarly derived. Given any v nodes, the

probability that they are connected by v− 1 negative edges is

v!

2

(
2m−
n2

)v−1

The number of equivalent negative edges formed by v nodes

is the product of that value and
(
n
v

)
.

m′
−(v) =

2v−2v!mv−1
−

n2v−2

(
n

v

)
≈ 2v−2mv−1

−
nv−2

(4)

From equation 4, we can find that the number of equivalent

negative edges is approximate to a geometric progression when

the value of v increases. We only show the case that n is larger

than 2m−. Other cases can be deduced similarly.

m′
− =

n∑
v=3

m′
2(v) ≈

n∑
v=3

2v−2mv−1
−

nv−2
≈ 2m2

−
n− 2m−

, n > 2m−

(5)

To get the final result of the expectation of the number of

collisions and the probability that no collision happens, the

m− In the simplified equation 1 and 2 is replaced by m− +
m′

−. n is required to be larger than 2m− in practice. The

reason is that if n is smaller than 2m−, the graph can hardly

be colored successfully.

E(collision) � 2m+(m− +m′
−)

n(n− 1) =
2m+m−

(n− 1)(n− 2m−)
(6)

P (no collision) ≈ e− 2
n(n−1)

m+(m−+m′
−) = e−

2m+m−
(n−1)(n−2m−)

(7)

Let n/m ratio be the quotient of n divided by m.

According to equation 6 and 7, the expectation of the number

of collision errors and the probability that no collision error

happens are not influenced by the graph size when n/m
ratio is fixed. When n/m ratio is larger than 1.1, which

means each element uses more than 1.1 × 2 = 2.2 bits, the

expectation of the number of collision errors is less than 5 no

1148

matter how many elements there are, and the probability that

no collision error happens is larger than 50%.

B. Color error

When the graph is dense, 4 colors may be not enough

to make all edges in the graph meet the coloring rule. For

example, suppose there are 5 nodes in the graph and each

pair of nodes is connected by a positive edge, then 5 different

colors are required to make all pairs of nodes have different

colors to meet the coloring rule. The formal definition of color

error is as follows.

Color error: The graph cannot be colored successfully with

four colors by the RDG coloring algorithm.

In our RDG coloring algorithm, we give up coloring if we

find a 4-core in the graph. As a result, color error happens

when there is a 4-core. Theories about k-cores in random

graphs are established in [32].

1) If k � 3 and n is large, with high probability, there is a

giant k-core when m+ is larger than ckn/2 and there is no

k-core when m+ is smaller than ckn/2.
2) ck = k +

√
k log k +O(log k).

According to [32], c4 is calculated to be 5.14. The

n/m ratio threshold for color error is equal to 2/c4. There-
fore, when there is no negative edge in our graph, the

n/m ratio threshold is 0.389. When there are negative edges,

our graph is not a random graph and thus the results in [32]

do not apply. From the perspective of coloring, negative edges

combine many nodes into a large single node because those

nodes must have the same color. The large single node has

many neighbors, and thus the subgraph containing that node

can be very dense, leading to a higher probability of the

emergence of a 4-core. As a result, n/m ratio threshold

becomes larger when the percentage of negative edges is

higher. In the worst case, when the negative edges account for

50% of all edges, the n/m ratio threshold is 1.10 according

to our experiments. In conclusion, we need no more than

1.10× 2 =2.20 bits per element to build a coloring embedder

to ensure that no color error happens.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets:
We use three real datasets and generate plenty of synthetic

datasets for experiments. The statistics of the real datasets are

shown in Table III.

MACTable: This dataset is drawn from the MAC table file

in [2]. For each entry in the MAC table, we use the line

number as the key, and use the type field (static or dynamic)

to determine the set.

MachineLearning: This dataset is drawn from a dataset of

classification task of the machine learning [4]. We use the

training set as our dataset. For each entry in the training set,

we use the line number as the key, and the label as the class.

