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Abstract—Why are some people more creative than others?
How do human brain networks evolve over time? A key
stepping stone to both mysteries and many more is to compare
weighted brain networks. In contrast to networks arising from
other application domains, the brain network exhibits its own
characteristics (e.g., high density, indistinguishability), which
makes any off-the-shelf data mining algorithm as well as
visualization tool sub-optimal or even mis-leading.

In this paper, we propose a shift from the current mining-
then-visualization paradigm, to jointly model these two core
building blocks (i.e., mining and visualization) for brain net-
work comparisons. The key idea is to integrate the human
perception constraint into the mining block earlier so as to
guide the analysis process. We formulate this as a multi-
objective feature selection problem; and propose an integrated
framework, BrainQuest, to solve it. We perform extensive
empirical evaluations, both quantitatively and qualitatively, to
demonstrate the effectiveness and efficiency of our approach.

I. INTRODUCTION

In recent decades, revolutionary neuroimaging techniques
(e.g., multimodal MRI) have advanced the fundamental
understandings of the neural connection and co-functioning
of in vivo human brains, known as the brain network [1] or
connectome [2]. The high-resolution measurement of brain
networks opens the door to many data mining problems. In
this paper, we focus on the comparative mining of weighted
brain networks among labeled populations [3]. For example,
what is the difference between the brain networks of a highly
creative group and a normal group? How do brain networks
evolve over time, in the aftermath of a major surgery?

At the first glance, it seems that many matured data
mining techniques could conveniently lend themselves to
this task. For example, feature selection and frequent graph
mining which optimize quantitative performance measures,
including the label classification accuracy, precision/recall,
etc. However, we argue that, in the context of the brain
network comparison, the interpretability of mining results
for end users is at least as important as their quantitative
performance measures. First, the current data generation
process in both brain imaging and network creation is
error-prone, and there is no generic comparative pattern on
brain networks among different population groups. These
factors lead to the significant uncertainties in the patterns
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detected by algorithms. Such patterns would be worthless
without the cross-examination with historical records and
the manual confirmation by domain experts. Second, the
domain experts (e.g., neurologists and doctors) are not
necessarily data mining experts with the knowledge of the
full detail of mining algorithms. Instead, they might depend
on visual interfaces (e.g., graphs drawn in Figure 2) to
analyze the cortical difference. Third, on such interfaces, the
mechanism for human users to discover comparative patterns
and interpret the mining results is significantly different from
a fully automatic algorithm. In fact, human users are largely
governed by the perception theory of the vision system.
Applying the interpretability constraint by the human
perception, most relevant data mining techniques in their
current forms are sub-optimal for the brain network com-
parison task, if not infeasible at all. In particular, feature
selection methods such as statistical hypothesis testing and
sparse regression models [4][5] identify individual and/or
collections of network connections that are discriminative
among outcome groups (e.g., high/low IQ scores). However,
the comparison on the selected features at the perception-
level is not noticeable by end users. On the other hand,
when interaction effects among features are strong, feature
selection methods might fail to detect the subgraph patterns
that have been shown to be prevalent in brain networks [6].
The key innovation of this work is the joint modeling of
the discriminative objective in data mining and the inter-
pretability constraint in visualization guided by the human
perception mechanism. We present BrainQuest, an integrated
comparison framework on brain networks, that achieves
effectiveness and efficiency from both data analytics and
user’s perspectives. Our contribution can be summarized as:

o A Novel Problem Definition based on an empirical study
of real-world brain network characteristics (Section II),
that integrates multiple objectives into a coherent feature
selection formulation. We propose a new constraint on
perception which is not studied before (Section III);

o A Perception-Guided Modeling namely the prioritized
sparse group lasso, to fulfill our design objectives simul-
taneously. The perception constraint is satisfied through
the experiment-driven model calibration and a novel
usage of the priority criterion (Section IV, V);
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Figure 1. (a) One subject’s brain network, nodes are placed at the center of each cerebral region, edges indicate fiber connections. The node label gives
the region index, with a full list on the left. The node color shows its degree. (b) The aggregated brain network of all subjects, nodes are grouped by
region index. The node label gives the number of aggregated regions and the edge color shows the number of original edges in the aggregation. (c) The
correlation coefficient matrix of all subjects’ unweighted topology vector. (d) The CDF of fiber connection strengths of 5 single subjects and all subjects.
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(c) Comparison on CCI with features by lasso

Figure 2. Brain network comparison between two groups of subjects. Both edge thickness and color saturation indicate the average fiber strength in each
group: (a) Female v.s. male in purely visual comparison, all edges are displayed. (b) High CCI v.s. low CCI, 129 edges are displayed, all with significant
difference between groups (p < 0.05). (c) 83 edge features selected by lasso are displayed.

o Comprehensive Evaluations by both numeric experi-
ments on quantitative measures linking to the design
objectives, and the user study on comparison tasks in
a practical scenario (Section VI).

