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MV?2Net: Multi-Variate Multi-View Brain Network
Comparison over Uncertain Data
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Abstract—Visually identifying effective bio-markers from human brain networks poses non-trivial challenges to the field of data
visualization and analysis. Existing methods in the literature and neuroscience practice are generally limited to the study of individual
connectivity features in the brain (e.g., the strength of neural connection among brain regions). Pairwise comparisons between
contrasting subject groups (e.g., the diseased and the healthy controls) are normally performed. The underlying neuroimaging and brain
network construction process is assumed to have 100% fidelity. Yet, real-world user requirements on brain network visual comparison
lean against these assumptions. In this work, we present MV2Net, a visual analytics system that tightly integrates multi-variate multi-view
visualization for brain network comparison with an interactive wrangling mechanism to deal with data uncertainty. On the analysis side,
the system integrates multiple extraction methods on diffusion and geometric connectivity features of brain networks, an anomaly
detection algorithm for data quality assessment, single- and multi-connection feature selection methods for bio-marker detection. On the

visualization side, novel designs are introduced which optimize network comparisons among contrasting subject groups and related
connectivity features. Our design provides level-of-detail comparisons, from juxtaposed and explicit-coding views for subject group
comparisons, to high-order composite view for correlation of network comparisons, and to fiber tract detail view for voxel-level
comparisons. The proposed techniques are inspired and evaluated in expert studies, as well as through case analyses on diffusion and
geometric bio-markers of certain neurology diseases. Results in these experiments demonstrate the effectiveness and superiority of

MV2Net over state-of-the-art approaches.

Index Terms—Brain network, visual comparison, multivariate analysis

1 INTRODUCTION

Isually analyzing human brain networks for bio-marker

detection is a known problem in visualization research. Here
the bio-marker refers to the indicator in brain networks for certain
neurology diseases. This work focuses on the structural brain
network estimated from multimodal magnetic resonance imaging
(MRI) data (T1, T2, diffusion, etc.) where network nodes are
defined by brain regions in the cortical level and edges are defined
by neural fibers connecting the regions. The brain networks of
the diseased subject group and the control group are compared
to extract discriminative network connections. The discriminative
connections are certain connectivity features significantly different
between the brain networks of the two groups in the statistical
test, which could be potential bio-markers of the disease under
study. Recent literature in neuroscience and computer science have
validated many network bio-markers in the human brain that are
associated with neurology diseases (e.g., the alzheimer’s disease
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(AD) [1], schizophrenia [2]) or genetic disorders [3]. These findings
can be critical for disease prevention and treatment.

Visualization has been an effective technique in comparing
complex networks [4] (e.g., routing diagrams, dynamic social
networks). The interactive interface promotes users in spotting
differences and understanding the output of comparison algorithms.
Nevertheless, on comparing brain networks for bio-marker de-
tection, existing visualization approaches are far from optimal.
Domain users, including doctors and neuroscience researchers,
are not using visualization as a primary method in their clinical
practice. First, users are generally satisfied with 3D visualizations
of reconstructed fiber connectivity on a single brain [5] [6]. Yet,
aligning fibers of hundreds of subjects in the same 3D space is
extremely difficult, if not impossible at all. Most solutions simplify
brain connectivity into single-weight edges among cortical regions
where the edge weight indicates the number of brain fibers on
each connection (i.e., the strength). These weighted brain networks
can be effectively aggregated and compared in groups, but at the
cost of missing bio-markers on the other connectivity features.
For example, diffusion features such as fractional anisotropy (FA)
are known to be indicators of the brain network integrity. Brain
tumors can not be identified because of the unaffected number of
fibers. Second, state-of-the-art brain network comparisons mostly
adopt a single-view approach that juxtaposes or superimposes two
groups of networks at a time. The actual task of domain users could
involve more than one group-based comparison, e.g., alzheimer’s
disease (AD) v.s. control and frontotemporal dementia (FTD)
v.s. control for AD-specific bio-markers. This is not explicitly
supported in previous visualization designs. Third, domain users
are concerned with the uncertainty of neuroimaging and brain
network construction. They could make wrong decisions due to the
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data quality issue. But most of the current systems do not support
the analysis of data quality in the visual analytics process.

In this work, we collected user requirements on brain network
comparison in a pilot user study with domain experts. To meet
the user requirement, a visual analytics system called MV2Net
is introduced, which proposes Multi-Variate Multi-View brain
NETwork comparison over uncertain data. On the data uncertainty
issue, an interactive data wrangling mechanism is designed to
identify low-quality connectivity features, filter them out, and still
carry out a comparison on reliable components of brain networks.
To achieve a comprehensive brain network comparison, we extract
both the strength of a network connection and its diffusion and
geometric features (FA, curvature, etc.). These features are selected
via discriminative feature selection algorithms and displayed
through multi-variate visualizations simultaneously. To fulfill high-
order comparison tasks on brain networks, a multi-view design is
proposed with customized user interaction support.

We make the following contributions in MV2Net:

« An end-to-end analysis framework to extract, assess, man-
age, and compare diffusion and geometric connectivity fea-
tures on the human brain network. Notably, an anomaly detec-
tion algorithm is applied to extract low-quality connectivity
features based on their characteristics and distributions. Both
statistical tests for univariate discriminative feature selection
and group-based multivariate feature selection algorithms
are introduced to detect single and block bio-markers from
multiple connectivity features in contrasting subject group’s
brain networks. (Section 4)

The level-of-detail visualization design for multi-variate
multi-group comparison over brain networks. Coordinated
multiple views are presented which include side-by-side
and explicit-coding visual network comparison on individual
features, a composite brain necklace visualization for corre-
lation and comparison of multiple features simultaneously,
and juxtaposed 3D visualizations of fiber tracts which reveal
detailed affected regions of the diseased subjects. (Section 5)
« The system implementation and evaluation of MV?Net
through two application case studies and the expert feedback.
The experiments validate the effectiveness and superiority
of MV2Net over univariate, single-view visual comparison
approaches. Note that our result on geometric connectivity
features and the correlation among multivariate diffusion
features have not been shown by existing visualization tools.
The system also supports the incorporation of new brain
connectivity features in the visual comparison analysis process.
(Section 6)

2 RELATED WORK
2.1 Brain Network Visualization

Visualization is an effective tool to understand human brain
networks estimated from neuroimaging data. By far the most
widespread visual representations are node-link graphs and ad-
jacency matrices, e.g., in software tools [7], textbooks [8], and
review papers [9]. On node-link graphs, researches have been
conducted to accommodate traditional network layouts in the brain
network scenario. Worsley et al. depicted human brain networks
in a 3D space using projections on three anatomical planes [10].
Salvador et al. applied dimensionality reduction algorithms such
as MDS to reveal the functional similarity among nodes defined
by region of interest (ROI) [11]. Mcgonigle et al. introduced the
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ChordMap metaphor to display the hierarchical connectivity of
brain networks [12]. On the other hand, matrix representations
[13] are also favored because brain graphs often have medium to
large sizes and are considerably dense [14]. Notably, Alper et al.
studied the use of node-link and matrix representations in weighted
brain graph comparison [15]. Their result recommended a specific
overlaid matrix design. To enjoy the best world of both node-link
graph and matrix, Yang et al. applied the NodeTrix metaphor in
visually detecting blockwise patterns between contrasting groups
of brain networks [16].

Visualizations were also studied on specific types of brain
networks. Pandey et al. proposed CerebroVis, an abstract visualiza-
tion design for cerebral artery networks, which uses a constrained
layout algorithm to preserve spatial context [17]. Bach et al. visually
explored the temporal dynamics of functional brain networks and
invented novel designs to discover useful patterns from dynamic
brain networks. Matrix Cubes combined the classical adjacency
matrix design with a third time dimension to create the 3D cube
visual metaphor [18]. Small Multipiles aggregates a time series
of dynamic brain networks into multiple clusters according to
matrix similarity [19]. A pile-based design is introduced to visually
represent each cluster, with a cover matrix selected from each pile
to summarize the brain network of that pile. Time Curves maps
a series of dynamic networks into a curve connecting multiple
points [20]. NeuroLines [21] and Abstractocyte [22] are proposed
to visualize microscopic brain networks such as neural connectivity,
which is not the focus of this work. For literature review on brain
network visualization, we refer to systematic surveys [23] [24].