DBLP: This dataset is drawn from DBLP[1]. We use the key
attribute as our key. We use the records of articles as S+ and

the records of inproceedings as S−.

TABLE III
STATISTICS OF THE REAL DATASETS.

items m+ m− S− ratio
MACTable 3664 3144 520 0.1419

MachineLearning 912969 472605 440364 0.4823
DBLP 823132 623212 199920 0.2429

Synthetic dataset: We generate random strings as keys of

elements in a dataset. We use synthetic datasets because our

data structure have to be examined when the percentage of S−

is continuously changing, while real world datasets have fixed

percentage of S−. We argue that for data structures using hash

functions, including the coloring embedder, real datasets and

synthetic datasets have no difference. The experiments in the

next section also prove this fact.

2) The State-of-the-art Implementation:
To compare our data structure with the state-of-the-art, we

implement three Bloom filter based data structures used for

multi-set query. The first one is the Multiple Bloom filter [43].

The Multiple Bloom filter simply assembles the Bloom filters,

each one representing one of the sets. This model is called

MultiBF in short. The second data structure is the Coded

Bloom filter [12], denoted as CodedBF. It is a typical variance

of Bloom filter using multiple filters. It converts set IDs to

binary codes and stores the code in the Bloom filters. The third

one is the shifting Bloom filter [40], denoted as ShiftBF. It is

a typical variance of Bloom filter using a single filter. ShiftBF

uses the offset of bits to represent the set ID. To make those

data structures comparable with ours, we allocate 2.5 times as

much memory for those three data structures as the coloring

embedder. The source code of coloring embedder is released

on Github [3].

3) Experimental Setups:
We use general-purposed CPU to run all experiments,

because we do not have FPGA or ASIC environment. We

conduct all experiments on a standard off-the-shelf computer

equipped with two 6-core Intel(R) Xeon(R) E5-2620 CPUs

@2.00GHz and 62GB RAM running Ubuntu 16.04. For each

core, the L1 data cache is 64KB and the L2 cache is 256KB.

B. Experiments on Two Sets

In this section, we conduct experiments on two-set query,

which is the foundation of multi-set query. We use real

datasets and synthetic datasets to comprehensively evaluate

performance of hyper mapping and coloring embedding, and

measure the throughput of construction, query and insertion.

1) Coloring Embedding:
First, we show that there is a sharp threshold for successful

coloring embedding. Then, we test the condition of successful

coloring embedding when the percentage of S− varies.

Successful coloring rate vs. n/m ratio (Figure 8): The
experimental results show that there is a sharp threshold of

1149

n/m ratio for the success rate of coloring embedding. In this

experiment, we test the success rate against the n/m ratio
on all three real datasets. For each real dataset, with the

same percentage of S−, we generate synthetic datasets of

different sizes, varies from 103 to 106. The results are shown

in Figure 8. As the n/m ratio increases, there is an almost-

zero success rate when the n/m ratio is below the threshold, a

similar surge when the n/m ratio is passing the threshold, and

an almost-one success rate when the n/m ratio is above the

threshold. The thresholds are 0.52, 1.07, and 0.66 for datasets

of MACTable, MachineLearning, and DBLP, respectively. The

threshold of synthetic datasets is the same with that of real

datasets [37], [36], [47]. The larger the datasets are, the sharper

the threshold is. The threshold for different real datasets are

different, because the percentage of S− is different. MACTable

dataset has the smallest n/m ratio threshold because it has

the smallest percentage of S−. There is no sharp threshold

for small datasets in Figure 8(b), because they have different

properties from large datasets.

10 20 30 40 50 60
Negative edge percentage (%)

1

2

3

M
em

o
ry

th
re
sh
o
ld

MACTable

Synthetic

MACTable

MachineLearning

DBLP

Fig. 7. Memory needed vs. percentage of S−.