II. EMPIRICAL STUDY

We studied the brain network of 113 subjects provided by
the Open Connectome project [2]. The data is measured by
multimodal MRI and processed in an automated pipeline [7].
Both gyral-based region-level small graphs and voxel-based
low-level big graphs are estimated from the raw MRI data.
Due to the wide acceptance of the gyral-based human brain
division atlas [8], we focus on the region-level small graph
in our study. On each subject, the small graph consists of
70 nodes, corresponding to cerebral regions in one human
brain (35 in each hemisphere). The edge between a pair
of nodes represents the fiber connection between cerebral
regions, where the edge strength indicates the degree of
connectivity. Each subject is recorded with rich demographic
information, including their gender, age, and measures on
Full-Scale 1Q (FSIQ), Composite Creativity Index (CCI)
and the Big Five personality traits. We classify the value of
each measure into a few classes for the ease of comparison.
For example, both FSIQ and CCI are divided into two
classes: the high class with FSIQ/CCI>100 and the low
class with FSIQ/CCI<100. Three interesting properties are
found on these brain networks, posing new challenges on
the comparison task studied here.

High density. On each subject, the 70-node brain network
has 800~1208 edges, leading to a high graph density of
0.33~0.5. Figure 1(a) illustrates the network of one random
subject. The central regions are almost fully connected.
Figure 1(b) further shows an aggregated brain network of
all subjects by grouping nodes of the same region together.
The aggregated network has 2016 edges and 50% edges are
shared by at least a half of subjects.

Indistinguishability. The networks among subjects are
similar in both topology and connection strength. To show
that, we build the Pearson’s correlation coefficient matrix
of the unweighted topology vector of all subjects. Each
topology vector has a length of 2415, including all binary
fiber connections of a subject. Figure 1(c) depicts the matrix,
almost every pair of subjects has a topology correlation
larger than 0.6, and the average correlation is close to 0.7.
The weighted topology correlations are even higher, with an
average of 0.9. On the fiber connection strength, Figure 1(d)
shows the CDF of connection strengths in 5 random subjects
and also the CDF from all subjects. Both the percentage of
weak connections (<100 in strength) and the distribution of
stronger connections are quite similar among individuals.

Limitation of feature selection. In comparing weighted
brain networks among subject groups, the inherent high
graph density and similarity in topology make it difficult
for a pure visualization-based approach. Figure 2(a) shows
an example comparing female and male subjects, using the



Table T

NOTATIONS.
[ SYMBOL [ DESCRIPTION ]
N, G; # of subjects and their brain graphs
n, p, e; # of nodes/edges, each edge in the brain graph
X, X, ®4, Tij edge weight variable, weight matrix on all subjects,
weight vector on G; and the component on e;
Y.y, yi outcome variable, value on all subjects and G;
K, Sk, Vi # of levels for the outcome, subset of subjects at
each level, their aggregation views in comparison
R, Tk Tkj transfer function, edge weight on Vj, and e;
Y5 Vg edge feature selection vector and component for e;
X+, Vie(v) partial edge weight matrix, the view after feature
selection

edge color and thickness to show the average connection
strength. People can discover some differences on individual
edges, but it is difficult to extract comparative subgraph
patterns. In fact, on the full graph level, the attribute of
subjects has little correlation with the overall topology.
We order the correlation coefficient matrix in Figure 1(c)
by subject’s CCI index. The figure reveals no significant
clustering pattern, except that the top 20 creative subjects
have a little bit different topology from the others. These
findings suggest using computational edge feature selection
methods in the brain comparison task. Unfortunately, two
baseline feature selection methods are shown to be ineffec-
tive in our initial studies. First, we conduct unpaired t-test
on each edge connection between comparing groups. Only
the edges with significant difference (p<0.05) are selected.
Figure 2(b) shows an example in comparing high v.s. low
CCI groups, in which 129 selected edges are displayed and
trivial edges (average strength below 100) are removed.
Though the comparison exhibits clear differences, it is
shown that the selected edges may not directly contribute to
the difference in outcome. We input these 129 edge features
into a standard logistic regression model to predict the CCI
group index. The average prediction accuracy under 10-fold
cross-validations reaches 52.28%, even worse than that of
a null model (53.1%). In the second trial, we apply L1
regularization with elastic net [5] on logistic regressions.
The best prediction accuracy (85.5%) is achieved on a = 1,
corresponding to the lasso regularization [4]. Figure 2(c)
depicts the 83 edges selected by lasso. These edges scatter
uniformly over the graph, some even without noticeable
difference in the visual comparison. It suggests that the
success in predicting the outcome does not necessarily lead
to an interpretable pattern in comparing brain networks.