In the literature, researchers have studied visualization of
multivariate networks that have rich semantics on network nodes
(e.g., role types in academic networks, user demographics in
social networks). Wattenberg invented PivotGraph [25], a node-link
representation of networks aggregated by a flexible combination
of node attributes. Shneiderman and Aris developed Semantic
Substrate [26], a user-defined visualization method for multivariate
networks that layouts nodes into non-overlapping regions by
their attributes. Nobre et al. proposed Juniper [27], a tree+table
visualization technique that illustrates both topology and rich node
attributes of multivariate networks by querying and focusing on
user-selected nodes and subgraphs. These existing approaches can
be applied to brain networks measured at multiple scales and
modalities, which have rich attributes on brain network nodes. Yet,
on our structural brain networks derived from DTI data, nodes (i.e.,
region of interests (ROI)) generally have few attributes useful for
visualization. Exceptions are anatomical parcellation and clustering
information of ROIs, which can be used to visually abstract brain
networks [16] [12]. In neuroscience, the most studied network
attribute might be subject demographics, e.g., networks can be
aggregated by diagnostic groups for bio-marker detection.

Compared with existing brain network visualizations, our work
is motivated by a less investigated problem of visualizing and
comparing multiple connectivity features (i.e., edge attributes) on
brain networks. Recent studies on neuroscience have called for the
analysis of diffusion and geometric connectivity features beyond the
classical fiber count/strength measure on brain networks [28] [29].
According to the latest survey on multivariate network visualization
[30], most approaches modify common visual encoding channels,
e.g., line width, color, or pattern, to represent one edge attribute [31]
[32]. Few methods are designed to reveal the pattern of multiple
edge attributes simultaneously. One exception is the design by
Schoffel et al. which applied colored bar charts to display many
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edge attributes [33]. In Section 5.1, we have discussed our design
rationale in comparison to Schoffel et al.’s work.

We note that beyond the visualization of brain white matter
connectivity, Jonsson et al. recently proposed VisualNeuro [34], a
neuroimaging application that visually analyzes functional MRI
(fMRI) data in the voxel level. Similar to our approach, VisualNeuro
supports the comparison between user-defined subject groups
and combines statistical analysis with interactive visualization
to illustrate significant differences between the subject groups.
Comparing our MV2Net system with VisualNeuro, we work with
multiple brain connectivity features and support the display of
multiple comparisons in the same interface, while VisualNeuro
focuses on the comparison of individual blood flow measures
between two subject groups. On the other hand, VisualNeuro
visually analyzes the correlation of fMRI parameters (external
attributes) with neuroimaging data. This could be a useful addition
to the MVZNet system. VisualNeuro also presents design efforts
to improve insight formation with the visual analysis tool, which
could be a future work of MV?Net.

2.2 \Visualization for Network Comparisons

Information visualization has long been a useful way of comparing
multiple data objects. In the work by Gleicher et al. [4], they
summarized the visual designs for comparison into three cate-
gories: juxtaposition, superposition, and explicit encodings. Four
considerations for deciding the visual comparison design are then
studied, including the determination of targets for comparison, the
visualization challenge, the solution strategy, and the actual design
[35]. Their framework provides a unified view for both existing and
subsequent visual comparison designs, in domains ranging from
model comparison [36] to image analysis [37].

On comparing brain networks, all the three design categories
(i.e., juxtaposition, superposition, explicit encoding) have been
applied [15]. A lot of existing works studied the comparison
between brain networks of individual subjects [38] [39]. More
related literature compared groups of brain networks, e.g., diseased
subjects v.s. controls [29], and between patients in resting-state and
performing certain cognitive task [40]. Fujiwara et al. displayed
each brain network as a point in the MDS projection view [40].
Users could select the networks of separate groups in the MDS view
and show a detailed comparison in the correlation matrix and 3D
graph views. Shi et al. proposed juxtaposed designs for group-level
brain network comparisons [41] [42]. Machine learning algorithms
are integrated with their techniques to conduct multivariate feature
analysis on groups of brain networks.

Though comparative visualization methods have been applied
extensively, most of them compare between brain networks of
individual subjects or two subject groups. Few consider the visual-
ization of correlations and trendings among related comparisons,
e.g., ordered subject groups for disease progression. Furthermore,
automatic analysis methods have been conducted together with
existing visual comparisons. None of these methods is able to
present both classical univariate analysis results and the output of
multivariate testing using modern machine learning algorithms.

2.3 DTI Data Visualization

Visualizing diffusion tensor imaging (DTI) data has attracted
considerable scholarly attention in scientific visualization literature.
Various visual representations have been proposed, including glyphs
for tensor fields [43], streamline and stream surfaces for the
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major eigenvector field of DTI [44], and hybrid visualization of
streamlines and contextual isosurfaces [45]. To further visualize
the uncertainty in fiber bundles, Brecheisen et al. [46] proposed an
illustrative approach to visualize the confidence interval using the
outlines and silhouettes of fiber bundles.

Most recent approaches focus on measuring similarities be-
tween fibers so that they can be clustered to reveal patterns in a
concise manner. Ding et al. proposed the mean Euclidean distance
for fiber clustering [47]. Physical and geometric parameters,
including mean diffusivity, curvature, and torsion, were used to
quantify the resulting fiber bundles. Corouge et al. compared three
different metrics for clustering, including closest point distance,
mean of closest point distance, and Hausdorff distance [48]. Brun
et al. mapped the fibers into a feature space and constructed a
similarity graph [49]. The fibers were then divided into groups
using a normalized cuts algorithm. Moberts et al. proposed an
evaluation framework for the different distance measures based on
the correctness and completeness of clustering results [50]. Jiannu
et al. used the weighted normalized sum of minimum distances to
measure the similarity, favoring points with closer distances [51].
Jalba et al. constructed watershed trees to describe the hierarchy in
DTTI data based on log-Euclidean metric [52].

Other than the pointwise proximity of fibers, researchers also
proposed to analyze DTI data in feature spaces. Brecheisen et al.
designed multiple coordinated views to select and view the fibers
in spatial and feature spaces [53]. Wang et al. embedded the DTI
fibers into a common space so that multiple data sets could be
compared in the embedded space using heatmaps [54]. Chen et al.
evaluated the use of different colormap strategies in displaying 3D
structural connectivity with DTT visualizations [55]. Hurter et al.
proposed FiberClay, a visualization system to display DTI fiber
tracts in immersive environments [56].

Most DTI visualization techniques use pointwise distance to
group brain fibers for further analysis. However, the pointwise
distance reflects a combined difference of multiple factors, such
as spatial proximity, shape, and complexity. It does not allow the
effect of each individual factor to be studied. Therefore, these
techniques may not explain the role played by each individual
factor.

3 MV2NET: OVERVIEW
3.1 Problem Background

The neuroimaging techniques related to human brain networks
are structural and functional MRIs. The structural MRIs measure
the physical connectivity among brain regions by white matter
pathways (i.e., brain fibers), while the functional MRIs reveal
the correlation among neuronal activations of brain regions when
human subjects undergo certain cognitive tasks. For the data source
available in our research, we focus on the structural brain network.
The structural brain network (abbreviated as brain network unless
otherwise noted) is modeled by anatomical regions of cerebral
cortex in the brain, known as nodes of the network; and the white
matter fibers among these regions in the form of clusters of axons,
known as edges of the network. Each brain region is often called
an ROI and is aligned in all subjects of the same cohort. White
matter fibers among ROIs are estimated from diffusion-weighted
MRI, most often DTI [57].

In this paper, we target a common yet critical scenario related
to the analysis of human brain networks — the detection of white
matter bio-markers of certain neurological diseases, notably AD.
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In general, analysts partition the derived brain networks into two
groups, the diseased and the healthy (control). They are compared
to extract brain connectivities relevant to the disease. Literature in
the recent decade from both neuroscience and computer science
have reported quite a few disease-related white matter bio-markers
and have validated these findings in clinical settings. For example,
it was found that AD patients underwent certain breakdown of
fiber connections in frontal, temporal, parietal lobes, and posterior
cortical regions of the left human brain [58] [59] [1].