Memory needed vs. Percentage of S− (Figure 7): The
experimental results show that the memory needed for coloring
embedding increases when the percentage of S− increases.
We measure the memory usage (bits per element) in the

condition that the successful coloring rate is above 99%.

The three real datasets are displayed as points in the figure,

while the synthetic datasets are displayed as a line. When

the percentages of S− is around 13%, the memory needed

is below 1 bit per element.
When the percentages of S− is around 50%, which is the

worst case of our algorithm, the memory needed is 2.2m bits,

where m is the number of elements. When the memory size

is larger than 2.2 bits per element, the graph is sparse enough

so that there is no 4-core and thus can be colored successfully

with 4 colors. 2.2 bits per element is always enough for all

kinds of datasets because when the percentages of S− is larger

than 50%, we can simply exchange S− with S+.

2) Hyper Mapping:

In this part, we evaluate the number and probability of

edge collisions during hyper mapping under different settings

of n/m ratio and the percentage of S−. We use synthetic

datasets with sizes from 103 to 106. By default, the percentage

of S− is 50%, and the n/m ratio is 1.1, which is the threshold
of successful coloring.

Number of collisions vs. n/m ratio (Figure 9(a)): The
experimental results show that the average number of colli-

sions decreases when the n/m ratio increases. Specifically,
when the n/m ratio is 1.4, the expectations of the number

of collisions of all datasets are 1. The number of collisions is

not influenced by dataset sizes when the n/m ratio is above

1.15. The experimental results fit well with the theory.

Probability of collisions vs. n/m ratio (Figure 9(b)): The
experimental results show that the probability that collisions
happen decreases when n/m ratio increases. The probability
that collisions happen is not influenced by the set size. When

the n/m ratio is 1.3, the probability that collision happens is

about 75%. And when the n/m ratio is 1.5, the probability

is 50%. The experimental results fit well with the theory.

Number of collisions vs. Percentage of S+ (Figure 9(c)):
The experimental results show that the number of collisions
decreases when percentage of S+ increases. In this experi-

ment, we change the percentage of S+ from 45% to 100%,

and fix the n/m ratio to 1.1. From Figure 9(c) we can see

that when S+ accounts for more than 50%, there are less than

2 collisions for datasets of all sizes. When there is no negative

edge, there is no collision. The experimental results fit well

with the theory.

Probability of collisions vs. Percentage of S+ (Figure
9(d)): The experimental results show that the probability that
collisions happen decreases when percentage of S+ increases.
The probability is almost not influenced by the size of datasets.

It decreases almost linearly from about 90% to 0% when per-

centage of S+ increases from 50% to 100%. The experimental

results fit well with the theory.

3) Throughput of Construction, Insertion and Query:

Throughput of construction vs. Dataset size (Figure 10(a)):
The experimental results show that the throughput of construc-
tion decreases slightly when the order of magnitude of dataset
size increases. In this experiment, the percentage of each of

the two sets is fixed to 50%. The memory usage is 2.21 bits

per element, which is the memory threshold for successful

coloring. When the size of datasets increases from 103 to 107,
the construction speed falls from around 1.6 million operations

per second (MOPS) to around 0.4 MOPS.

Throughput of query vs. Dataset size (Figure 10(b)): The
experimental results show that our coloring embedder has up
to 90 MOPS query speed. In this experiment, we use the same

settings with the previous one. Figure 10(b) shows that the

query speed of the coloring embedder is 90 MOPS when the

dataset size is 103, and is 35 MOPS when the size is 106.

Throughput of insertion vs. Dataset size (Figure 11): The
experimental results show that the throughput of insertion
is high when the load rate is below a threshold. In this

experiment we first construct an empty coloring embedder

using 2.21 × 106 bits, and then insert 106 elements into it.

