
APPENDIX A
QUESTIONS AND ANSWERS IN THE EXPERT INTERVIEW

To clarify the research problem of brain network comparison
in our clinical and neuroscience context, we conducted pilot
studies with three domain experts. The first expert was a
doctor from the department of neurology in a hospital. He has
both clinical and research responsibility and focuses on white
matter diseases. The second expert was a neuroscientist whose
doctoral thesis studied the analysis of white matter tracts from
neuroimaging data. The third expert was a computer scientist
whose research interests include brain network visualization
and analysis. All three experts have 10+ years of experience
in relevant areas of neuroscience or computer science. Below,
we report on the responses of three experts to the research
question.

A. Doctor

1. Basic information: a neurology doctor with more than
10 years of experience in neurological diseases.

2. Familiarity with brain imaging and neurological dis-
eases: more than 5 years of experience in analyzing MRI/DTI
image, and the association between neurological diseases and
brain imaging.

3. Questions and answers in the expert interview
Q1: Is there any clinical evidence or literature on the asso-

ciation of brain fiber connections with neurological diseases?
A: Yes, mostly diseases that affect white matter (nerve

fibers). Brain diseases include cortical involvement and white
matter involvement. Alzheimer’s disease (AD), for example, is
predominantly cortical involvement, so most imaging studies
have focused on measuring cortical atrophy. Brain tumors can
affect nerve fiber deformation, so DTI is applied more in the
study of brain tumors.

Q2: If the answer of Q1 is yes, which part of brain region
is connected with what neurological diseases? How does it
relate?

A: Tumor: evaluate whether the tumor compresses nerve
fibers (benign) or directly invades nerve fibers (malignant).

Motor neurone disease: Motor neurone disease mainly af-
fects the pyramidal tract. DTI observed the involvement of
pyramidal tract.

Multiple sclerosis (MS) : White matter involvement.
AD: It may affect some fiber connections. Please refer to

the literature for details.
Cerebral infarction: Wallerian degeneration was assessed.
Development: A child is developing myelin, the insulating

layer that surrounds nerve fibers in the brain.
Q3: Is it possible that the geometric features of the brain

fibers mentioned above have medical significance? Is there a
link to neurological disease? Do you have relevant literature
or clinical evidence?

A: Yes, they all have.
Q4: Existing work suggests that the above characteristics

may predict uncertainty of brain fiber data generated during
imaging (is it actually the uncertainty of the method of brain
fiber generation based on brain images?). Do you agree or

disagree with the results of the calculation of the strength of
connections between brain regions?

A: How to calculate? DTI mainly looks at two diagrams,
ADC and FA, and can also reconstruct fiber bundle defor-
mation. It is generally evaluated by these parameters. As to
uncertainty, can we compare patients with normal controls to
assess whether it’s uncertainty or whether it’s related to the
disease?

Q5: If a geometric feature is found to be highly correlated
with disease in subsequent studies, do you think it is more
likely to be due to its (clinical) medical significance or imaging
uncertainty (the uncertainty of the analysis method)?

A: If it does differ from a normal control, and the geometry
can be explained by some mechanism, it is still considered
medically relevant.

Q6: Could it be medically meaningful to study the areas
of white matter (or gray matter) through which brain fibers
travel? Or is it just the brain regions where the fibers start
and end that matter?

A: DTI mainly reflects the condition of nerve fibers.
Through the white matter/gray matter area? Do you want to
express the nucleus through the basal ganglia?

Q7: Are there any other medically meaningful grouping
methods (e.g. based on the above characteristics) other than
by disease, age and gender?

A: The control group should be matched for age and gender.
The disease itself can also be classified, such as the severity
of the disease and whether the disease has subtypes (motor
neurone disease, for example, has several subtypes, some
involving the limbs first, others involving swallowing and
breathing first).

Q8: How do medical experts/scholars compare the dif-
ferences and similarities of brain fiber tracts between two
samples?

A: We generally looked at the ADC and FA measures on
the graph. The fiber bundle reconstruction is also a most
intuitive way. You can try to conduct statistical analysis on
these measure, (because I’m not a data scientist), I haven’t
done these data analyses before.

Q11: In addition to healthy controls and patients, is there a
connection between brain fiber tracts and early/late cognitive
impairment (MCI) in intermediate-stage subjects (such as in
AD)?