Different from most existing techniques on human brain
networks, we consider the uncertainty issue of underlying neu-
roimaging data. Data uncertainty, generally defined as the in-
complete, noisy, and inconsistent nature of real-world data [60],
often makes data values deviate from the correct, intended, or
original values. In this work, we define the data uncertainty as the
feature mismeasurement on human brain connectivity that could
affect the accuracy of the targeted analysis task, i.e., the detection
of bio-markers on brain connectivity. This data uncertainty can
be caused by a few factors. Primarily, the same node (ROI) on
brain networks of separate human subjects can refer to mildly
different cerebral cortex regions. It is because the structure of the
cerebral cortex can be slightly diversified across subjects. The
registration of an individual subject into the same brain template
often leads to deviated cortex-node mapping from the template
brain cortex. Meanwhile, other factors such as the parameter and
method choice of fiber tracking algorithms in brain tractography
can also become the source of uncertainty in brain connectivity
feature measurement. The direct impact of this uncertainty is the
inaccurate task performance by our technique for two reasons. First,
the p-value computed on the connectivity features can be biased
because the uncertain data is included in the analysis. False-positive
bio-markers can be extracted. Second, the visualization showing
the average connectivity feature value of a subject group for
comparison can be biased, which leads to wrong insight obtained
by end users.

3.2 Pilot Study and User Requirements

The main motivation of this work lies in two hypotheses that,
beyond the classical brain network visualization design with a
single edge weight of connectivity strength, the visual comparison
on multiple connectivity features (e.g., geometric and diffusion) of
brain networks can discover useful bio-markers more comprehen-
sively. Also, the neuroimaging and brain network construction
process is noisy. The visual analysis tool on structural brain
networks should be aware of the uncertainty of their data.

To validate our hypothesis and clarify the research problem of
brain network comparison, we conducted pilot studies with three
domain experts. The first expert was a doctor from the department
of neurology in a hospital. He has both clinical and research
responsibility and focuses on white matter diseases. The second
expert was a neuroscientist whose doctoral thesis analyzed white
matter tracts from neuroimaging data. He was previously in the
ADNI team whose data was used in this work (see more details
in Section 4.1). The third expert was a computer scientist whose
research interests include brain network visualization and analysis.
All three experts have 10+ years of experience in relevant areas of
neuroscience or computer science.

The study started from a training session when the experts were
communicated about the goal of this research. Next, we explained
to the experts about the data source and network construction
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method applied. In the formal study session, each expert responded
to a questionnaire and also gave verbal feedback for any extension
to their answers. The questionnaires and answers are documented in
Appendix A. By synthesizing the pilot study result, we summarize
key user requirements on the domain of multi-variate brain network
comparison.

R1: Eliminate uncertainty in brain connectivity data. The
neurology doctor in our study described the comparison of
structural brain connectivity as an infrequent scenario in their
clinical practice. The key reason is attributed to the uncertainty
of the brain connectivity data and the follow-up brain network
construction process. The neuroscientist and computer scientist
echoed the same uncertainty issue. They demand analyzing valid
brain network data that faithfully represents brain connectivity.

R2: Analyze brain connectivity from multiple perspectives.
All experts agree that the reconstructed fiber tracts represent full
details of brain connectivity, much better than the brain network
with a single edge weight of connectivity strength. For example,
in a typical pathological disorder of brain tumors, the tumor in
the early stage can cause geometric changes to the brain fiber, but
without reducing the fiber connectivity strength. The analysis of
brain connectivity should be conducted from multiple perspectives,
on diffusion features at the voxel level and on geometric features
representing the physical shape of fiber tracts.

R3: Detect brain connectivity bio-markers by statistical
tests. The clinical practice to detect connectivity bio-markers for
disease depends on manually spotting the difference with the
naked eye, which is subjective and error-prone. Statistical tests
and machine learning algorithms can detect individual connectivity
features and a group of correlated features that are statistically
significantly different between the comparing subject groups.
Domain users demand directly looking at the analysis result instead
of analyzing the raw data themselves.

R4: Iteratively compare multiple subject groups and syn-
thesize results from multiple comparisons. To identify unique
connectivity bio-markers associated with a particular disease type,
neurology doctors often not only compare the group of patients
having this disease type with the healthy controls, but also compare
the patient group having the other type of disease with controls,
and compare between the patients with different disease types. The
patient groups with changing severity of disease are also compared
with the healthy controls to understand the disease progression.

3.3 Visual Analytics Tasks and Techniques

To meet domain user’s requirements, we design a visual analytics
system namely MV?Net which supports the following tasks on
bio-marker detection from human brain networks. These tasks
correspond to key visual analysis problems studied in this work.
Several techniques of MV?Net on brain network analysis and
visualization are proposed to address these problems.

T1/P1: Visual quality analysis on connectivity features of
the brain network. To meet R1 using visual analytics techniques,
the MV2Net system is designed to conduct built-in quality analysis
on brain network connectivity data. A carefully engineered anomaly
detection method is applied to compute the pre-defined feature
quality measure. Null connections and possibly mismeasured
connectivity features are assigned zero or low feature quality.
More details of the feature quality analysis can be found in Section
4.2. On visualization, an interactive data wrangling mechanism
is designed and implemented to allow users to eliminate the data
uncertainty before the network comparison analysis (Section 5.2).
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Fig. 1. The visual analytics pipeline of MV2Net composed of brain network construction, analysis, visualization, and interaction stages.

T2/P2: Visualization of discriminative connectivity fea-
tures between two groups of brain networks (univariate bio-
markers). To achieve R2 and R3 on individual connectivity
features, the system integrates univariate statistical tests (e.g.,
the Student’s t-test) with interactive brain network visualization
(Section 5.3). Multiple choices of statistical test algorithms and
visual comparison modes are supported in the system. Users can
directly manipulate the algorithm parameters and visually analyze
the outcome. A visual interface for subject group selection is also
introduced to specify the comparison setting.

T3/P3: Visualization of correlated discriminative connec-
tivity features between two groups of brain networks (mul-
tivariate bio-markers). The system also satisfies R2 and R3
on correlated connectivity features, e.g., multiple discriminative
features on the same brain connection, or the same feature on
a subgraph of the brain network. Multivariate feature selection
algorithms are applied to extract discriminative subgraph features
(Section 4.3). A high-order composite visualization design is
introduced to analyze correlated connectivity features on the same
brain connection (Section 5.4).

T4/P4: Visual analysis of multiple group-based brain net-
work comparisons. To meet R4, MV2Net visualization is designed
with multiple comparison views (Section 5.3). Both correlation
and progressive patterns in these comparisons can be visually
detected. Composite visualizations are also supported to integrate
the multiple comparisons into the same view for analysis. To
allow users to examine bio-markers on low-level connectivity,
a 3D comparison view is provided to drill down to detailed
geometric/diffusion features on the fiber tract level (Section 5.5).

3.4 System Pipeline

We implement MV2Net by a pipelined system architecture, as
shown in Figure 1. In the first stage, raw neuroimaging data of
all subjects are registered into the same brain space to create
brain networks that are comparable with each other. Multiple
connectivity features are extracted for the multivariate network
analysis in the second stage. Both univariate and multivariate
discriminative features are selected to accurately classify brain
networks according to their diagnostic or demographic groups.
The main innovation of this work lies in the elaborately designed
and coordinated visualizations on feature distribution, network
comparison/composition, and fiber tract details. Users are allowed
to interact with visualization in multimodal methods, which helps
to fulfill their ultimate task of detecting bio-markers and brain
network patterns for neurology diseases.
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4 BRAIN NETWORK ANALYSIS

4.1 Multivariate Brain Network Construction

We developed MV2Net system mainly using the data set from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) — a
public Consortium on collecting, validating, and utilizing AD data
[61]. The ADNI data set contains structural MRIs of 202 subjects
recruited and scanned at 16 different sites across North America
[1]. On each subject, we computed a structural brain network by
the segmentation method distributed with the FreeSurfer tool [62].
FreeSurfer applied the Desikan-Killiany parcellation template [63],
which defines 70 ROIs (nodes) on the brain cortex of each subject.
The default edge weight between two ROIs is set to the number of
fibers on the white matter pathway between them, estimated from
the DTI data of each subject.

Motivated by the user requirement to comprehensively un-
derstand brain connectivity (R2), we extract multiple diffusion
and geometric features from the white matter pathway among
ROIs, together with the connection strength (#fibers) commonly
used as the edge weight in brain networks. Existing literature
have demonstrated the linkage between diffusion features and
neurological pathology [29] [64]. We selected four most popular
DTI metrics as diffusion features analyzed in the system, namely
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AxD), and radial diffusivity (RD). Meanwhile, it is also believed
by experts in our pilot study that certain neurology diseases
can be correlated with the change in geometric features of the
subject’s brain white matter pathway, with or without affecting the
connection strength of these pathways. We consider four geometric
features in our current implementation: namely, length, curvature,
torsion, and entropy. We use the length, curvature, and torsion, as
they precisely describe the spatial patterns of brain fibers. We use
the length and entropy, as they partially reflect the reliability of
the fibers. The DTI images are often suffered from uncertainties,
which makes the longer fibers or fibers in complicated regions less
reliable. By considering these four features, we incorporate the
information of white matter pathways in multiple aspects, aiming
for a more comprehensive analysis than using the single metric of
connection strength (Figure 2(a)).

