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Figure 1: SAVE user interface visualizing sensor network topology (top-left, bottom-left), high-dimensional sensor measurements and statuses
(top-right), dimension correlations (middle of bottom) and the dimension temporal trends (bottom-right). Various visual settings and analytic
functionalities can be accessed from the menu.

ABSTRACT

Diagnosing a large-scale sensor network is a crucial but challeng-
ing task. Particular challenges include the resource and bandwidth
constraints on sensor nodes, the spatiotemporally dynamic network
behaviors, and the lack of accurate models to understand such be-
haviors in a hostile environment. In this paper, we present the
Sensor Anomaly Visualization Engine (SAVE), a system that fully
leverages the power of both visualization and anomaly detection
analytics to guide the user to quickly and accurately diagnose sen-
sor network failures and faults. SAVE combines customized visu-
alizations over separate sensor data facets as multiple coordinated
views. Temporal expansion model, correlation graph and dynamic
projection views are proposed to effectively interpret the topolog-
ical, correlational and dimensional sensor data dynamics and their
anomalies. Through a case study with real-world sensor network
system and administrators, we demonstrate that SAVE is able to
help better locate the system problem and further identify the root
cause of major sensor network failure scenarios.
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1 INTRODUCTION

With the recent surge of sensor technology, networks have ex-
panded from the traditional computer-centric networks, e.g. the
Internet, to real world networks centered around physical objects,
namely the Internet of Things (IoT) [1]. A sensor network consists
of a number of sensor nodes, each of which has the capability of
sensing, computing, and communication. Sensor networks are al-
ready playing a key role in numerous emerging applications, such
as smart grid, logistics, traffic control and health care.

Driven by the need for sustainable operations of the network, the
diagnosis of sensor network problems has become a crucial task.
For example, consider the case of a sensor network deployed in the
forest for the purpose of measuring carbon emissions and conduct-
ing ecological surveillance, there is a need to know the percentage
of abnormal sensors to guarantee an accurate overall measurement.
By detecting significant changes in routing paths, one can use that
as a trigger to look into the network status, identify broken wireless
links or suddenly failed sensor nodes, and take immediate measures
to repair problems and maintain system integrity.

However, the diagnosis of sensor networks can be tremendously
challenging when faced with the dynamics in full scale deploy-
ments. First, sensor networks consist of numerous low-end embed-
ded computing devices and are often resource-constrained. The re-
source constraints of sensor networks tend to include limited capac-
ity of computing, storage, and bandwidth. Furthermore, most re-
motely deployed sensor networks are powered by non-rechargeable
batteries introducing additional energy constraints. Second, many
sensor networks are deployed in outdoor or even hostile environ-
ments. Unlike the Internet and traditional networks, various en-
vironmental factors could have significant impacts on the perfor-



mance and reliability of sensor networks. For example, changes in
temperature, humidity, wind, rain, and physical damages by human
or wild animals, can cause performance degradation or even system
failures of the sensor networks. Third, the wireless nature of most
sensor networks is extremely likely to be lossy, thus making perfect
data collection impossible or at least highly unlikely.

Most existing diagnostic approaches for the Internet or other tra-
ditional networks (e.g. SNMP) cannot be directly applied to sen-
sor networks. These approaches are often resource-consuming and
demand intensive data collection. On the other hand, the current
algorithms to diagnose sensor networks from the collected data
mainly rely on certain inference models which link symptoms to
the underlying root causes [2]. These inference models depend on
the evidence-based sensor data fault taxonomy to characterize the
symptoms. However, due to the resource constraints and the exis-
tence of salient failures, such inference models can only focus on
a portion of symptoms, restricting their adaptability and scalability
in real-world usages.

In this paper, we present the Sensor Anomaly Visualization En-
gine (SAVE) (Figure 1), an integrated system that tackles the sensor
network diagnosis problem by using visual analytics technologies.
Compared to the existing suite of algorithmic approaches, SAVE
has the following advantages that include:

• The visualization of sensor network data from multiple per-
spectives, at various scales of size and time, helps the admin-
istrator collect evidence in a more comprehensive and consol-
idated manner;

• The advanced visual interface provides a more intuitive dis-
play of data, which by its nature is more suitable for human
diagnosis of large-scale data intensive systems;

• The visual analytics solution combines human knowledge
with algorithmic results to work better in diagnosing salient
sensor network failures, whose symptoms and root causes are
previously unknown;

As noted earlier, visual analytics for sensor networks is a dis-
tinctly non-trivial task. The high-dimensional and dynamic nature
of the sensor data, the unpredictable network behavior, and the
error-prone transmissions and operations all bring great challenges.
This paper offers the following contributions to help address these
challenges.