A: This analysis can be done in conjunction with clinical
practices, such as the degree of dementia. In addition, gray
matter conditions (cortical atrophy measurement, hippocampal
volume measurement) can also be combined for analysis.

Q12: If the brain connectivity bio-markers associated with
neurological diseases are identified, how can they be applied
clinically?

A: 1. Diagnosis of disease by whether there are specific
markers of diseases. However, it may not be enough to com-
pare AD and normal control alone. Other types of dementia,
such as frontotemporal dementia and vascular dementia, can
be added to see if there are markers specific to AD. (Note:



different types of dementia are sometimes clinically difficult
to distinguish.)

2. Assessment of illness and prognosis because prognosis
is known information.

B. Neuroscientist

1. Basic information: a neuroscientist with more than 10
years of work experience.

2. Familiarity with brain imaging and neurological dis-
eases: more than 5 years of experience in analyzing MRI/DTI
images, neurological diseases, comparative study of brain
imaging, and research on the association between neurological
diseases and brain imaging.

3. Questions and answers in the expert interview:
Q1: Is there any clinical evidence or literature on the asso-

ciation of brain fiber connections with neurological diseases?
A: Yes.
Q2: If the answer of Q1 is yes, which part of brain region

is connected with what neurological diseases? How does it
relate?

A: Whole brain connections are associated with Alzheimer’s
disease. By investigating the changes of various parameters
derived from DTI in white matter, the changes of whole
brain connectivity caused by Alzheimer’s disease can be
investigated.

Q3: Is it possible that the geometric features of the brain
fibers mentioned above have medical significance? Is there a
link to neurological disease? Do you have relevant literature
or clinical evidence?

A: Yes. Please refer to Y. Jin, et al., “3D Retract -
specific local and global analysis of White matter Integrity
in Alzheimer’s Disease,” Human Brain Mapping 38(3), 1191–
1207, 2017. This paper studied the correlation between Brain
fiber connectivity and Alzheimer’s disease.

Q4: Existing work suggests that the above characteristics
may predict uncertainty of brain fiber data generated during
imaging (is it actually the uncertainty of the method of brain
fiber generation based on brain images?). Do you agree or
disagree with the results of the calculation of the strength of
connections between brain regions?

A: Yes.
Q5: If a geometric feature is found to be highly correlated

with disease in subsequent studies, do you think it is more
likely to be due to its (clinical) medical significance or imaging
uncertainty (the uncertainty of the analysis method)?

A: It needs to be analyzed on a case-by-case basis.
Q6: Are there any other medically meaningful grouping

methods (e.g. based on the above characteristics) other than
by disease, age and gender?

A: Yes. For example, by whether a gene has a mutation or
not.

Q7: How do medical experts/scholars compare the dif-
ferences and similarities of brain fiber tracts between two
samples?

A: Statistical analysis (ANOVA, t-test) was used to compare
the differences between the groups of the extracted features.

MD (ADC) and FA are key measures for the study of brain
network connectivity difference. You can read my paper for
more details on the previous study: Y. Jin, et al., “3D Retract
-specific local and global analysis of White matter Integrity
in Alzheimer’s Disease”, Human Brain Mapping 38(3), 1191-
1207, 2017.

Q8: If the cerebral fiber plexus is mapped against a set of
samples (multi-brain images), does the following description
have medical significance?
A) The density of fibers passing through an area
B) The fiber orientation distribution of different samples in a
certain region (whether the fiber orientation of different people
in this region is the same)
C) Shape distribution of different samples in a certain region
(whether the fibers have similar shapes in this region for
different people)

A: Very likely, but further research is needed.
Q9: In addition to healthy control, is there a connec-

tion between brain fiber connections and early/late cognitive
impairment (MCI) in intermediate stage patients such as
Alzheimer’s disease?

A: Yes, please refer to Y. Jin, et al., “3D Retract -
specific local and global analysis of White matter Integrity
in Alzheimer’s Disease”, Human Brain Mapping 38(3), 1191-
1207, 2017.

Q10: If the brain connection regions associated with neuro-
logical diseases are identified through data analysis, how will
they be used clinically?

A: Because imaging is non-invasive, regular follow-ups can
be done to extract brain connections as a bio-marker for early
diagnosis of Alzheimer’s disease.