In more detail, the last three geometric features are uncommon
to the community of network analysis. Fiber curvature indicates
the amount of fiber deviated from being straight at any point of the
fiber. As shown in the lower part of Figure 2(c), the red point where
the fiber can accommodate a bigger circle has a lower curvature,
while the blue point accommodating a smaller circle has a higher
curvature. Fiber torsion indicates how sharply the fiber is twisting
out of the plane of itself. In the spring example at the lower part
of Figure 2(d), the points in the stretched part of the spring have
higher torsions, while the points in the compressed part have lower
torsions. Both curvature and torsion of a fiber are computed by the
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Fig. 2. Five geometric features used in MVZNet (including connection
strength). The fiber bundle in red indicates that these fibers have larger
values on the corresponding feature in comparison to the fiber in green.
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average feature value at all points on the fiber. Finally, fiber entropy
measures the degree of disorder in the orientations of a fiber. In
the left part of Figure 2(e), the fibers close to straightlines have
narrowly distributed fiber orientations and lower entropies; while
the fibers in the right part of the figure have the more disordered
distribution of orientations and higher entropies.

To compute the diffusion and geometric features of a white
matter pathway between two ROIs, individual brain fibers are
first tracked by the tractography algorithm [65] over the DTI
data. Next, diffusion and geometric features are computed on each
voxel (FA/MD/RD/AxD/curvature/torsion) or fiber (Ilength/entropy),
and then averaged on the set of fibers belonging to the white
matter pathway. Finally, the multivariate brain network is formed
by the multiple features estimated on each edge. Besides the
brain networks inferred from MRIs, ADNI data also comes with
demographic information of subjects. Each subject has a diagnosis
class. There are 50 healthy controls, 72 early MCI (eMCI), 38 late
MCI (IMCI), and 42 AD patients. Additionally, the subjects are
also recorded with their gender (82 females, 120 males) and age
group (55 to 90 years).

4.2 Feature Quality Analysis

To solve the visual analytics problem of analyzing data uncertainty
on multivariate brain networks (P1), we propose an interactive
method to allow users to decide on the scope of feature comparison
for bio-marker detection. A measure of feature quality for brain
network comparison is first defined, which is called Quality for
Comparison (QoC in short). Then we introduce the quality analysis
method based on the QoC measure. In our method, zero feature
values are assigned the zero quality, indicating null connection
features. For non-zero feature values, those features statistically
deviated from the feature value distribution are assigned low
qualities.

On the connectivity features extracted in Section 4.1, it is found
that the feature distributions largely follow normal distribution
after removing zero values. Therefore, we apply the parameter-free
Grubbs’s test as the anomaly detection algorithm to extract zero-
quality outlier feature values and compute the QoC measure for
the other feature values. The Grubbs’s test adapted to our quality
computation usage is given below. More details of the QoC measure
and its computation algorithm can be found in Appendix C.

Consider a data set of N subjects, denote the value of the jth
connectivity feature on the ith subject by x;;. On the jth feature,
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the Grubbs’s test first computes a test statistic by

_max_ [x;; — |
Gj _ i=1,..,.N - (1)

where X; and s denote the sample mean and standard deviation of
value distribution on the jth feature.

The critical value of Grubbs’s test under the current data size
(N) and significant level (@) is defined by

2
a/(2N),N—2
N—-2+12

N-1
VN

where 7 /(2n) y—2 denotes upper critical value of ¢-distribution with
N — 2 degrees of freedom and a significance level of a/(2N).

In case the current test statistic is larger than the critical value
(Gj > Hn(0yin)), the most deviated value is classified as an outlier
and assigned a QoC measure of zero. The outlier is then removed
from the distribution and the Grubbs’s test is repeated until no
outlier can be found. Here a;,;, denotes the significance level used
for the Grubbs’s test and is set to 0.05 by default.

After the Grubbs’s test, the QoC measure of remaining values
on the jth feature is computed by the following mapping function
in a decreasing order without removal:

Hy(a) = 2

J(2N).N-2

logHy'(G))
log O4pin

q; =max(0,1 3)

The quality of feature values is visualized in the heatmaps
of MV2Net. As shown in Section 5, more than a half feature
values on some connectivity could be outliers (zero quality). The
quality analysis helps to improve the fidelity of visual discovery by
interactively filtering outliers out (Section 6).

4.3 Discriminative Feature Selection

To address the visualization problem in displaying discriminative
connectivity features (P2 and P3), we apply both univariate and
multivariate feature selection algorithms in MV>Net to identify con-
nectivity features that are significantly different between the brain
networks of contrasting subject groups. The univariate algorithm
introduces a statistical hypothesis test on each connectivity feature
of the network. Under the normality assumption verified in Section
4.2, the Student’s t-test is legitimately used, which computes a
p-value on each feature. When the p-value is no greater than a
significance level (0.05 by default), the mean feature values of
two contrasting groups on the corresponding feature are said to
be significantly different. These selected significant features will
be visualized in MV?Net for further analysis. Note that when the
feature variance of contrasting groups is unequal, the Welch’s t-test
can be applied instead of the standard t-test. Users are allowed to
choose between the two tests for every comparison.

According to clinical researches on white matter disorder,
there are two major types of brain connectivity destruction: one
on a certain scope of white matter that mostly affects a single
brain network connection; the other on a range of cerebral cortex
spanning multiple ROIs (mainly grey matter) that could affect
all brain fibers connecting to these ROIs. In the latter case,
the connectivity features associated with affected ROIs will be
correlated in the diseased subjects, e.g., with decreased connectivity
strength simultaneously. Yet, each individual connectivity feature
may not be significantly different between the comparing subject
group. The univariate feature selection algorithm will not solve the
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problem in this case because it analyzes each feature independently.
Lowering the p-value threshold also does not work as this will
produce too many discriminative features without detecting the
feature correlation. We consider the multivariate feature selection
method called group lasso (GL), which is a kind of supervised
machine learning algorithm. The algorithm aims to leverage
the supervision to guide the selection process for a subset of
discriminative features, instead of extracting a single feature in the
univariate analysis. The method takes both connectivity features
and the brain network structure as input. A set of structurally
correlated connectivity features (e.g., on the subgraph of brain
network) are then detected. When applied collectively, these
features can precisely predict the subject label of a brain network,
i.e., patient or control. The prediction accuracy is displayed in the
interface to demonstrate the performance of the model. To evaluate
the significance of each of these multivariate features, we apply
univariate statistical tests on each feature and display the derived
p-values in the interface for the visual analysis of multivariate
bio-markers.

The details of the adaptation of the GL algorithm in our system
are described below. First, all brain network connectivities are
partitioned into blocks via ROI clustering. Second, the GL model on
two contrasting subject groups is formulated and solved over these
connectivity blocks. Third, the selected features by the GL model
are processed again by statistical hypothesis test and regression
analysis to compute performance indicators for visualization (i.e.,
p-value and classification accuracy). The objective function of the
GL model is given below.