First, we propose the Temporal Expansion Model (TEM) graph
to track the evolving sensor network topology. TEM leverages the
key feature of a typical sensor network, i.e. all the sensor nodes
(or those in one autonomous system) only send packets to a cen-
tral sink node for information fusion. The basic idea is to split
each physical sensor node into multiple logical nodes according to
their separate routing paths to the sink node. Therefore, the re-
sulting topology graph is essentially a directed tree, enabling more
friendly visualization and human navigation. Simultaneously, tem-
poral changes to the network are surfaced to the graph, providing
input for further analytics over network dynamics. We also intro-
duce an overview+detail visualization design to the TEM graph to
alleviate its limitation in identifying physical connections. A clear
delivery path from each node to the sink is offered to the user as a
detailed view.

Second, we introduce a correlation graph to monitor temporal
correlation patterns and detect anomalies between numerical sensor
data dimensions. Third, a novel dimension projection view is de-
signed to map the high-dimensional sensor counters/readings into
visible patterns and render the temporal dynamics.

We have deployed SAVE into a real-world large-scale Wireless
Sensor Network (WSN) system – GreenOrbs [3]. Based on long-
term iterative studies with domain experts there, we have elabo-

rated a suite of interactions into SAVE to help the network oper-
ators better diagnose network failures from a comprehensive per-
spective. We further demonstrate through the link-failure diagnosis
case study that SAVE is effective in both identifying salient failures
and providing the critical guidance for the user to drill-down to root
causes of the anomalies. In most cases, SAVE indeed saves a great
amount of time for the operators in completing their tasks.

2 RELATED WORK

Traditionally, analysis of sensor networks have been based on ei-
ther general (ns-2) or in-domain (TOSSIM [4]) network simula-
tors. For example, MOTE VIEW [5] tracks the health and status
of nodes in small simulated networks as well as visualizes the sen-
sor readings of humans and vehicles movements through a simu-
lated hazardous area. NetTopo [6] provides both simulation and
visualization functions to test and validate algorithms in WSNs. In
particular, TOSSIM, a discrete event simulator for TinyOS sensor
networks, includes TinyViz [4], a Java visualization and actuation
environment that interacts with TOSSIM through its network proto-
col. While visualization tools like TinyViz allow users to select and
manipulate simulated nodes through a GUI, the tools control and vi-
sualize the results of network simulations but not the experimental
routing data from an actual deployment of a large scale sensor net-
work. The result is that such tools tend to miss network anomalies
that occur unpredictably in real deployments.

Products such as Sensor Network Analyzer (SNA) [7] are avail-
able as commercial solution for developing, decoding, debugging
and deploying wireless embedded networks. They supports various
protocols including IEEE 802.15.4 and ZigBee. SNA includes fil-
tering, labeling and color-coding to make it easy to locate packets
of interest and measure performance. Surge Network Viewer [8] is
an application that comes standard in the TinyOS Tools distribution
and is useful for monitoring a sensor network and analyzing mesh
network performance. In addition, SpyGlass [9] visualizes the net-
work topology and the state of sensors via basic graph drawing and
node labeling. In the Sensor Network Analysis and Management
Platform (SNAMP) [10], data emitted by individual sensor nodes is
collected by a multi-sniffer data collation network and passed to a
flexible multi-view visualization mechanism. In a sense, the debug-
ging functions included in SNAMP “visualize” the development of
WSNs applications. While products like SNA allow users to visu-
alize packets and fields at the byte level, it lacks intelligent analytic
capability to detect and analyze the abnormalities of wireless sensor
nodes. Key questions focused in this study, e.g., what are the ab-
normal changes in terms of both spatial and temporal nature, have
not been addressed in previous studies.