Figure 11(a) shows that when we insert less than 65% elements

into the coloring embedder, few nodes are affected by the RDG

updating algorithm. In contrast, when we insert more than 65%

elements, tens of thousand nodes need to be recolored. Figure

1150

0.
0.0

0.5

1.0
S
u
cc
es
s
ra
te

m= 103

m= 104

m= 105

m= 106

Real

(a) MACTable

0.0

0.5

1.0

S
u
cc
es
s
ra
te m= 103

m= 104

m= 105

m= 106

Real

(b) MachineLearning

0.0

0.5

1.0

S
u
cc
es
s
ra
te

m= 103

m= 104

m= 105

m= 106

Real

(c) DBLP

Fig. 8. Successful coloring rate vs. n/m ratio.

.00 0 .00 .00

10−1

100

101

102

N
u
m
b
er

o
f
co
ll
is
io
n
s

m= 103

m= 104

m= 105

m= 106

Theory

(a) Number

.00 0 .00 .00
0.0

0.5

1.0

P
ro
b
ab
il
it
y
o
f
co
ll
is
io
n
s

m= 103

m= 104

m= 105

m= 106

Theory

(b) Probability

50 60 70 80 90 100
Positive edge percentage (%)

0.0

2.5

5.0

7.5

N
u
m
b
er

o
f
co
ll
is
io
n
s

m= 103

m= 104

m= 105

m= 106

Theory

(c) Number

50 60 70 80 90 100
Positive edge percentage (%)

0.0

0.5

1.0

P
ro
b
ab
il
it
y
o
f
co
ll
is
io
n
s

m= 103

m= 104

m= 105

m= 106

Theory

(d) Probability

Fig. 9. Number and probability of edge collisions.

103 104 105 106 107

Dataset size

0.00

0.25

0.50

0.75

1.00

1.25

B
u
il
d
sp
ee
d
(M

O
P
S
)

(a) construction speed

103 104 105 106 107

Dataset size

0

20

40

60

80

Q
u
er
y
sp
ee
d
(M

O
P
S
)

(b) query speed

Fig. 10. Construction and query speed.

0 20 40 60 80 100

Load rate (%)

0

2

4

6

8

10

A
ff
ec
te
d
n
o
d
e
(×

1
0
4
)

(a) number of affected nodes

0 20 40 60 80 100

Load rate (%)

0.0

0.2

0.4

0.6

0.8

T
h
ro
u
g
h
p
u
t
(M

O
P
S
)

(b) throughput

Fig. 11. Insertion speed vs. Load rate.

11(b) shows that the insertion speed decreases gradually when

we insert less than 65% elements, and drops sharply when we

insert more than 65% elements.

C. Experiments on Multi-sets

In this section, we compare shifting coloring embedder with

Bloom filter variances on multi-set query. We use synthesis

datasets to test the worst case of our coloring embedder (each

sets has the same size). First we fix the number of sets to 16

and vary the dataset size from 103 to 106. Then we fix the

set size to 106 and vary the number of sets from 2 to 16.

When comparing error number and query speed, the Bloom

filter variances use 2.5 times memory as much as the shifting

coloring embedder to achieve an comparable accuracy for

plotting.

Throughput of query vs. Dataset size (Figure 12): The
experimental results show that our shifting coloring embedder
has faster query speed compared with the state-of-the-art
for 16-set query. The query speed of the shifting coloring

embedder is around 80 MOPS when there are 103 elements.

And the query speed drops to 30 MOPS when the number

of elements increases to 106. The query speed of other data

structures is always less than 40 MOPS.

Number of errors vs. Dataset size (Figure 13): The ex-
perimental results show that our shifting coloring embedder
has fewer errors compared with the state-of-the-art for 16-set
query. The number of errors of the shifting coloring embedder

is around 5, not influenced by the size of datasets. On the

contrary, the number of errors of Bloom filter variances is

1151

proportional to the dataset size, and are larger than the shifting

coloring embedder when there are more than 10k elements.