N M
MinimizeZlog(l—i—e*y"WTX")—l—). Z (W], 4)
i=1 m=1
where N and M are the numbers of subjects and feature groups. X; =
(xi1,++- ,xir)’ denotes the vector composed of all the R connectivity
features on the ith subject, y; = {1,—1} denotes the outcome
category of the ith subject (e.g., AD or control). W = (wy,--- ,wg)’
denotes the vector of regression weights for the features, W™ is
the partial weight vector of the mth feature group. The parameter
A controls the degree of sparsity. The feature with a larger weight
indicates that it has a higher influence on the prediction of subject
groups. The GL model explicitly combines two types of terms:
the Negative Log Likelihood (NLL) of a logistic regression model,
and L2-norm regularization terms for each feature group. The
NLL term stresses the predictive power of the model, while the
regularization term shrinks the components in the weight vector W
towards zero in a group-based manner to achieve feature selection.
In determining connectivity feature groups (W) for GL
models, we apply ROI clustering instead of the direct connectivity
grouping, as it is hard to estimate the spatial distance among
multiple fiber connections (mostly twisted together). While more
sophisticated clustering algorithms can be designed, we stick to two
anatomical ROI grouping methods when the number of ROIs in
the brain is sufficiently small (70 in this work). In the first method,
we let each ROI be a single cluster; in the second method, ROIs
are grouped into 12 lobes in two hemispheres according to the lobe
classification of the human brain [66]. Finally, each ROI cluster is
expanded into a block of connectivity features affiliated with any
ROIs in the cluster. Each feature is duplicated into two copies for
its starting and ending ROI clusters respectively since the brain
network is undirected. The blocks of features are then fed to the
GL model. The algorithm-selected features are visualized in the
comparison view, showing three importance metrics: the feature
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weight computed in the model which infers its importance to the
predictive model, the original p-value indicating its discriminative
power, and the prediction accuracy as a block of features together.
Note that the p-value of each feature in multivariate comparison
is the same as the p-value in univariate comparison, except that
p-values lower than the threshold can also be displayed if they are
selected by the algorithm.

5 VISUALIZATION
5.1 MV’Net Interface Design and Rationale

MV?2Net system is built to address the visual analytics problems de-
fined in Section 3.3. The design rationales of MV2Net visualization
also largely focus on solving these problems.

o Uncertainty-aware: The interface should allow users to
understand the uncertainty of connectivity estimation in
brain networks. To get rid of null or mismeasured network
connectivity, users need to interact with the interface to filter
out the uncertain data based on their domain knowledge and
focus on cleaned data for further analysis. (P1)

« Multi-variate: To obtain a comprehensive overview of brain
networks in the data set, users need to look at each brain con-
nectivity from multiple extracted features. Visual comparison
or correlation analysis among these multivariate features are
essential for most user tasks related to bio-marker detection.
(P2, P3)

o Multi-view: The brain network patterns revealed in different
connectivity features, contrasting subject groups, and feature
selection algorithms are often quite versatile. It could take
users a huge visual burden to perceive and analyze these
patterns in the same view. Multi-view design could help them
flatten the cognitive effort into a principled visual analytics
process by examining one perspective at a time. (P4)

o Level-of-detail: The scale and complexity of potential bio-
markers in numerous comparisons of contrasting subject
groups calls for a level-of-detail design in visualization. Users
could first locate individual clues in separate univariate feature
views, compare different features side-by-side for correlations,
then validate the correlation in a more fine-grained high-
order composite view, and finally drill down to the detail of
identified bio-markers through 3D geometric visualization.
(P2, P3, P4)

In the formalized design, users start by selecting two groups of
subjects by navigating the metadata hierarchy of the data set in a
sunburst visualization (Figure 3(a)). Later, s/he could come back to
study another pair of subject groups in the same view. The quality
of connectivity features in the selected groups are then displayed in
multiple feature heatmaps (Figure 3(b)), where the uncertain part of
data could be manually filtered out. Relevant connectivity features
are picked and displayed in the network comparison view for
both single-connection and multi-connection bio-marker detection
(Figure 3(c)). Upon identification of correlated or progressively
changing connectivity features, users could synthesize the finding
in a high-order composite view to better reveal the multivariate
pattern (Figure 3(d)). The detected pattern is further expanded
in the geometric detail view for externalization and explanation
(Figure 3(e)).

5.2 Feature Heatmaps

As shown in Figure 4(a)(b), the heatmaps illustrate the quality
distribution of feature values by brain connectivity, individual
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Fig. 3. The visualization interface of MV2Net: (a) selection panel for two subject groups under comparison; (b) heatmaps showing data quality in the
subject by feature matrices which helps to select high-quality features; (c) brain network view for group-based comparison; (d) high-order composite
of multiple comparisons; (e) 3D view of fiber tract details between two selected ROlIs.

subject, and feature type. Each heatmap in a sub-figure indicates
a connectivity feature in strength/FA/MD/RD/AxD (diffusion
features, Figure 3) or strength/length/curvature/torsion/entropy
(geometric features, Figure 10). The X-axis represents ROI con-
nections (edges) in the brain network. As we have removed all
empty connections (zero feature quality in all subjects), there are
less than a thousand valid connections on each feature. The Y-axis
represents the subjects in our data set and is partitioned into upper
(purple) and lower (orange) sides, corresponding to two selected
subject groups in contrast. Each cell inside the heatmap is filled
whose color saturation is linearly mapped to the quality of the
corresponding connectivity feature and subject. The more saturated,
the higher quality. As each heatmap with more than 100k cells is
costly to render, we aggregate adjacent cells in a fixed grid setting.
The aggregated cell then depicts the average feature quality of the
original cells inside it. To ensure a reasonable cell aggregation,
brain connectivities are sorted by the number of qualified subjects
along the X-axis. The subjects in each column (connectivity) of
the heatmap are sorted separately by their quality value. The
smoothness of resulting heatmap visualizations demonstrates the
effectiveness of cell aggregation.

To filter out uncertain data for further analysis, an interactive
wrangling mechanism is designed. Each heatmap is drawn with a
blue outline. The horizontal zigzag borders at the top/bottom of the
outline indicate a lower bound quality threshold for both subject
groups, which is set to 0.5 by default. The cells within the borders
represent subjects who have qualities higher than the threshold
in the corresponding connectivity feature (column). Similarly, a
vertical border on the right indicates the lower bound threshold
of the percentage of qualified subjects for each brain connectivity,
which is set to 50% by default. Both thresholds can be adjusted
through direct user manipulation of the outline. The cells within
the selected outline represent user-specified qualified brain network
features for comparison. Users could add these features to the
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network comparison view for further investigation by clicking the
“+” buttons above each heatmap.

In addition, to visually explain the quality measure to users
and instruct them for the feature filtering practice, we design a
detailed quality visualization panel on the heatmap view. As shown
in Figure 4(a)(b), by mouse hovering of any cell on the heatmap,
the quality panel is shown on-demand at the upper-right corner of
each heatmap view. In the panel, the probability density distribution
(PDF) of all feature values within the hovered cell is displayed in
green bar charts (Figure 4(a)). In the background of the quality
panel, the average PDF of the same connectivity features on two
comparing subject groups are drawn in purple and orange line
charts respectively. They correspond to the upper purple part and
the lower orange part in the same column with the hovered cell.
The shaded purple/orange contours centered on the purple/orange
line charts represent the variation (75% CI) of feature distributions
across all subjects in the same group. The visualization result in
Figure 4(b) on a low-quality cell (grey color) indicates that the
distribution of low-quality feature values, as shown by the green
bar charts close to zero, is significantly different from the high-
quality features in both subject groups, as shown by the line charts.
The difference between the high vs. low-quality features is much
larger than the difference between the features in comparing subject
groups.

5.3 Network Comparisons

The comparison view (Figure 3(c)) displays brain networks in
contrasting groups for visual detection of bio-markers. Each column
in the view corresponds to one feature added from feature heatmaps
and is composed of two separate brain network visualizations. By
default, the quality filter specified in the heatmap view applied to
the comparison view of the corresponding feature. A joint filter
option can also be used in which quality filters in all features are
jointly applied in each comparison view. The joint filter allows
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Fig. 4. Side-by-side comparison of AD patient group and healthy control
group: (a) feature heatmap with the default quality filter, mouse hovering
a cell with high-quality features; (b) selecting all 2415 features with
filters disabled, mouse hovering a cell with low-quality features; (c) brain
network comparison on selected high-quality features between the two
groups; (d) brain network comparison on all features with the top average
values.

invalid brain connections to be removed given indicator on one
of its connectivity features. The visualization for comparison is
designed into two modes which can be switched in the configuration
menu on top of the view.

In an explicit-coding mode (Figure 3(c)), the upper and lower
visualizations in each column display the output of univariate
and multivariate feature selection algorithms respectively. Over
the base graph of a human brain, network nodes are drawn by
small circles at the center of each corresponding ROI. In the
upper univariate view, network edges are drawn between ROIs
whose color saturation displays the value of —log(p — value) from
the statistical hypothesis test (t-test). Here p-value indicates the
significance level of feature difference between contrasting subject
groups on the edge. The edges with a higher average feature
value in the first group than the second group are drawn in the
purple color, and the other edges are drawn in the orange color.
Legends for the two types of edges are placed in the top-left part
of the view and can be checked/unchecked by users to display/hide
each edge type. In the lower multivariate view, the network by
default displays connectivity features selected in group lasso models
and can also be switched to other feature selection algorithms.
Users can choose to show three different feature statistics on
the network edge of multivariate view: p-value in t-test (default),
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feature weight by the multivariate model, classification accuracy
of the same selected feature set in a regression model. In another
side-by-side comparison mode (Figure 4(c)(d)), the upper and
lower visualizations in the same column display the average brain
network of each selected subject group respectively. Network edges
are drawn to represent the selected feature statistic in the subject
group. Users can choose from three statistics: average (default),
standard deviation, #subject.