II1. PROBLEM

We first introduce the notations used throughout the
problem definition, as listed in Table I. The raw input is
the brain network of N subjects under study, represented by
undirected graphs G, --- , G . Each graph G; is composed
of a same number of nodes, denoted by n. Each node
represents one gyral-based region covering thousands of
adjacent MRI imaging voxels. There is an edge between each

pair of nodes if fiber connections are detected between their
regions. All edges are weighted by one continuous measure
X, normally the fiber connection strength. We assume each

graph to have the same number of edges: ey, - ,¢e,, where
p = @ On G, the edge weight vector by X is

denoted by =; = (21, ,2;p) . For edges having no fiber

connection, we set their weight components to zero.

At the network level, each subject and their brain graph
is associated with a discrete outcome variable ), e.g., the
high/low CCI group of subjects by their CCI index. The
value of ) on N subjects is denoted by the vector y =
(y1,--- ,yn)', where y; has K possible levels. This out-
come variable classifies all subjects into K disjoint subsets,
S1,- -+, Sk. The brain graphs in each subset are aggregated
into one view by the region index, generating K views for
the visual comparison, denoted by Vi, --- , Vi. Due to the
homogeneity of brain graphs, each view still has n nodes
and p = % edges. The edge weight by X on each view
is determined by a transfer function R over individual edge
weights. By default, we apply the mean function which is
used in standard visualization tools to illustrate the average
brain connectivity of a group. The edge weight vector on the
view of V}, is denoted by 7 = (rg1,- -+ ,7kp) . In this work,
without loss of generality, we target the pairwise comparison
(K = 2) between two views (Vi,Vs) aggregating brain
networks by a binary label, e.g., the high/low CCI class.
PROBLEM 1: PAIRWISE BRAIN NETWORK COMPARISON
Given: (1) the edge weight matrix X on a set of brain
connectivity graphs (design matrix); (2) the vector y of
a binary label on these graphs (response vector); (3) the
transfer function R to aggregate edge weights onto the
group-based views for visual comparison;

Select: the collection of useful edge features for comparison,

represented by the feature selection vector v = {0,1}?;

By optimizing four design objectives:

DI1. Discriminative power by maximizing the binary classi-
fication accuracy on the label ) with selected features:
max P(g; = yi‘X'w Y)s
where X, denotes the partial design matrix after fea-
ture selection, g; is the predicted label on graph G;;

D2. Sparsity by bounding the number of selected features:
Z§:1 Vi =t
where ¢ is the parameter to control the sparsity. This
is to avoid overfitting in learning brain network labels
because we have p > N, i.e., a fat design matrix;

D3. Grouping effect by maximizing the clustering coeffi-
cient of selected edge features in the aggregated views:
max Zszl ClusterCoeff (Vi (7)),

Vie(7y) denotes the kth view after feature selection;

D4. Visibility of feature differences by a lower bound on
the ratio of visible differences for comparison:

P(|ry; — 72| 2 JNDly; = 1) = ¢,
where £ is the visibility threshold, JND is the just
noticeable difference in perception (Section V-B).



IV. MODEL AND ALGORITHM
A. Prioritized Sparse Group Lasso

We propose an integrated model to fulfill the four design
objectives (i.e., D1~D4). The goal is to choose the optimal
feature weight vector w (which determines the feature
selection vector by v; = 1(0,400)(w;)) that minimizes:

M D4
~ =~
NLL(w) + aM|[wll + (1 = a)A Y~ /P O [[0™ |2
—_———  ——

D1 D2 m=1

D3 )
where NLL(w) = Zfil log(1 + e~ %®" @) denotes the
Negative Log Likelihood (NLL) for the weight vector w.
Edge features are partitioned into M groups with size
1, P, splitting the weight vector w into sub-vectors
w® . M

The first term of this model is the NLL of a logistic
regression model. Minimizing NLL leads to an optimization
of the prediction accuracy, which meets the objective of
discriminative power (D1). The second term excluding « is
the standard L1 norm penalty to ensure feature sparsity (D2),
where the parameter A is to control the degree of sparsity.
The third term is mostly derived from the group lasso penalty
[9] to select subgraph patterns based on an existing grouping
of edge features (D3). The parameter « is added to balance
the groupwise sparsity and the within-group sparsity.