C. Computer Scientist

1. Basic information: a computer scientist with more than
10 years of work experience.

2. Familiarity with brain imaging and neurological dis-
eases: 2–5 years of experience in MRI/DTI image, comparative
study of brain imaging, and research on the association
between neurological diseases and brain imaging.

3. Questions and answers in the expert interview:
Q1: Is there any clinical evidence or literature on the asso-

ciation of brain fiber connections with neurological diseases?
A: Yes. The brain network study for disease early detection

and diagnosis have been a while in the research community
of computational neuroscience.

Q2: If the answer of Q1 is yes, which part of brain region
is connected with what neurological diseases? How does it
relate?

A: We have previously surveyed related literature on the
damage of brain white matter in neurological diseases. Dating
back to more than 100 years ago, researchers have found that
disconnection syndromes can lead to aphasia, e.g. the fiber
tracts between Broca’s and Wernicke’area. Recently, more
research were conducted on the correlation between the change
of brain networks and other diseases such as alzheimer’s



disease, schizophrenia, etc. AD patients tends to have certain
break-downs in their brain networks.

Q3: Is it possible that the geometric features of the brain
fibers mentioned above have medical significance? Is there a
link to neurological disease? Do you have relevant literature
or clinical evidence?

A: As we are computer scientist, we do not know.
Q4: Existing work suggests that the above characteristics

may predict uncertainty of brain fiber data generated during
imaging (is it actually the uncertainty of the method of brain
fiber generation based on brain images?). Do you agree or
disagree with the results of the calculation of the strength of
connections between brain regions?

A: Yes, we have previously seen much variation on the same
connection of different subjects. The same pattern happens in
several data sets acquired from multiple sources.

Q5: If a geometric feature is found to be highly correlated
with disease in subsequent studies, do you think it is more
likely to be due to its (clinical) medical significance or imaging
uncertainty (the uncertainty of the analysis method)?

A: As we are computer scientist, we do not know.
Q6: Are there any other medically meaningful grouping

methods (e.g. based on the above characteristics) other than
by disease, age and gender?

A: We have seen in the public and private data sets some
other attributes. For example, IQ measure, years of education,
weight, etc. Also, some data sets are longitudinal study. The
year from the onset of AD or other diseases may be a useful
criterion for comparison.

Q7: How do medical experts/scholars compare the dif-
ferences and similarities of brain fiber tracts between two
samples?

A: As a computer scientist, I have compared brain networks,
but have not tried the comparison of a single brain fiber.
Visualization of both fibers in the same interface might be
a solution.

Q8: If the cerebral fiber plexus is mapped against a set of
samples (multi-brain images), does the following description
have medical significance?
A) The density of fibers passing through an area
B) The fiber orientation distribution of different samples in a
certain region (whether the fiber orientation of different people
in this region is the same)
C) Shape distribution of different samples in a certain region
(whether the fibers have similar shapes in this region for
different people)

A: As we are computer scientist, we do not know.
Q9: In addition to healthy control, is there a connec-

tion between brain fiber connections and early/late cognitive
impairment (MCI) in intermediate stage patients such as
Alzheimer’s disease?

A: Yes, as we can tell from the data, MCI subjects have
networks between AD patients and controls.

Q10: If the brain connection regions associated with neuro-
logical diseases are identified through data analysis, how will
they be used clinically?

A: As a computer scientist, I can only guess. I think the bio-
markers (trends in the longitudinal study or the absolute degree
of damage) can be used as either an early sign or indicator of
severity for the disease.

APPENDIX B
LAYOUT ALGORITHM OF BRAIN NECKLACE

VISUALIZATION

A key issue of brain necklace visualization in the composite
view is the layout of feature pearls as they can heavily overlap
with each other when there are a large number of edges in the
composite view. We propose a distributed layout algorithm
that can be computed very fast to meet the interactivity
requirement in online visualization. The algorithm is based on
a principle of cost minimization in placing feature pearls. In
details, the cost contains two components: the overlapping cost
(cost over) which describes the degree of a pearl overlapping
with other edges/pearls, and the spacing cost (cost space)
which describes the compactness of pearl placement from its
previous pearl on the same edge. The costs are defined by

cost over(d j)=

{
0 d j ≥ dmax
1 d j < dmax

,cost space(l j)= (l j−lmin)/lmin

(1)
d j denotes the perpendicular distance from the jth pearl (MD
feature in the figure) to the closest edge other than its current
edge. When this distance is large enough, i.e., small probability
of overlapping, the cost is zero; otherwise the cost is one. On
the other hand, the spacing cost of the jth pearl increases
linearly with the interval from the previous pearl on the
same edge, denoted as l j, excluding the minimal interval lmin
between adjacent pearls to avoid overlaps.