Memory vs. dataset size (Figure 14): The experimental
results show that the shifting coloring embedder uses the least
memory for different dataset sizes. The number of sets is fixed

to 16 and the number of errors is limited under 10. When

varying the dataset size from 103 to 106, CodedBf, MultiBF,

ShiftBF and our algorithm uses 24.0 to 51.6, 14.8 to 29.8, 14.8

to 29.8 and 11.2 to 8.8 bits per element memory, respectively.

103 104 105 106
Dataset size

0

20

40

60

Q
u
er
y
th
ro
u
g
h
p
u
t
(M

O
P
S
) CodedBF MultiBF ShiftBF

Fig. 12. Query Speed vs. Dataset size.

103 104 105 106
Dataset size

100

102

104

E
rr
o
r
n
u
m
b
er

CodedBF MultiBF ShiftBF

Fig. 13. Number of errors vs. Dataset size.

103 104 105 106

Dataset size

0

20

40

60

B
it
s
p
er

el
em

en
t CodedBF

MultiBF

ShiftBF

Our Algo

Fig. 14. Memory vs. Dataset size.

Throughput of query vs. Number of sets (Figure 15): The
experimental results show that the shifting coloring embedder
has the fastest query speed for different number of sets. We

change the number of sets from 2 to 16 and test query speed

on 106 elements. The query speed of the shifting coloring

embedder is around 35 MOPS, and is almost not influenced by

set number thanks to the shifting technique. On the contrary,

the query speed of Bloom filter variances drops steadily, and is

lower than the query speed of the shifting coloring embedder

when there are more than 2 sets.

Number of error vs. Number of sets (Figure 16): The
experimental results show that the shifting coloring embedder
has the fewest errors for different number of sets. Bloom

filters have 104 to 102 times more errors than the shifting

coloring embedder. When the number of sets changes, the

number of errors of the shifting coloring embedder is not

influenced, staying below 10. The number of errors of MultiBF

and ShiftBF decreases when set number increases, because the

size of a single filter becomes larger for them. However, they

always have thousands of errors.

Memory vs. Number of sets (Figure 17): The experimental
results show that the shifting coloring embedder uses the least
memory when varying the number of sets. The dataset size is

fixed to 106 and number of errors is limited under 10. When

varying the number of sets from 2 to 16, CodedBf, MultiBF,

ShiftBF and our algorithm uses 11.5 to 51.6, 24.7 to 29.8, 24.8

to 29.8 and 2.2 to 8.8 bits per element memory, respectively.

Our algorithm saves up to 90% memory.

2 4 8 16
Number of sets

0

20

40

Q
u
er
y
th
ro
u
g
h
p
u
t
(M

O
P
S
) CodedBF MultiBF ShiftBF

Fig. 15. Query Speed vs. Number of sets.

2 4 8 16
Number of sets

101

103

105

E
rr
o
r
n
u
m
b
er

CodedBF MultiBF ShiftBF

Fig. 16. Number of errors vs. Number of sets.

2 4 8 16

Number of sets

0

20

40

60

B
it
s
p
er

el
em

en
t CodedBF

MultiBF

ShiftBF

Our Algo

Fig. 17. Memory vs. Number of sets.

VI. CONCLUSION

In this paper, we propose a novel data structure named

coloring embedder. The coloring embedder is used for two-

set query, and a shifting model is designed for the coloring

embedder to support multi-set query. Experimental results

show that our coloring embedder can achieve up to 104 times

smaller error rate than the state-of-the-art, even with only 40%

memory of the latter. Specifically, it has less than 5 errors on

data sets containing 107 elements with only 2.2 log s bits per

element memory in the worst case, where s is the number

of sets. In addition, the coloring embedder achieves about 2

times faster query speed than the state-of-the-art because it

always requires only 2 memory accesses for each query. The

source code of coloring embedder is released on Github [3].

We believe that the insight of hyper mapping and coloring

embedding can be applied to design more data structures.

1152

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for

their thoughtful suggestions. This work is partially sup-

ported by Primary Research & Development Plan of

China (2018YFB1004403, 2016YFB1000304), and NSFC

(61672061).