The modeling to satisfy the design objectives of D1~D3
is well-known to the data mining community as variants
of lasso methods [4][9][10], but a key challenge remains
open, i.e., how to meet D4, the perception-level visibility
of differences. Our major contribution in modeling is to
propose a new prioritized mechanism on the group feature
selection. The intuition is to encourage the selection of
group of features with a higher visibility than the desired
threshold; and suppress the selection of other less visible
groups. This is achieved by introducing a priority parameter,
denoted by 6,,, for each group of features. This model
adaptation seems straightforward, but the optimization of
these priorities is nontrivial. First, the selection/de-selection
of groups of features is a complex process, which is coupled
with the other parameters as well as the input data. We
provide a theoretical analysis on this process to support
our optimization-based solution (Section IV-C). Second, the
exact modeling of visible differences for human in the
brain network comparison is unsettled, which requires user
experiments to calibrate the model (Section VI-A).

The entire model is named the prioritized Sparse Group
Lasso (pSGL). Figure 3 gives an explanation from the
perspective of bayesian graphical model. Filled boxes are
model parameters and input data, while hollow boxes are
the variables to compute. This is similar to the modeling of
group lasso and elastic net (Chapter 13.5 of [11]) except for
the introduction of ,, and JIN D. To solve this joint model,

N: #data

x;: ith feature vector

yit ith outcome

wj: weight of jth feature
7y selector of jth feature
M: #group of features
P #feature in group m
w™: weight in group m
y™: selector in group m
0,: priority for group m
A: overall sparsity

a: groupwise sparsity
JND: just noticeable diff.

&2
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Figure 3.

Graphical model of the framework and the solution pipeline.

we propose a five-stage solution pipeline (Figure 3): (1) All
edge features are grouped by existing categories or clustering
algorithms (Section V-A); (2) The human perception model
is established to compute the visibility of differences in
the comparison (Section V-B); (3) A basic Sparse Group
Lasso (SGL) model without priority is solved by the latest
algorithm, and cross-validated to determine the best sparsity
parameters (Section V-C); (4) The priority for each feature
group is computed by an optimization algorithm (Section
IV-B); (5) The pSGL model with priorities is solved to meet
the visibility objective.

B. Optimization Algorithm for Priorities

In our solution, the key stage is to compute the priority
0, for each group of features (Stage 4 in Figure 3), based
on the result in solving the unprioritized SGL model (Stage
3 in Figure 3). The objectives in this stage are two-fold:
(1) satisfy the visibility of difference constraint (D4) in
the pSGL model; and (2) minimize the variance to the
unprioritized SGL model. This can be formulated as:

M
min Y /Pl — 1] - [z
m=1

S P (Y™ 4 Ay ™) -

s.t. =
Zm:l pm(’)/(m) + A’y(m))

2

where @™ denotes the weight sub-vector on feature group
m solved for the unprioritized SGL model, v(™) € {0,1}
indicates whether any feature in group m is selected in
the unprioritized SGL model, Av(™) denotes the change
of feature selection on group m after applying priori-
ties. Ay(™) € {—1,0,1} indicates group de-selection,
unchanged and selection, respectively. £, denotes the ratio
of visible differences in feature group m.

We show that 6,,, can be computed as having the minimal
change to enable Ay(™) (see the analysis in Section IV-C):

[1S(= 0111\)1(1;75 (w),aN)||2 (m)| _
0, — e [AY™=1 3
1 A~ =0



Algorithm 1: Optimization Algorithm for 6,,.

Input : o, ), p, & Ems a, A
Output: Ay(™ 0, form=1,--- , M
begin
F « (), budget + 0
for m < 1 to M do // initialization
Y = 10 400y (0™), Ay - 0,0, 1
|8 (= 2NEL (i),a\)||2
— /P

" ow(m)
(I—a)A

cost — |[@™]]|"
investy, < pm(&m — &)
budget + budget + p,, (& — §m)'y(m)
if (™) —0.5) - invest,, < 0 then
| F«< Fu{m} // feasible groups

for me Fdo // invest/cost efficiency
L efficiencym “ mm(\znvjos:g;\,budget)
Sort F' by ef ficiencyr decreasingly
while budget > 0 && F # () do
// iterations
s=F(1) // most efficient group

0. [15(— LS (w),a)) |2

ow(s)

(I—a)Ay/ps
budget « budget — |invests|
F «+ F—{s}

end

Substituting with (3), the optimization problem becomes

M ONLL (.~
. oy IS ENEL (48), aN) |2 .
min ([ | TR R = VoA
m=1
M M
st Pm(em — A > D" p(€ = &n)y™ @)
m=1 m=1

This turns out to be a constraint linear programming problem
over Ay(™) given the weight vector @ solved for the
unprioritized SGL model. We propose a budget optimization
algorithm in Algorithm 1 to solve the problem. The idea
is to treat the right side of the constraint in Equation (4)
as the fixed budget to spend, and the left side terms as
investments to meet the budget. The objective in Equation
(4) is to minimize the total cost by each investment of
A~(™) £ (0. The algorithm sorts all feasible investments
by the investment/cost efficiency and spends the budget by
this rank until no budget is left.