In both visualization modes, several user interactions are
supported to optimize the bio-marker detection process. Edge
connections of the networks can be pruned by tuning a slider
beneath each view, which indicates the lower bound of displayed
feature values. Only important connections are kept in the view
to alleviate the visual complexity for analysis. Mouse-hovering
on each edge will pop up the details of the connection, including
source/destination ROIs and feature statistics. Among columns of
brain networks, each network view can be selected by a mouse
click, as shown by the visual hint of a red outline in the view. The
mode, visual design, and algorithm configuration of the selected
network comparison can be set in the drop-down menu.

Notably, the projection of brain network visualization can be
switched among axial, sagittal, and coronal views. An optimal
view point can be chosen by users to avoid the occlusion of key
bio-markers. The order of comparison views in the row can be
re-arranged through mouse dragging. Each view can be closed
when the analysis is finished. This helps to prepare ordered inputs
to the next composite view for detailed correlation analysis.

5.4 Brain Necklaces

The high-order composite view aggregates selected network com-
parisons to reveal the bio-marker expressed on multiple features
simultaneously or the bio-marker changing progressively across
subject groups. As shown in Figure 3(d), the overall design is a
network visualization of ROIs, whose edges are the intersection
of all displayed connections in selected comparison views. The
novelty lies in a new metaphor called brain necklace that draws
multiple features of the same connection as pearls on the network
edge. Take the visualization in Figure 5 on one edge as an example.
Each pearl is drawn as a filled circle and corresponds to one feature,
with its radius and color indicating the edge feature statistics and
color applied in the comparison view. To determine the order of
pearls on each edge, we sort all ROIs by their degrees in the
composite view. Each edge is drawn as a tapered line in grey color
from the high-degree ROI to the low-degree ROI. Feature pearls
are placed according to the direction of tapered lines.

There are several design choices made in brain necklace
visualization. First, multiple features on an edge can also be
displayed by more complex glyphs, e.g., radar charts, 3D ellipsoid.
Nevertheless, high dimensional glyphs often bring a visual burden
that slows the understanding of multi-feature patterns in the same
view. The 3D ellipsoid is also ineffective in showing the third data
dimension. On the other hand, 1D designs showing each feature as
a vertical line marker or bar chart introduce visuals quite similar
to the edge drawing in networks. This similarity downgrades the
efficiency of pattern discovery from composite visualization.

A key issue in brain necklace visualization is the layout of
feature pearls as they can heavily overlap with each other when
there are a large number of edges in the composite view. We
propose a distributed layout algorithm that can be computed very
fast to meet the interactivity requirement in online visualization.
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Fig. 5. The brain necklace visualization of multiple features on an edge
using cost-minimization pearl layouts.

The algorithm is based on the principle of cost minimization in
placing feature pearls. In detail, the cost contains two components:
the overlapping cost (cost_over) which describes the degree of a
pearl overlapping with other edges/pearls, and the spacing cost
(cost_space) which describes the compactness of pearl placement
from its previous pearl on the same edge. The costs are defined by

Vg cosspace(ls) = (=t b
&)
As shown in Figure 5, d; denotes the perpendicular distance from
the jth pearl (MD feature in the figure) to the closest edge other
than its current edge. When this distance is large enough, i.e., small
probability of overlapping, the cost is zero; otherwise, the cost is
one. On the other hand, the spacing cost of the jth pearl increases
linearly with the interval from the previous pearl on the same edge,
denoted as [}, excluding the minimal interval /,,;, between adjacent
pearls to avoid overlaps.
The layout algorithm tries to optimize a weighted sum of the
two cost components on all n pearls of an edge.

cost_over(d;) = {

n
Minimize Y [(1— ) -cost-over(d;)+ a - cost_space(l;)] (6)
j=1
where « is the parameter to balance the two types of cost.

As there are infinite layout positions on an edge, we design
a feasible algorithm by discretizing layout solutions. As shown
by hollow points in Figure 5, we assume the pearls can only be
placed in m candidate positions with a fixed interval of [, from
each other where m = |L/ln| and L is the length of the edge.
The algorithm exploits a pattern in spacing cost that the cost of all
pearls in an edge only depends on the position of the last pearl:

n n

Z cost_space(lj) = Z Lj/lin —n @)

Jj=1 Jj=1
Knowing that the overlapping cost of each candidate position
can be pre-computed, the algorithm becomes an iteration of the
position of the last pearl on the edge. For each feasible position,
the overlapping cost of all pearls as well as their overall cost can
be directly computed. The pseudocode of the algorithm is given
in Algorithm 1 of Appendix B. Except for the pre-computing
of overlapping costs, the algorithm has a linear complexity of
O(m —n) for each edge. Note that when an edge cannot admit
n features (m < n), the pearls are drawn as hollow circles in the
minimal size and placed uniformly on the edge.

To better analyze bio-markers from the composite view,
brain necklace visualization is designed with several customized
interactions. First, to reduce visual clutter, the pearls on each edge
can be dragged together into more appropriate locations without
re-layout. Second, users can adjust the filter on each comparison
view and update the composite view instantly. Third, to focus
on one ROI, users can click the corresponding node to highlight
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all connections of the ROI, as well as feature pearls on these
edges. The other unselected edges will fade out in the background.
When there are many nodes/edges in the composite view, the
distributed layout result can also include severe visual clutter
caused by overlapping. To reveal feature patterns clearly on the
selected ROI, we introduce a distortion method on the highlighted
edges. An example of the distortion result is shown in Figure
7(a)(b)(c). The technical detail is expanded in Appendix B. Finally,
on the detected bio-markers, users can select the corresponding
edge to show the detailed geometric and diffusion pattern in brain
fiber tracts of contrasting groups in the 3D view.

5.5 Fiber Tract Details

As shown in Figure 3(e), the detail view provides a 3D visualization
of brain fiber tracts on the selected network edge. The display
combines tube-based visualization to draw fibers of comparing
subject groups and volume rendering to display the comparative
bio-marker on the fibers. For fiber visualization, we apply the
technique of Merhof et al. [67] to draw all fibers in the background.
For bio-marker visualization, we overlay a volume rendering of
voxel-level feature statistics on the fiber tract.

Take Figure 7(d) illustrating the p-value statistics of FA feature
as an example. The FA data of each subject is available at the
voxel granularity from the raw imaging data. Features of multiple
subjects are mapped to the same 3D space through registration. An
optional smoothing step can be applied here which averages the
FA value across adjacent voxels to remove noise. The t-test is then
applied to the FA values of two comparing groups at each voxel.
The resulting p-value will be visually displayed as the fill color
saturation by the same mapping function with the other views (i.e.,
—log(+)). The volume data of FA p-value is rendered by a modified
version of maximum intensity projection (MIP [68]). For each
pixel, we take the maximum value along the ray before reaching
the opaque fibers. The use of MIP allows the largest group-level
difference on voxels to be revealed. Finally, a Gaussian smoothing
similar to the kernel density estimation (KDE) is applied to reduce
the aliasing effect.

6 EVALUATION

We conducted two case studies to demonstrate the usage of MV2Net.
The ADNI data set described in Section 4.1 was applied. Experts
recruited in the pilot study were visited again. They were asked
to use our system and evaluate its performance in meeting their
requirement, e.g., comparing brain networks, detecting connectivity
bio-markers for certain diseases. In the first case study, the diffusion
features indicating the microstructure of brain connectivity were
presented and analyzed. In the second case study, we switch to study
the geometric features on the macrostructure of brain connectivity.

6.1

The expert started by selecting a typical comparison: 40 subjects
labeled as AD patients vs. 49 subjects as healthy controls, as
shown in Figure 3(a). All quality filters on diffusion features
apply the default setting that accepts features legitimate in at least
50% subjects (Figure 3(b)). It can be found that most feature
heatmaps have the shape of symmetric triangles. On all features,
the percentage of legitimate subjects is almost the same in both
subject groups. This allows us to select the same set of connection
features in both groups for further comparison.