The layout algorithm tries to optimize a weighted sum of
the two cost components on all n pearls of an edge.

Minimize
n

∑
j=1

[(1−α) · cost over(d j)+α · cost space(l j)]

(2)
where α is the parameter to balance the two types of cost.

As there are infinite layout positions on an edge, we design a
feasible algorithm by discretizing layout solutions. We assume
the pearls can only be placed in m candidate positions with a
fixed interval of lmin from each other where m = bL/lminc and
L is the length of the edge. The algorithm exploits a pattern
in the spacing cost that the cost of all pearls in an edge only
depends on the position of the last pearl, which is described
by

n

∑
j=1

cost space(l j) =
n

∑
j=1

l j/lmin−n (3)

Knowing that the overlapping cost of each candidate position
can be pre-computed, the algorithm becomes an iteration of
the position of the last pearl on the edge. For each feasible
position, the overlapping cost of all pearls as well as their
overall cost can be directly computed. The pseudocode of
the algorithm is given in Algorithm 1. Except for the pre-
computing of overlapping costs, the algorithm has a linear



complexity of O(m− n) for each edge. Note that when an
edge can not admit n features (m < n), the pearls are drawn
as hollow circles in the minimal size and placed uniformly on
the edge.

To focus on one ROI in the composite view, users can
click the corresponding node to highlight all connections of
the ROI, as well as feature pearls on these edges. The other
unselected edges will fade out in the background. When there
are many nodes/edges in the composite view, the distributed
layout result can also include severe visual clutter caused by
overlapping. To reveal feature pattern clearly on the selected
ROI, we introduce a distortion method to the edges connected
to the selected ROI. The basic observation is that a majority of
visual clutter are caused by overly small angles between the
adjacent edges or overly close adjacent ROIs to the selected
ROI on the other endpoint of the edge. The distortion method
enforce a minimal angle between adjacent edges connecting
to the same ROI and a minimal length for each edge, so that
all the feature pearls can be spaced uniformly for effective
comparison. The distorted edges will be connected back to the
original destination through Bézier curves. The selected visu-
alization result by the distortion method in comparison to the
original distributed layout result is illustrated in Figure 1. The
method considerably reduces the visual clutter and improves
the efficiency of pattern discovery from our visualization.

APPENDIX C
NOTES ON FEATURE QUALITY FOR BRAIN NETWORK

COMPARISON

The comparison among brain networks of separate subject
groups generally focuses on individual or a set of brain
connections which differ significantly across the groups of net-
works. The differences can take place on geometric features of
the brain connection (length, curvature, entropy, etc.), diffusion
features (FA, MD, RD, etc.), or both. After these features are
measured, extracted, and computed through the neuroimaging
process, the brain network comparison problem is mostly
treated as a statistical or machine learning problem: how
to identify the most different connectivity features from all
network connections among subject groups under comparison?

The formulation of this statistical problem without incorpo-
rating the domain knowledge of human brain network analysis
can be incomplete or even misleading. First, the human brain
is known to be densely interconnected by brain white matter.
Yet, it is not a fully connected network. As reported in Ref.
[1], their structural brain networks defined on 70 ROIs have
a density of 0.2∼0.45, which are constructed over the same
data with the work here. More than a half of connections
under the current brain network definition are null. This also
corresponds well with the visualization result in Figure 5
(same with Figure 4(a)(b) in the main paper), where more than
a half of connectivity features in the subject × connectivity
matrix are invalid (grey color). Second, the measurement of
brain connectivity features can be uncertain caused by quite
a few factors. Most notably, the same node (ROI) of the
70-ROI brain network can refer to quite different cerebral

Fig. 1: The effect of distortion method on the visualization
of selected ROI edges: (a) undistorted picture; (b) distorted
picture.

cortex region in separate subjects. This is because the structure
of cerebral cortex can be at least slightly diversified across
subjects. The registration of an individual subject into the same
brain atlas often leads to deviated cortex-node mapping from
the template brain cortex. Meanwhile, other factors such as
the parameter and method choice of fiber tracing algorithms
in brain tractography also add to the uncertainty of measured
brain connectivity features.