C. Theoretical Analysis

Correctness Analysis. We first discuss how the proposed
model regularizes the weight vector towards zero. The
objective function in Equation (1) is not differentiable when
w; = 0 due to the L1 penalty, so this is a non-smooth
optimization problem. However, Equation 1 is clearly convex
so that the optimality condition can be obtained through

subgradient equations. Denote the objective in Equation (1)
by F'(w), its subgradient g at wo satisfies

F(w) — F(wo) > g" (w — wp),Yw € R? %)

Consider one feature group with weight sub-vector @™,
The entire weight vector is denoted by w. This group will
be zeroed out when w™ = 0 is one of the subgradient
satisfying Equation (5). Taking gradients on Equation (1)
within the group m, the condition in Equation (5) becomes:

ONLL
§w<m> (@) AD ™ +a||AD ™) ||1+(1—a) A/Drm Om || A ™| |2 > 0

where Aw(™) denotes an arbitrary small change from
@™ = 0. With a few reductions and analysis, the in-
equation translates to the form of soft thresholding in lasso,
indicating the groupwise sparsity condition:

ONLL, .
180~ o (@), V]2 < (1 = OANPmbun (6

where (S(z,a))); = (|z;| —aX)4. 6, controls whether the
features in group m should be deselected entirely, which
leads to Equation (3). Using a similar analysis, we derive
the within-group sparsity condition for @; = 0 in group m:

‘3NLL

awj
In determining the priorities for the pSGL model, for
feature groups not selected in the unprioritized SGL model
@™ = 0), we replace @ in Equation (4) with an
estimated cost of selecting the group, denoted by 'ngrm).

Using the subgradient analysis in Equation (6)(7), each 0,
(m)

(®)] < a )

in W) " satisfies:
ONLL , . . N
S (w)sign(w;) + (o — ay/Pm + V/Pm)A =0 (8)
j

Notice that %(’lﬁ) is non-decreasing when 10; increases.
Newton—Raphsojn method can be applied to solve Equation
(8) for each w;, and finally compute 'ngrm).

Complexity Analysis. On the algorithm scalability, the
proposed Algorithm 1 scales well as the problem size grows.
The most costly step is the sorting of the list of feasible
groups, which has a complexity of O(Mlog(M)). In the
case of brain networks, the number of groups grows linearly
with the number of regions, having O(M) ~ O(,/p). Also,
the algorithm to solve SGL has a complexity of O(p) [12],
linear to the number of features. The total computation
complexity holds linear to the number of features.

V. IMPLEMENTATION DETAIL

A. Feature Grouping

In the first stage of our solution, edge features are grouped
and input to the SGL model. Existing feature categories can
be applied as the group, e.g., the functional classification
of brain regions. In addition, two clustering methods are



supported. The first is the node clustering on the aggregated
brain graph of all subjects, again by the mean transfer
function. M — 1 node groups are obtained by optimizing
the clustering objective on weight graphs. Then M edge
feature groups are derived, M — 1 groups correspond to
the subgraphs by the node clustering and the other group
contains all inter-cluster edges. The second method directly
clusters edge features by translating the aggregated brain
graph into the corresponding line graph, where each node
refers to one edge in the brain graph. The edge weight
on a line graph is computed by the similarity between
adjacent edge features on the brain graph or their weight
multiplication [13].

B. Perception Model

After the feature grouping, we need to determine whether
each group of features is visible in the comparison by
human. Here we introduce the Just-Noticeable Difference
(JND) model [14] in the perception theory. The concept of
JND is defined as the minimal amount of perception magni-
tude that something must be changed for human to notice the
difference. Formally, given a reference stimulus with value
I on certain perception channel, the JND profile, denoted
as JND(I), quantifies a minimally increased stimulation
I+ JND(I), at which just P% of people can detect changes
from the previous stimulation intensity. Normally P takes a
value of 50, so that a half of people will sense the change at
least as large as JND. By Weber’s Law, JND is proportional
to the original intensity: JND(I) = k-I. The factor k takes
a constant value, but varies across different user bases and
modalities of the human perception (e.g., sound, vision).