Sensor network data have been known for many types of faults
[2], e.g., the most common faults observed in a sensor network in-
clude outliers, spikes, stuck-at and noise. Other than these pre-
defined faults, many times the sensor networks themselves exhibit
silent failures [11] that are unknown beforehand. To understand
general network behaviors, diagnosis methods have been based on
the network itself and its graph properties, such as degree distri-
butions, subgraph isomorphism [12] and graph edit distance [13].
While there are techniques dealing with time series data visual-
izations, e.g. the GrowthRingMaps [14] and SpiralGraph [15] for
temporal patterns in serial periodical data, very few of them are de-
signed specially for the diagnosis of performance issues in sensor
networks and for the easy exploration of root causes for which there
may be no prior established knowledge.

Techniques exist for visual analysis of network graphs, spa-
tiotemporal, and multidimensional data sets, such as Parallel co-
ordinates [16], star coordinates [17] or RadViz [18], TimeWheel
and MultiComb [19]. Rather than duplicate snapshot graphs at dif-
ferent timestamps, the spatiotemporal sensor graph (STSG) model
[20] has been proposed to discover spatiotemporal patterns by con-



Figure 2: The bird’s-eye view of the GreenOrbs deployment in Zhejiang Forestry University. The latest deployment includes 500 physical
sensor nodes in total. A portion of the sensor nodes have been in continuous operation for over one year.

structing one super graph with the properties of edges and nodes
containing the time series of measurement data. Graph-based
wavelets coefficients [21, 22], which aggregate or difference adja-
cent nodes/edges in the neighborhoods of network graphs, are pro-
posed to analyze and understand the spatial and temporal behav-
ior of internet traffic anomalies. Interactive visualization has been
shown to be useful to fault diagnosis in various networks includ-
ing enterprise networks [23]. Our study involves some problems
of graph analytics which is among the most important research
areas within the visual analytics community [24, 25]. In the set-
ting of sensor networks, we apply as well as develop novel views
for spatiotemporal anomalies visual analysis, e.g., TEM graph vi-
sualization for sensor network routing topology, correlation-based
projection views for high-dimensional sensor properties (readings
vs. counters), and a differential visualization framework for sensor
routing graphs and node-correlation graphs.

3 SYSTEM OVERVIEW

SAVE is a visual analytics system for realtime and playback data
diagnosis of real-world sensor networks. In this section, we first
introduce the underlying GreenOrbs deployment and its data col-
lection mechanism. Second, we explain the building blocks and
working process of the SAVE system.

3.1 Sensor Deployment

GreenOrbs [3] is a long-term large-scale wireless sensor network
system in the forest. The system realizes all-year-round forest eco-
logical surveillance and supports various forestry applications, e.g.
canopy closure estimation, fire risk prediction and carbon seques-
tration and emission. Figure 2 shows the bird’s-eye view of the
GreenOrbs deployment.

In hardware, GreenOrbs employs the TelosB mote with a
MSP430 processor and CC2420 transceiver. On each sensor node,
a 48KB program flash memory and a 1024KB measurement serial
flash is installed. An elaborate design of the enclosure for each sen-
sor node is introduced (also shown in Figure 2) to protect the nodes
from being corrupted by possible inclement weather or destruction.
A typical GreenOrbs node in the current deployment is equipped
with four sensors, providing five types of sensor readings, namely
temperature, humidity, illumination, MCU-internal voltage, and the
concentration of carbon dioxide in the air. In software, GreenOrbs
employs the Collection Tree Protocol (CTP) [26] to collect the data
in a distributed multi-hop manner. The transmission of the configu-
ration packets from the sink to the other sensor nodes are delivered
using the DRIP protocol [27].

3.2 Data Measurement and Collection

GreenOrbs sensor nodes work in a periodic manner. The opera-
tional period is set to 10 minutes and can be flexibly configured by
external control commands issued from the sink. In each opera-
tional period, a sensor node collects four categories of data, namely

sensor readings, routing path, wireless link status, and the network-
ing/system statistics. This data is encoded into three data packets
and sent to a central sink node via multi-hop routing through CTP.