REFERENCES

[1] dblp: computer science bibliography.
http://dblp.org/xml/release/dblp-2017-09-03.xml.gz.

[2] Hassel library. https://bitbucket.org/peymank/hassel-public.
[3] The source code of coloring embedder.

https://github.com/4colorclassifier/4colorclassifier.
[4] Youtube comedy slam preference data data set.

https://archive.ics.uci.edu/ml/datasets/YouTube+Comedy+Slam
+Preference+Data.

[5] M. K. Aguilera, W. M. Golab, and M. A. Shah. A practical scalable
distributed b-tree. Proceedings of the VLDB Endowment, 1(1):598–609,
2008.

[6] V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decompo-
sition of networks. Computer Science, 1(6):34–37, 2003.

[7] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger. Hash, displace,
and compress. Lecture Notes in Computer Science, 5757:682–693, 2009.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[9] B. Bollobs, S. Janson, and O. Riordan. The phase transition in
inhomogeneous random graphs. Random Structures & Algorithms,
31(1):3–122, 2010.

[10] F. C. Botelho, Y. Kohayakawa, and N. Ziviani. A Practical Minimal
Perfect Hashing Method. Springer Berlin Heidelberg, 2005.

[11] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten.
Technologies and building blocks for fast packet forwarding. IEEE
Communications Magazine, 39(1):70–77, 2001.

[12] F. Chang, W.-c. Feng, and K. Li. Approximate caches for packet
classification. In INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, volume 4, pages
2196–2207. IEEE, 2004.

[13] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decomposition
in massive networks. In IEEE International Conference on Data
Engineering, pages 51–62, 2011.

[14] Z. J. Czech, G. Havas, and B. S. Majewski. An optimal algorithm
for generating minimal perfect hash functions. Information Processing
Letters, 43(5):257–264, 1992.

[15] H. Dai, L. Meng, and A. X. Liu. Finding persistent items in distributed,
datasets. In Proc. IEEE INFOCOM, 2018.

[16] H. Dai, M. Shahzad, A. X. Liu, and Y. Zhong. Finding persistent items
in data streams. Proceedings of the VLDB Endowment, 10(4):289–300,
2016.

[17] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li. Noisy bloom filters
for multi-set membership testing. In Proc. ACM SIGMETRICS, pages
139–151, 2016.

[18] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. M. A. D. Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: upper and lower bounds.
In Foundations of Computer Science, 1988., Symposium on, pages 524–
531, 1988.

[19] R. Durrett. Random graph dynamics, volume 200. Cambridge university
press Cambridge, 2007.

[20] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM ToN, 8(3):281–293,
2000.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to NP-Completeness. W. H. Freeman, 1979.

[22] F. Hao, M. Kodialam, T. V. Lakshman, and H. Song. Fast dynamic
multiple-set membership testing using combinatorial bloom filters.
IEEE/ACM Transactions on Networking, 20(1):295–304, 2012.

[23] S. Janson and M. J. Luczak. A simple solution to the k -core problem.
Random Structures & Algorithms, 30(1-2):5062, 2007.

[24] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. K-core decom-
position of large networks on a single pc. Proceedings of the VLDB
Endowment, 9(1):13–23, 2015.

[25] Z. Li, B. Chang, S. Wang, A. Liu, F. Zeng, and G. Luo. Dynamic
compressive wide-band spectrum sensing based on channel energy
reconstruction in cognitive internet of things. IEEE Transactions on
Industrial Informatics, 2018.

[26] Z. Li, Y. Liu, A. Liu, S. Wang, and H. Liu. Minimizing convergecast time
and energy consumption in green internet of things. IEEE Transactions
on Emerging Topics in Computing, 2018.

[27] Z. Li, F. Xiao, S. Wang, T. Pei, and J. Li. Achievable rate maximization
for cognitive hybrid satellite-terrestrial networks with af-relays. IEEE
Journal on Selected Areas in Communications, 36(2):304–313, 2018.