For the scenario of visual comparison, the closest JND
model has been proposed on the image processing domain
[14]. There are two additional factors except for the intensity
difference: (1) background luminance adaptation; (2) spatial
masking. In this work, we adopt an extended JND model
from the image perception domain to the subgraph-level
JND on node-link graphs. On the visual comparison of
a subgraph G, each edge is said to be noticeable if its
difference between groups is no smaller than JND(G).

JND(G) = Bo+ B1 - E(G) + B2 - STD(G) ~ (9)

where E(G) denotes the weighted average of edge color
saturation by edge length/space, ST D(G) denotes the stan-
dard deviation of edge color saturations. More detail and
the rationale of this perception model is explained in the
extended technical report [15].

C. Model Estimation

In solving SGL and pSGL models with fixed priority
parameters, we apply Moreau-Yosida regularization based
algorithm in [12]. To determine the sparsity parameter of «
and A, we first try a list of value in a € [0,1]. For each
«, the overall sparsity A takes logarithmically spaced values

CCl=high(60) CCl=low(53)

Figure 4. Brain network comparative visualization applying color palette,
feature capping and redundant coding mechanisms. 83 features are selected
by lasso with a 85.5% prediction accuracy.

within the feasible range for nonzero weight vectors. The
best A is determined as the one with the highest prediction
accuracy. Note that the prediction accuracy is calculated in
a 10-fold cross-validation by a random partition of the data.

D. Visual Design

In complement to the algorithmic framework, we propose
a customized visual design for the comparison of brain
networks, as shown in Figure 4: (1) Color palette. Beyond
the linear mapping from the edge feature to the color
saturation, we introduce data binning with 9 sequential color
classes. Here the color palette follows the suggestion in
ColorBrewer [16], the number of classes is determined by
the result in Section VI-A. (2) Feature value capping. In our
empirical study, it is found that only a few edge features
have noticeable difference (>10.9%) in the comparison.
We develop the feature capping method to amplify small
differences to be more visible. For example, in our case with
a capping value of 10800 (Figure 4), the visible difference
threshold is reduced to 1200 from 3000. For edges with
weight exceeding this cap, we use a single upper-bounded
color to draw, which makes up the augmented 10-color
palette. (3) Redundant coding. By the result in Section VI-A,
using both color saturation and line thickness can signif-
icantly improve user’s performance in visual comparison.
This is due to the redundant coding effect that leverages
more visual channels to display the difference.

VI. EVALUATION

Experiments are designed to answer the following ques-
tions: (Q1) Whether the proposed subgraph JND model cap-
tures the user’s performance in identifying visual differences
among brain networks? (Q2) How well does the proposed
model perform in optimizing the design objectives, both
individually and collectively?

A. JND Experiment

Due to the space limit, we present a brief description
of the experiment to estimate the subgraph JND model in
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Figure 5.

Performance comparison of feature selection methods on design objectives.
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Equation (9). More details are explained in Ref. [15].

Design. We conducted a within-subject experiment with
17 subjects under each of three visual difference coding
methods: (1) using color saturation; (2) using line thickness;
and (3) using the redundant coding on both channels. In
each task, we asked users to compare two views: one with
the original brain network data, and the other with planned
differences added on the edges of a subgraph by one of
the three visual coding methods. On each task, users were
asked to choose from three difference levels between the
two views: (1) no difference; (2) little difference (random
noise); (3) significant difference. We recorded both user’s
choice and their completion time.

Results. In general, users indicate 82.7% tasks to have at
least little difference and 48.5% with a significant difference.
On each of 60 tasks in the testing phase, we check whether
there are at least 50% users answering with significant differ-
ence. This corresponds to whether the task setting is beyond
JND or not. Then the model in Equation (9) can be fitted
with logistic regression. The estimated model is quite simple,
the above/below JND outcome can be perfectly classified by
the ratio of difference on visual channels. A boundary ratio
of 0.183 is obtained for using color saturation to visualize
the difference, 0.238 for using line thickness, and 0.109
for color+line thickness coding. This demonstrates that the
redundant coding gains the best comparison performance.

B. Performance Comparison

We evaluate the performance of following feature se-
lection methods: lasso (Elastic Net under o = 1), ridge
regression (Elastic Net under o« — 0) and Elastic Net; sparse
group lasso (SGL) under 6,, = 1 with both node and line
clustering by edge strength or strength difference between
comparative views; prioritized SGL (pSGL) under a ratio of
visible difference threshold (§) of 0.25; group lasso (SGL
under o = 0). We focus on the scenario of comparing brain
networks between the high CCI group (60 subjects) and
the low CCI group (53 subjects). The groupwise sparsity
« varies from O to 1 to cover the full space of lasso-
based methods. The statistical hypothesis testing, which only
selects features with significant differences (p < 0.05),
predicts the CCI class even worse than a null model (53.1%
accuracy), so we drop this model in the comparison. For
SGL models with different clustering algorithms, we choose

the node/line clustering with the best prediction accuracy.