The first category of data is sensor readings. Each sensor node
invokes the read interfaces of corresponding sensor components pe-
riodically to collect the readings. The second category is the routing
path, which records the IDs of all the nodes that appear in the multi-
hop routing path from the source node to the sink. This is realized
by piggybacking the forwarding node’s ID at each hop during the
packet relaying process with CTP. The third category is link sta-
tus, which includes the Received Signal Strength Index (RSSI), link
quality index (LQI) and ETX value of all the neighboring nodes.
The fourth category is a large collection of statistics information
on each sensor node, including the cumulative time of radio power
on, the cumulative number of received/transmitted/dropped(due to
receive buffer overflow, transmit queue overflow or timeouts)/not-
ACKed/retransmitted/duplicate packets and the cumulative number
of parent changes and no parent events with CTP.

GreenOrbs began continuous operation in late 2010. In this
work, most of the visualizations for SAVE are built on a four-day
trace data set collected in early 2011 when the entire system had
converged to a stable mode. Statistically, this trace contained 349
physical nodes with 140k reports for each kind on sensor reading,
sensor mote status update and routing dynamics. Provided that the
sensor data format stays unchanged, the SAVE system could extend
its usage to data sets over longer periods of time or even to acting
on real-time data. The stability issue of the proposed visualizations
are further discussed in Section 5.

3.3 SAVE System Framework

From a system perspective, SAVE is designed as a three-stage
pipeline, encompassing data preprocessing, anomaly detection and
multi-view visualization stages. In the first stage, the multi-facet
raw data is preprocessed and the temporal network topology and
dimension correlations are built from distributed data pieces. Next,
anomalies such as measurement outliers and correlation changes
are computed and cached online. Finally, at the core stage, the
data facets and the prepared analytics are brought together and con-
sumed by the visualization components integrated with SAVE.

From the user’s perspective, they access SAVE from selecting a
collection of data traces in the offline analysis mode. SAVE then
presents the user an overview to the whole data set with multiple
coordinated views interpreting different facets of the trace data, in-
cluding topology, correlation and dimension projection views. The
user can navigate in each view with standard data brushing and fil-
tering interactions. The correlations among data facets are illus-
trated through coordinated updating in all the views. A time range
control is also provided to allow the user specify the time period of
interest in the data. In this way, the user is able to drill-down to the
interesting data portion jointly from temporal, spatial and dimen-
sional perspectives so that analysis over the details can be further
conducted with standard tools such as trend lines.



(a) Geographical view

(b) Force-directed view (c) TEM graph view

Figure 3: A comparison of sensor network topology visualizations.

4 DATA ENGINEERING AND ANOMALY DETECTION

4.1 Data Preprocess
The raw data reported by the sensing nodes, i.e. link quality, rout-
ing, sensing, and status data, are first parsed and fed into the SAVE
visualization tool for analysis. For link quality data, each sensor
node would normally have 16 neighbors with different link quality
metrics (LQI, RSSI, ETX). A link graph is generated and updated
when the link quality changes. For routing data, each path up to 10
hops is parsed to record the entire routing path from the source to
the sink (node ID 0). Each node along the path is added into the
routing graph data structure, which is stored in memory and later
transformed into GraphML format that can be readily read by most
graph visualization libraries.

For sensing data, the actual sensor readings reported are time-
stamped and saved as the properties of each sensor. Each prop-
erty is a four-tuple, i.e., [nodeID, time, propertyName, property-
Value]. The available sensing properties include temperature, hu-
midity, light, voltage, and CO2. The available sensor status prop-
erties are a group of predefined metrics for diagnosis purposes,
e.g., RadioOn, ReceiveOverflowDrop, Retransmit, ParentChange,
etc. Indices on the four-tuple properties using hashtable data struc-
ture allow quick searching, sorting and displaying updated statisti-
cal charts/graphs in response to the user interactions, e.g., clicking
nodes in the graph, selecting properties and dragging the time slid-
ers for the investigation.

4.2 Topology Analytics
The dynamics of routing topology is the key indicator to the per-
formance of a sensor network. By nature, this topology is a large-
scale time-varying graph due to the instability of ad-hoc communi-
cations and routing scheme employed. Traditionally, it is hard to
compose an analytics-friendly visualization for such a graph. The
most promising approach aggregates the temporal graphs together
and draws an accumulated connection picture [28], e.g. for commu-

nity visualization through a social graph. However, this approach
fails in our case as the connection changes here are extremely ran-
dom. One sensor node delivering a packet to another node in one
hop could need multiple hops just in the next time for the same
destination. The resulting graph drawn in normal methods is quite
messy either with geographical or logical layouts, as shown in Fig-
ure 3(a)(b).