Case Study on Diffusion Connectivity Features
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Fig. 6. The output of different multivariate feature selection algorithms in
the AD vs. Control: (a) group lasso with ROI groups; (b) group lasso with
Lobe groups; (c) Lasso; (d) Elastic Net; (e) Ridge.

The expert found that the diffusion features have a noticeable
impact on the two groups (R2, T2). Figure 4(c) compares the
healthy controls (first row) and the AD subjects (second row),
where each column visualizes one diffusion feature. S/he identified
that on FA, MD, RD, and AxD, the networks of the two groups have
noticeable differences, in which the diseased group has reduced
FA and increased MD/RD/AxD. The comparison on connection
strength is not visually different. No asymmetric pattern between
hemispheres is found in all features and subject groups.

The expert then studied the data quality (R1, T1). S/he selected
all 2415 connection features in each subject’s network to disable
the filters (Figure 4(b)). The comparison view is updated as in
Figure 4(d) where only top-valued connection features are kept so
that the number of features in the healthy group is similar to the
network in Figure 4(c) applying quality filters. The comparative
pattern between the two groups in Figure 4(d) changes moderately
from the filtered networks in Figure 4(c): on FA, it is not easy
anymore to visually detect reduced network features on the diseased
group. More impact of the data quality filter happens on the altered
network pattern within each subject group. The expert found that the
brain network without applying quality filters has fewer connections
between hemispheres as its top features (in red rectangles of Figure
4(d)). S/he hypothesized that longer brain fibers (e.g., those between
hemispheres) were less accurate to be traced by the tractography
algorithm. These fibers normally have smaller average feature value
due to mismeasurement in some subjects. By applying the quality
filter, the uncertainty from mismeasurement is alleviated so that
these fibers are visible as top features. This bias for long brain
fibers also accounts for the change on comparing the FA metric. As
an indicator of intactness of white matter structure, the FA metric
is often reported to decline in AD patients, especially in long-range
connections. Because the long-range connection is more likely to
be messed with uncertain data and dropped from top features, the
brain network comparison without a data quality filter will have
the less significant comparative pattern on FA between AD patients
and healthy controls.

The expert switched to the explicit-coding comparison mode
to further examine the network difference between the diseased
and control groups (R3, T2, T3). The first row in the comparison
view (Figure 3(c)) now displays the univariate t-test result on each
connection feature. The p-value threshold is set to 0.05 for all views
so that the displayed connection features will have significantly
different values between the two subject groups under comparison.
The visual evidence confirms that the diseased subject group has
reduced FA statistically, as shown by the dense purple connections
in the second column of the view. MD/RD/AxXD have increased
from the control group, as shown by the orange connections in
the last three columns. The second row in the comparison view
(Figure 3(c)) showing the result of multivariate feature selection
mostly reveals a similar comparative pattern to the output of t-test
in the first row. Notably, on the strength feature, the multivariate
algorithm detects a set of discriminative connection features in
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Fig. 7. The composite view showing the correlation of comparison result
on four features (FA, MD, RD, AxD): (a) ROI #64; (b) ROI #10; (c) ROI
#45; (d) fiber tract detail of ROl #10~#45.

the left hemisphere (right part in the axial view) on which the AD
group has decreased connection strength. This suggests a potential
asymmetric effect of AD disease on human brains. The expert
also investigated multivariate comparison using different feature
selection algorithms. As shown in Figure 6, the two algorithms
exploiting the natural grouping of brain connections detect a
similar asymmetric pattern ((a) and (b)), while the other three
algorithms without feature group information detecting much fewer
discriminative features scattered in the whole brain ((c)(d)(e)). The
result supports the use of group lasso as the default multivariate
feature selection algorithm in our system.

The expert stated that the above findings on the comparison
of AD and control groups correspond well with the clinical
explanation of DTI metrics in the literature. FA is known to
represent the integrity of white matter [69]. The value of FA drops
as the white matter of the human brain suffers from progressive
damage during AD. MD captures the average rate of diffusivity
in all directions and will increase with white matter damage as
the microstructural barrier for water diffusion is alleviated [64].
RD also increases because of the demyelination effect associated
with AD [70]. AxD was reported to increase with white matter
neurodegeneration, but the clinical base of the correlation is still
to be discovered [71]. Meanwhile, the asymmetric impact of AD
on brain connectivity has also been found previously in DTI data
analysis [1] and clinical study [72].

The expert further drilled down to the details of brain connectiv-
ity change for AD patients. On the detected difference of FA, MD,
RD, and AxD features in Figure 3(c), s/he aggregated univariate
comparison of the four features into a high-order composite view
(Figure 3(d)) (R2, R3, T3). In the composite view, the expert
identified three ROIs with many connections showing significant
differences on all the four features: ROI #64, #10, #45. Their
connections and feature differences are revealed in Figure 7(a)(b)(c)
respectively. The expert also aggregated multivariate views and
obtained similar results. Among these discriminative features, the
connection between ROI #10 and #45 was found to have the most
significant difference on FA, as shown by the largest purple pearls
in Figure 7(b). The voxel-based comparison further reveals the
detailed difference (Figure 7(d)). The expert found that several
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Fig. 8. Brain network comparison among multiple diagnostic groups for
the analysis of AD progression.

segments of the fiber tract have reduced FA in the AD group, as
shown by the purple regions in the upper sub-view. These regions
locate on intermediate parts of the fiber tract (in red rectangles),
in comparison to orange regions at endpoints of the fiber tract
in the lower sub-view, which indicate increased FA in the AD
group. After an examination of fiber anatomy in human brains, it
is found that the intermediate segments of the fiber tract between
ROI #10 and #45 are part of the corpus callosum. The detected bio-
marker conforms with the clinical evidence that corpus callosum
progressively degenerates with decreased white matter integrity
during the onset of AD [73].

The detected individual bio-markers on ROI can also be traced
back to clinical evidence. In early research of AD [74], certain
types of pyramidal neurons were reported to be lost in the superior
frontal (#64) and inferior temporal (#10 and #45) cortex. This
pathological change could diminish the effectiveness of distributed
processing capacity of the neural cortex. The superior frontal gyrus
was reported to have cortical synaptic loss and inflammation in AD
patients [75]. The synaptic loss was also observed in the inferior
temporal gyrus of AD and MCI subject groups [76]. The synaptic
numbers highly correlate with the Mini-Mental State Examination
(MMSE) score, which is a widely-used test for assessing cognitive
function among the elderly. Several other pathological changes
were also found in the superior frontal or inferior temporal cortex
of AD patients, including reduced metabolic rate [77] and increased
lipid peroxidation [78].

After the comparison of diseased and healthy subject groups,
the expert followed up to study the progression of AD by comparing
subject groups in four stages of the disease (R4, T4). The
visualization interface of MV>Net enables users to juxtapose several
group comparisons to understand the progression of brain networks
on an ordinal attribute of subjects. As illustrated in Figure 8, the
change of brain connectivity on FA and MD/RD/AxD is found to
be similar to the change from healthy controls to diseased subjects,
in a direction from controls to eMCI and from IMCI to AD patients.
The result is consistent with the well-known progressive nature of
AD. In the first two columns of Figure 8, the FA metric is reduced
during the progression. The decrease of FA firstly happens more in
the left hemisphere (control to eMCI), and then happens more in
the right hemisphere (IMCI to AD). The asymmetric progression
of AD was previously reported in clinical studies that pathological
changes appear earlier in the left hemisphere than in the right [72].
Meanwhile, MD/RD/AxD have largely increased feature values,
with the example of AxD in the third and fourth columns of the
figure. Notably, the network comparison between eMCI and IMCI
subjects shows little difference, as illustrated in the last column of
Figure 8 (AxD). The less distinguishable eMCI/IMCI comparison is
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Fig. 9. Brain network comparison among multiple age groups.

not surprising, as the ADNI data set applied in this work originally
only has one MCI class (IMCI here). The eMCI class is created
later and secondary to the control/MCI/AD classification [79].