We also compare with the frequent graph mining methods
in the experiment. In particular, we choose one of the most
popular methods, gSpan [17]. In our scenario, we take a
two-step approach. First, frequent subgraphs among all brain
networks are generated as candidates using gSpan. Second,
the extracted subgraphs are treated as the input features of a
standard logistic regression to train a binary classifier for the
two CCI classes. It is very time consuming to run gSpan on
the entire brain networks, largely due to their high densities
(see Section II). To address this issue, we divide the 70-
node brain network into three parts, left-brain, right-brain
and the left-right connection subgraphs. gSpan is executed
separately on each set of regional networks.

All methods are compared on the objectives defined in
Section III. Figure 5 summarizes the result on discriminative
power, sparsity, visibility and grouping effect. As shown
in Figure 5(a), all feature selection methods achieve better
prediction accuracies with a larger o.. This is because in our
setting, we have N < p. Thus, as we increase « and stress
more on the overall sparsity, fewer features are selected
(Figure 5(b)). Consequently, the prediction performance is
improved thanks to the less overfitting. Notice that, SGL
with an appropriate clustering could outperform Elastic Net
without an explicit grouping. The proposed pSGL model
further improves the prediction, mainly because it selects
an even smaller number of discriminative features and thus
reduces the overfitting. In the extreme case, gSpan would
only select a single small subgraph, which degrades the
prediction accuracy.

In terms of the visibility of difference, as illustrated in
Figure 5(c), the proposed pSGL model raises the visibility
to a level close to or above the specified threshold (0.25)
and is better than most of the lasso-based methods. The
gSpan algorithms achieve the best visibility, mainly because
only a small number of features are selected. As for the
clustering coefficient, Figure 5(d) shows that all lasso-based
methods have a better clustering effect with a smaller ¢,
which is consistent with their heuristics. The proposed pSGL
model leads to a smaller clustering coefficient because it
selects fewer edge features. Nonetheless, with a medium
a (0.4~0.7), the pSGL model still has a better clustering
than other methods with o > 0.9, when all methods achieve
a comparable accuracy at 80%. Frequent subgraph mining



algorithms produce clustered subgraphs by their design.

In summary, the proposed pSGL model achieves the best
overall performance on the four design objectives of our
problem. Figure 5(e) illustrates the trade-off between the
prediction accuracy and the visibility of difference on a
scatterplot. Four representative plots of the pSGL model lie
on the upper-right corner, indicating a balance between the
prediction accuracy and the visibility. On the other hand,
the existing lasso methods stay at the lower-right corner,
suffering from poor visibility for comparison; and frequent
subgraph mining methods stay at upper-left corner, falling
short on the prediction accuracy.

Our results are better demonstrated with the visual com-
parison in Figure 6 (the result by lasso is given in Figure
4). By lasso, the best prediction accuracy of 85.3% is
reached, but the selected features are scattered out and
hard to compare by humans. Elastic Net (Figure 6(a)) and
SGL with line clustering (Figure 6(c)) both obtain the best
prediction under o« — 1. The selected features are more
clustered, but still the comparative pattern is not significant
for humans to interpret. Group lasso with node clustering
(Figure 6(b)) shows perfectly clustered view, however, the
prediction accuracy is poor (58.2%) and there are too many
features to compare. The result by the proposed pSGL model
(av = 0.7 for the best visibility) is show in Figure 6(d). Our
method extracts more focused, clustered and visible patterns
for the human interpretation, in the meanwhile producing a
good prediction accuracy (77.5%). We can infer that the
connections of region #64 (rh-superiorfrontal) and #39 (rh-
caudalmiddlefrontal) are important for the CCI difference.
There is strong accordance to our findings in neuroscience
literature. The superior frontal region is involved in self-
awareness [18] while there is theory that self-awareness
strongly influences creativity [19]. At a higher level, both
regions of #64 and #39 are in the right hemisphere, and in
Figure 6(d), the high CCI group has stronger connections
than the low CCI group between #64/#39 and several
regions in the left hemisphere. This difference can be further
augmented by introducing binary edge filters that hide weak
connections below a threshold. Figure 6(e)(f) are the conse-
quences filtering over Figure 6(d). Only 12 and 8 features are
kept in the high CCI group while much less features stay in
the low CCI group. On the graph mining algorithms (Figure
6(g)(h)), visual differences can be perceived, though they
are not as discriminative as those from our pSGL model.