We propose the Temporal Expansion Model (TEM) graph in this
paper to prepare a more intuitive graph for the following visualiza-
tion stage. TEM leverages the key feature of the sensor network
studied here – all the sensor nodes only send packets to the cen-
tral sink node for information fusion. The basic idea is to split one
physical sensor node into multiple logical nodes according to the
separate routing paths to the sink. The advantages of TEM are two-
fold: first, the graphs generated are directed trees, much better for
visualization and navigation; second, temporal changes to the net-
work are surfaced to the graph, providing input for further analytics.

The TEM graph still follows the node-edge paradigm of general
graphs. However, the node here is defined differently by using the
path N from the original node (S) to the sink node (R):

N = [(S, p1, p2, ...,R),T ] (1)

where pi is a node on the path. The unique node ID of N is encoded
by concatenating its paths together. Two nodes are identical only
if their paths are the same. The physical ID S is also kept for each
node to link to its original physical node. Another difference in
TEM graph is that it keeps track of the event time series (T ) of each
node, rather than only maintaining numerical accumulated weight.
In our case, the events are packet sendings from S.

We further introduce the TEM processing in the sensor network
case for its better understanding. The raw topology data input are
the packet delivery paths to the sink node from all distributed sen-
sors. A m-hop path from source node S at time t is represented
as

Γ(S, t) = (S, p1, p2, ..., pm−1,R) (2)

Next we construct the TEM graph from the path data in two steps.

• Path-node set generation: We first split each input path into
multiple nodes and add them to the TEM node set. For the
m-hop path Γ(S, t), m + 1 path nodes are generated: N1 =
(S, p1, p2, ...,R), N2 = (p1, p2, ...,R), ..., Nm = (nm−1,R), R.
Time t is added to the time series associated with these m+1
nodes. In a flat variation of TEM (F-TEM), we only add time
t to the time series of N1, as in some cases, we are more con-
cerned with the time series when the nodes behave as source.

• Temporal graph building: In the second step, we truncate
the raw path data into edges to construct the final graph. For
the path data Γ(S, t), m edges are generated: (N1, N2), (N2,
N3), ..., (Nm−1, Nm), (Nm, R). We do not maintain time series
for each edge, since the resulting graph is essentially a tree,
the time series of the source node of an edge will indicate the
edge dynamics.

A static example of the generated TEM graph is shown in Figure
3c, reducing most visual clutter compared with its original drawing
in Figure 3b. The temporal dynamics of TEM is visualized through
ring-based node rendering, which is detailed in Section 5.1.

We incorporate some basic analytics over the dynamics of the
TEM graph. Topologically, a major node is identified from the path-
nodes belonging to the same physical node, as the one with the
longest time series, i.e. the one with the most packet deliveries
through its associated path. Temporally, we detect change points
over the time series of each node. Given the packet delivery time
series T = (t1, t2, ..., tk) on a sensor node S, we find abnormal time
points as below:
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Figure 4: Hypothetical examples of correlation graphs. The nodes
are sensor node properties and the edges represent the correlation
between each pair of properties.

Temporal detection: We partition the life cycle of node S into
multiple fix-length bins according to the preset sensing intervals,
e.g. 10 minute in which the sensors wake up regularly and report
status information. Each value within the time series of a node S is
fit into its particular bin. Finally, the number of values accumulated
in each bin is recorded as (v1,v2, ...,vm). We then compute the
changes of these bin sizes as (∆1,∆2, ...,∆m), where

∆i = vi− vi−1 (v−1 = 0) (3)

Then ∆i represents the changes of node S during the time period of
bin i. This indicator reflects the topology changes centric to node
S in the general TEM graph, while reporting more on the packet
delivery changes of node S when applied to the F-TEM graph.