The expert also studied the progression of brain network
changes among age groups of our subjects (R4, T4). Because 95%
subjects in our data have ages between 60 and 89, we partitioned
the data into three age groups for the analysis: 60~69, 70~79,
80~89. Figure 9 indicates that aging seems to be a similar factor
to AD leading to the breakdown of brain connectivity, as shown by
the result on FA and AxD in the first two and last two columns of
the figure. However, the impact of aging is much smaller than the
disease. The number of significantly changed individual connection
features in the age progression of Figure 9 is less than one-third of
that in the disease progression of Figure 8. The age progression is
especially milder on the FA metric. This result suggests that the
AD disease causes more noticeable and independent consequences
in the brain network than normal aging [80]. The impact of other
factors (e.g., gender) on the brain connectivity was also examined
by the expert. Nevertheless, none of these factors interfere with the
detected pattern of connectivity break-down in AD patients, as well
as the progression with disease and aging.

6.2 Case Study on Geometric Connectivity Features

We apply the same system to the geometric features extracted
from brain connectivity data. Our findings from the study are
quite different from the result on diffusion features. Figure 10
gives the visualization comparing AD and control groups with
the default data quality filter. It can be found that while the data
quality distributions of these geometric features (Figure 10(a)) are
quite similar to diffusion features (Figure 3(b)) (R1, T1), very few
significantly different connection features can be detected between
the two subject groups. The univariate views in Figure 10(b) mix
both connections larger in the AD group and connections larger
in the control group with only a few synchronized connectivity
patterns among the four features (R2, R3, T2).

The progression of AD and aging effect on geometric features
is also explored by the expert (R4, T4). No consistent progression
pattern on brain networks is found across diagnostic groups and
age groups for all geometric features. Figure 11 displays the result
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comparing three age groups. Only a few significant changes are
detected, without a clear pattern favoring older or younger groups.

The smaller impact of AD on the macrostructure of brain
connectivity seems to be reasonable as most existing literature
on pathological bio-markers of AD point to the microstructure
of brain connectivity, particularly revealed by diffusion metrics
of DTI data. The only affected macroscopic measure, namely
connection strength, is computed from the 3D field of FA, which
highly correlates with the microstructure of brain white matter.
The metric of connection strength is also less significant as AD
bio-markers than microscopic metrics such as FA and MD.

In summary, the case study result demonstrates the unique
capabilities of our system in comprehensively comparing human
brain connectivity and detecting effective bio-markers, which are
not possible with previous visualization tools. First, it is shown
that in real-world data, comparing brain networks on a single
connectivity feature (strength or FA) is insufficient. Many diffusion-
feature bio-markers are found in our system by synthesizing the
group difference on multiple features. Second, through experiments
with and without a data quality filter, we prove that data noise
and outlier can make a major impact on the distribution of brain
connectivity, which is hardly considered in the literature. Our
system eliminates these illegitimate data by an interactive data
wrangling mechanism. Third, our system allows the incorporation
of new brain connectivity features in the visual comparison process.
For example, the geometric connectivity features are extracted,
analyzed, and visualized in our system. As shown by the case study
result, very few of these geometric features are discriminative
between neurologically diseased people (e.g., AD) and normal
controls. This finding somehow updates the experts’ knowledge
that the geometric features could be useful in the connectivity
comparison (see Appendix A about experts’ answers on geometric
features in the pilot study).

6.3 Expert Feedback

After the pilot usage, experts were asked to respond to several
questions regarding the current functionality and potential extension
of MV2Net, as well as providing open comments. On the positive
side, the experts described the system as comprehensive. While
their previous approach analyzed brain connectivity in a (diffusion)
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Fig. 11. Brain network comparison among multiple age groups on
geometric connectivity features.

feature by feature, fiber (pathway) by fiber, and (subject) group
by group basis, our system could bring these pieces together and
connect the dots to disclose additional information to the current
knowledge of Alzheimer’s disease. This is also shown in the
case study. On the constructive side, several new design features
were mentioned in their feedback. For example, they required a
display of top-10 connection differences on certain features and
the description of these connections, so that users could know what
they are. They suggested integrating the brain network anatomy of
normal people so that the networks of both diseased subjects and
controls can be calibrated for bio-marker detection. The experts
also proposed to allow different kinds of neuroimaging data input,
either on Parkinson’s disease, encephalitis, or from new cohorts as
the ADNI study continues. It was mentioned that certain neurology
diseases such as encephalitis are treatable, which is unlike the
irreversible progression of AD. The brain connectivity of patients
can recover as they are being treated. Our system showing the
multimodal connectivity of human brains can be a useful tool for
assessing the state and progress of this treatment.

In the verbal feedback, the neuroscientist who shares the experi-
ence in analyzing ADNI data provided more detailed comparisons
between MV2Net and his previous workflow. As described in Jin
et al. [29], their framework focused on clustering individual fibers
from the DTI data into major tracts, and developed a novel method
to extract discriminative diffusion features between the subject
groups under comparison. On visualization, they applied existing
imaging tools which can only display a single feature between
two comparing groups under a pre-defined parameter set at a time.
They commented our system to have more options and information
in visual comparison, including the support of many connectivity
features in the same interface with multiple views, the interactive
manipulation of algorithm parameters, and the direct display of
comparison results. On the approach to directly visualize the p-
value of statistical test results, the neuroscientist and computer
scientist commented it as a common practice in their domain [29]
[34]. The doctor, though having few experiences in viewing the p-
value image, mentioned that he was aware of the statistical tests and
would be prepared to learn to work with the p-value visualization.

7 DISCUSSION

From the neuroscience perspective, we find that diffusion features
on brain connectivity are quite effective in identifying AD patients
from the controls. Meanwhile, geometric features of brain fibers,
not as expected by domain experts, are often indistinguishable
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between diseased and healthy brain networks. This result may
imply that the destruction of white matter in AD patient’s brains
happens mostly at a microscopic scale, which does not heavily
affect the morphology of brain fibers.

From the visualization perspective, we acknowledge that both
SciVis/InfoVis and visual analytics (VA) techniques are necessary
for the application of complex brain network visual comparison.
InfoVis methods such as network creation, aggregation, and
visualization help to generate overview pictures for comparison.
VA methods combining feature selection algorithms help to identify
significant differences/changes among the networks. Finally, SciVis
methods help to drill down and review details of the network
difference in the context of raw brain imaging data.

From the data analysis perspective, our system could be
generalized to compare many other multivariate networks whose
connections are defined by multiple features. For example, the
academic networks with co-authorship and citation relationships
are compared over time for evolution analysis of the community.
The urban mobility network can be compared over the traffic
volume or traffic speed feature between weekdays and weekends.

While the combination of statistical tests and visualization in
one framework helps to solve the target visual analytics problem,
we caution the risk of data dredging. Though the presented
discriminative features are all significantly different between the
comparing subject group, as too many of these features are reported,
a few features could be false positives, i.e., not having true
differences between the groups.

8 CONCLUSION

This paper describes MV2Net, a visual analytics system designed to
meet three key requirements of domain users: understand the role
of multiple connectivity features in differentiating brain networks
of contrasting subject groups, visually detect bio-markers from
multiple feature comparisons, be aware of and resolve the data
quality issue in neuroimaging and brain network construction
process. In this system, we introduce several new techniques,
which are demonstrated to be effective in bio-marker detection case
studies between the brain networks of AD patients and healthy
controls. First, the wrangling mechanism is shown to be useful as
there are reasonable changes on the brain network after filtering
out low-quality brain connections. Second, our result on brain
network comparison reveals a less significant difference in the
original connection strength feature than the diffusion features of
FA/MD/RD/AxD. This validates the necessity for multiple feature
comparisons. Notably, some established connectivity bio-markers
of AD are found in our study by correlating the group-level
difference on multiple diffusion features. Third, the multi-view
visualization design illustrates the progressive change of brain
networks during the development of AD. The additional fiber tract
view helps to drill down to the voxel-level bio-markers.

In the future, we plan to apply the system to the analysis of
functional brain networks. The problems defined in this work on
structural brain networks are also important for functional brain
networks. There are multiple fMRI modalities in measuring brain
activity, e.g., blood-oxygen-level-dependent (BOLD) signal, EEG,
and MEG. These signals can be correlated among ROIs using
different algorithms and various lengths of sliding time windows.
The resulting multiple functional connectivity features can be
displayed and analyzed in our system. Meanwhile, the measurement
of brain activity is often noisy, as discussed in the literature [81].
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The interactive wrangling interface in our system could help to
alleviate the data uncertain issue. Regularly, the functional brain
networks are compared among multiple groups, e.g., in resting and
several other cognitive task states. More importantly, it is critical
to compare the functional networks in multiple time windows for
temporal connectivity analysis.
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