C. User Studies

Design. We follow up with a controlled user study to
evaluate the user performance of feature selection methods.
12 subjects were recruited, all with basic knowledge of
graph and network. Each subject was required to complete
6 tasks, corresponding to 5 visualization results in Figure
4 and Figure 6(a-d), and one sample task at the beginning
for training. On each task, the subject was asked to select
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Figure 7. User study result comparing feature selection methods.

all edges that have a significant difference between the
comparative view. They were instructed to work in a best-
effort manner. We recorded all the edges they selected
and the time for completion. By the end of the study,
we input the user selected features into a standard logistic
regression model and calculate the prediction accuracy for
each subjectxtask setting.

Result. Figure 7(a) presents the performance of top sub-
jects finishing with best prediction accuracies over each
feature selection method. The scatterplot shows the trade-
off between the prediction accuracy and the completion time,
corresponding to the model effectiveness. Figure 7(b) depicts
the performance of top subjects selecting most features over
existing models (by the ratio of manually selected features
in those selected by models/algorithms). This corresponds to
the model efficiency. In both figures, pSGL lies on the upper-
right area, i.e., our method achieves the best performance in
both user effectiveness and efficiency.

VII. RELATED WORK

Brain Network Analysis emerges as a compelling topic
in data mining research due to the maturation of non-invasive
neuroimaging techniques [20]. The raw neuroimaging data
is modeled as a high-order tensor, e.g., by three-dimensional
image and time. On these tensor data, fundamental problems
are defined [21], including the node discovery that detects
brain areas with coordinated activities, edge discovery that
creates weighted relationship between nodes, and the ver-
ification of network strength. Both the tensor and brain
networks can be trained by learning methods (tensor de-
composition, feature selection) to infer the relationship with
certain outcomes, e.g., Alzheimer’s Disease (AD) [22][23].
In another thread, studies on the subgraph extraction and
analysis on brain networks are also popular. The major chal-
lenge lies in the modeling of uncertain brain networks. New
methods have been proposed on frequent and discriminative
uncertain subgraph mining [6]. Though solid progress has
been made, the problem of jointly optimizing data mining
and visualization has not been studied before.

Feature Selection algorithms are widely applied in the
study of bioinformatic data, because of its tendency to carry
much more features (e.g. genes, biological pathway) than
the data sample. On regression analysis, the regularization-
based sparse learning has attracted intensive studies for



decades. The seminal work by Tibshirani [4] introduced
the lasso (aka L1 regularization), which adds the L1 norm
penalty to encourage zero weights for sparsity. In many
scenarios, lasso can be too aggressive to identify correlated
features. Therefore, Elastic Net [S] was proposed to exploit
the grouping effect in feature selection, which applies a
combination of L1 and L2 penalty. With a similar goal,
group lasso [9] was introduced, which allows specifying the
group of correlated features. The latest work on the sparse
group lasso [10] further combined the group lasso with L1
penalty, to provide flexibility in controlling both groupwise
and within-group sparsities. Compared to the existing work
on feature selection, we consider the novel perspective of
human perception and propose a new model in this objective.

Network Visualization has been well-studied to display
networks and graphs [24]. Due to the unique characteristic
of brain networks (e.g., high density), existing visualization
designs are often inadequate for brain networks (e.g., Figure
1(a-b)). Moreover, the task of visual comparison on brain
networks is largely unexplored. The work in [3] might be
one of the sparse literature on this subject. They studied
the effectiveness of two visual representations on weighted
graph comparison. This work is more a design study and
they do not consider data mining objectives.

VIII. CONCLUSIONS

This paper presents BrainQuest, an integrated mining
and visualization framework for the comparison of brain
networks. We consider statistical and perception constraints
on: (1) discriminative power; (2) sparsity; (3) grouping
effect; (4) visibility of differences. BrainQuest achieves
these goals by a multi-objective feature selection model.
Notably, the new constraint on perception is calibrated
through user experiment and optimized by a novel usage
of the priority criterion on lasso-based models. We propose
scalable algorithms to implement the framework and conduct
comprehensive evaluations in both quantitative experiment
and user study. The mining result corresponds well to
neuroscience findings, which demonstrates our success.
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(a) Elastic Net (165 features, 78.8% accuracy) (b) Group Lasso (232 features, 58.2% accuracy)
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Figure 6. Visual comparison of feature selection results (best viewed in color and high resolution).