The domain characteristics on human brain networks bring
extra complexity to the network comparison problem studied
here. In theory, it is assumed that, on each connectivity
feature, the two subject groups under comparison will have
two feature value distributions. When the two distributions
are significantly different as identified by statistical tests, the
underlying connectivity feature will be a potential bio-marker
that distinguishes the two subject groups under comparison.
Nevertheless in practice, this comparison process works for
some but not all connectivity features. Take the diffusion
feature of FA as an example, as shown in Figure 2, there are
at least two types of cases. In the first type, a representative
feature value distribution is given in Figure 2(a) where null



Algorithm 1: The Pearl Layout Algorithm on an Edge.
Input : e (the edge to layout), n (#pearls on an edge),

E (the set of edges on the network), dmax
(max. pearl size), lmin (min. pearl interval), α

(cost parameter)
Output: P (position of all pearls on the edge)

1 begin
2 m = bLength(e)/lminc
3 if m < n then

/* use the uniform-interval layout on short edges */
4 return uniform layout(e, n)

/* pre-compute overlapping cost on each candidate position */
5 for j← [1,m] do
6 p j = start(e)+ j · lmin

Length(e) · ê
7 for remote edge in E\e do
8 d j = min(d j,distance(p j,remote edge))

9 if d j < dmax then
10 c j = 1

11 else
12 c j = 0

/* iterate over feasible positions of the last pearl */
13 for i← [n,m] do
14 costs = i−n
15 costo = n−1−min(∑i−1

j=1(1− c j),n−1)+ ci

16 if costall > (1−α) · costo +α · costs then
17 costall = (1−α) · costo +α · costs,

last pos = i

/* compute and return pearl positions with smallest possible
overall cost given the position of the last pearl */

18 return best position(n, last pos, {c j}last pos
j=1 )

features predominate the distribution. This indicates that the
corresponding edge of the brain network is without fiber con-
nection anatomically. This and similar features should clearly
be discarded before the comparison. The first type of connec-
tivity feature is made complicated in the case of Figure 2(b)
where a small portion of feature values on the same connection
are non-zero due to the uncertainty of measurement. Probably,
we should not compare on these connectivity features as zero
values still dominate the distribution. In the second type of
cases, there are physical fiber connection on the measured
brain network edge. A typical feature distribution on FA is
given in Figure 2(c) which largely follows normal distribution
as indicated by the Kolmogorov-Smirnov normality test. This
is the ideal feature distribution for group-level comparison.
Similarly, complexity shows up when the same connection is
not detected on some subjects, or the feature value is unusually
low (Figure 2(d)). These abnormal subjects should be removed
in the comparison of the connectivity feature. Figure 3 depicts
typical value distributions of the geometric feature of Entropy
on the same data. The classification of two types of cases and
their variations are similar.

The above analysis shows that, because of the existence
of null connection in the brain network and the occasional
measurement deviation, there is no clear-cut answer on which
connectivity feature should be included in the brain network
comparison. We propose an interactive method to allow users,
who are mostly domain experts, to decide on the scope of
feature comparison for bio-marker detection, based on com-
putational evidence from the feature analysis. In the first step
of our method, we define a measure of feature quality for brain
network comparison, namely Quality for Comparison (QoC)
in short. The zero feature values are assigned the zero quality,
as we will not compare null connection features1 or mis-
measured features. For non-zero feature values, those features
statistically deviated from the feature value distribution are
assigned low qualities. In the second step of the method, we
provide an online QoC filter whose threshold is set by users
manually. The feature values below the quality threshold will
be removed from the comparison. Note that, we provide an-
other brain connection filter which sets the minimal percentage
of remaining subjects for the valid comparison of underlying
brain connection. For example, when the percentage threshold
is set to 50%, the connectivity features having low quality
in more than a half subjects will be excluded from the
network comparison. This allows to distinguish between null
connection cases and valid connection cases as shown in
Figure 2(b)(d). The interactive data wrangling design is also
described in Section 5.2 of the main paper (feature heatmaps).