[28] G. Lu, Y. J. Nam, and D. H. Du. Bloomstore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on
flash. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1–11. IEEE, 2012.

[29] Y. Lu, B. Prabhakar, and F. Bonomi. Bloom filters: Design innovations
and novel applications. (1):201–206, 2005.

[30] W. D. Maurer and T. G. Lewis. Hash table methods. ACM Computing
Surveys (CSUR), 7(1):5–19, 1975.

[31] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms,
51(2):122–144, 2004.

[32] B. Pittel, J. Spencer, and N. Wormald. Sudden emergence of a giant k
-core in a random graph. Journal of Combinatorial Theory, 67(1):111–
151, 1996.

[33] Y. Qiao, S. Chen, Z. Mo, and M. Yoon. When bloom filters are no
longer compact: Multi-set membership lookup for network applications.
IEEE/ACM Transactions on Networking, 24(6):3326–3339, 2016.

[34] A. E. Saryce, B. Gedik, G. Jacques-Silva, K. L. Wu, and mit V. atalyrek.
Incremental k -core decomposition: algorithms and evaluation. VLDB
Journal, 25(3):425–447, 2016.

[35] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu. Efficient b-tree based indexing
for cloud data processing. Proceedings of the VLDB Endowment, 3(1-
2):1207–1218, 2010.

[36] F. Xiao, L. Chen, C. Sha, L. Sun, R. Wang, A. X. Liu, and F. Ahmed.
Noise tolerant localization for sensor networks. IEEE/ACM Transactions
on Networking, 26(4):1701–1714, 2018.

[37] F. Xiao, Z. Wang, N. Ye, R. Wang, and X.-Y. Li. One more tag enables
fine-grained rfid localization and tracking. IEEE/ACM Transactions on
Networking (TON), 26(1):161–174, 2018.

[38] D. Yang, D. Tian, J. Gong, S. Gao, T. Yang, and X. Li. Difference bloom
filter: A probabilistic structure for multi-set membership query. In IEEE
International Conference on Communications, pages 1–6, 2017.

[39] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and
S. Uhlig. Elastic sketch: Adaptive and fast network-wide measurements.
In Proc. ACM SIGCOMM 2018, pages 561–575.

[40] T. Yang, A. X. Liu, M. Shahzad, and et al. A shifting bloom filter
framework for set queries. Proceedings of the VLDB Endowment,
9(5):408–419, 2016.

[41] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L. Mathy. Guarantee
ip lookup performance with fib explosion. In Proc. ACM SIGCOMM
2014, volume 44, pages 39–50.

[42] M. K. Yoon, J. W. Son, and S. H. Shin. Bloom tree: A search tree based
on bloom filters for multiple-set membership testing. In INFOCOM,
2014 Proceedings IEEE, pages 1429–1437, 2014.

[43] M. Yu, A. Fabrikant, and J. Rexford. Buffalo: bloom filter forwarding
architecture for large organizations. In ACM Conference on Emerging
NETWORKING Experiments and Technology, CONEXT 2009, Rome,
Italy, December, pages 313–324, 2009.

[44] V. Zakhary, D. Agrawal, and A. E. Abbadi. Caching at the web scale.
Proceedings of the VLDB Endowment, 10(12):2002–2005, 2017.

[45] L. Zdeborov and F. Krzakaa. Phase transitions in the coloring of random
graphs. Physical Review E Statistical Nonlinear & Soft Matter Physics,
76(3 Pt 1):031131, 2007.

[46] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores. Proceedings of the VLDB Endowment, 8(11):1226–1237, 2015.

[47] H. Zhu, F. Xiao, L. Sun, R. Wang, and P. Yang. R-ttwd: Robust
device-free through-the-wall detection of moving human with wifi. IEEE
Journal on Selected Areas in Communications, 35(5):1090–1103, 2017.

1153