According to the definition of QoC measure, we apply
anomaly detection algorithms to assign zero quality to outliers
in the feature value distribution, and set largely deviated
feature values to low quality. We have considered three
anomaly detection algorithms. The cluster-based anomaly
detection algorithm by DBSCAN is first excluded due to
the high computational complexity and the high sensitivity
to parameters (i.e., minPts and neighborhood radius). The
two statistical anomaly detection algorithms, Grubbs’s test
and Extreme Value Theory (EVT), can both isolate outliers
and compute quality measures for the others very fast. We
choose the Grubbs’s test as it is parameter-free. Also, the pre-
condition for the Grubbs’s test holds well. For all connectivity
features, the value distributions largely follow normal distribu-
tion after removing zero values. Figure 4 gives the distribution
of p-values from the Kolmogorov-Smirnov normality test on
representative geometric and diffusion features. To focus on
valid brain connections, the features having more than a half
values being zero are excluded from the KS normality test.
From the figure, it can be found that more than 96% features
on valid connections have p-values above 0.05, i.e., follow
normal distribution after removing zero values. In fact, under
appropriate parameters, the set of outliers detected by EVT
overlap significantly with the output of Grubbs’s test. The
overlapping ratio is as high as 90% on all features. In this

1In this work, we only consider the neurological diseases or pathological
development on the brain network that change the network connectivity. They
do not thoroughly remove the connectivity. For applications that demand zero
vs. non-zero feature comparison, the definition of QoC should be reconsidered.



Fig. 2: The value distribution of FA feature within 202 subjects on selected brain network connections: (a) the null connection
with almost all zero values; (b) the probable null connection with a few nonzero feature values; (c) the valid connection with
its feature value distribution close to the normal distribution; (d) the valid connection with more zero feature values, probably
due to measurement deviations.

sense, the EVT algorithm can also be applied. Changing its
algorithm parameter actually re-scales the distribution of the
quality measure. The users can re-adjust their quality filter to
achieve the same filtering outcome.

To visually explain the QoC measure to users and illustrate
the necessity to filter low-quality features, we also design a
detailed quality visualization panel on the heatmap view of
MV2Net. As shown in Figure 5, by mouse hovering of any
cell on the heatmap, the quality panel is shown on-demand
at the upper-right corner of each heatmap view. In the panel,
the probability density distribution (PDF) of all feature values
within the hovered cell is displayed in green bar charts (Figure
5(a)). In the background of the quality panel, the average PDF
of the same connectivity features on two comparing subject
groups are drawn in purple and orange line charts respectively.
They correspond to the upper purple part and the lower orange
part in the same column with the hovered cell. The shaded
purple/orange contours centered on the purple/orange line
charts represent the variation (75% CI) of feature distributions
across all subjects in the same group. The visualization result
in Figure 5(b) on a low-quality cell (grey color) indicates that
the distribution of low-quality feature values, as shown by the
green bar charts close to zero, is significantly different from
the high-quality features in both subject groups, as shown by
the line charts. The difference between the high vs. low quality
features is much larger than the difference between the features
in comparing subject groups.
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Fig. 3: The value distribution of Entropy feature within 202 subjects on selected brain network connections: (a) the null
connection with almost all zero values; (b) the probable null connection with a few nonzero feature values; (c) the valid
connection with its feature value distribution close to the normal distribution; (d) the valid connection with more zero feature
values, probably due to measurement deviations.

Fig. 4: The distribution of Kolmogorov-Smirnov normality test’s p-value on certain feature distribution in 202 subjects. Zero
feature values are removed, features with more than a half being zero values are excluded. (a) the entropy feature (geometric);
(c) the FA feature (diffusion).

Fig. 5: Feature heatmap view with quality visualization panel enabled by mouse hovering: (a) the cell with high quality features
(purple color) where the feature value distribution within the cell as shown by green bar charts is similar to the distribution in
the same column (purple and orange line charts); (b) the cell with low quality features (grey color) where the feature value
distribution as shown by green bar charts peaks at zero value and is quite different from the high quality features in the same
column (purple and orange line charts).