With the splitting mechanism, the TEM graph will expand mul-
tiple times from the original physical sensor graph, which may lead
to scalability issues. There are three key factors affecting the size
of a TEM graph: the duration of the temporal graph, the size of the
original physical network and the fluctuation of the routing proto-
col. However, we show that none of these factors will grow un-
boundedly, hence the overall TEM graph size is controlled as a re-
sult. First, users are more interested to the short-term dynamics of
a sensor topology which give evidences to potential sensor faults.
Due to the ad-hoc nature of the sensor network, the long-term topol-
ogy changes do not possess significant temporal trends. A one-day
window would be enough for user to locate the fine-grained topol-
ogy anomalies. Second, as the physical sensor network grows, hier-
archical routing schemes are generally employed where the entire
network is partitioned into several autonomous systems operating
independently. Each system for which a TEM graph is drawn, is
composed of up to several hundreds of physical nodes, similar to
our current data size. Third, the routing fluctuation, as shown in our
experiments are not as random as we may expect. We have tested
6 whole-day data sets from GreenOrbs, with an average physical
node size of 337. The generated TEM graph size reaches 4534 in
average. The mean graph layout time is 0.11s and the mean graph
rendering time is 2.79s, both linear to the TEM graph size. With
these statistics, we argue here the TEM approach is feasible for
most sensor topology scenarios we considered in this paper as the
resulting graph will not grow indefinitely and the overhead is shown
to be limited.

4.3 Correlation Graphs
Another temporal dynamic occurs from the various dimensions of
sensor data. Naturally, the values of each dimension change over
time. One question is to ask how one dimension (or property)
changes in relation to another dimension (or property). For exam-
ple, should the number of packets in transmission increase in the
same proportion of voltage decrease of sensor nodes? What are
the relationships between those sensor readings? This relationship
or correlation can be used as a metric for anomaly detection and
analysis.

To this end, two time-series data sets of property value vectors
(i.e., one for sensor readings and one for sensor counters) are ex-

tracted from the raw reported sensor data in real time based on the
selection of the node, start and end timestamps in the visual analytic
tool. SAVE computes the correlation scores according to the Pear-
son’s product-moment coefficient [29], i.e., Correlation(p1, p2) =

|p1| ·∑
|p1|
i=1 p1i · p2i−∑

|p1|
i=1 p1i ·∑

|p2|
i=1 p2i√

|p1| ·∑
|p1|
i=1 p12−

(
∑
|p1|
i=1 p1

)2
·
√
|p2| ·∑

|p2|
i=1 p22−

(
∑
|p2|
i=1 p2

)2

(4)
where p1 and p2 are the property vectors, whose lengths equal the
number of timestamps. For example, if the investigation window
is set as two hours in the visualization tool, the property vector
size will be twelve if each sensor reports every ten minutes. A
correlation matrix can then be computed for each pair of properties.
Naturally, a correlation graph [11] associated with the correlation
matrix can be constructed and visualized.

Figure 4 shows the concept of correlation graphs (CGs), in which
each node represents one dimension of data associated with a sen-
sor node, and the weights of edges represent how much pairwise
properties are correlated. Specifically, Figure 4a shows a CG with
only sensor readings, e.g., temperature and light are very much pos-
itively correlated since intuitively the temperature rises in the date
and drops at night. CO2 is negatively related with daylight as the
forest emits oxygen and consumes CO2 under sunshine for photo-
synthesis. Figure 4b shows a CG with only senor network routing
counters, e.g., RadioOn, Transmit and NoACKRetransmit are all
positively correlated. In addition, Figure 4c shows a mixed sce-
nario with both sensor readings and counters, e.g., high humidity
may cause some problem in packet loss and may be correlated to
some of the retransmission. Transmitting / relaying packets or re-
transmitting packets are negatively correlated with sensor voltage
due to increased load and power consumption.

4.4 Dimensional Outliers and Dynamics
The data reported from sensor nodes is also multi-dimensional.
The dimensions of sensor data in the deployment can be as high
as 30 dimensions ranging from normal sensor readings (e.g., Tem-
perature, Light, Humidity, Voltage, etc) to network routing coun-
ters (e.g., RadioOnTime, Transmit, Receive, Retransmit, SuccACK,
etc). Since the wireless sensors deployed in a wild environment
are quite dynamic, how to detect and analyze the anomalies in
high-dimensional space becomes a challenging task. Specifically,
we want to know both the spatial and temporal anomalies of high-
dimensional sensor nodes:

• Spatial anomalies: How is each individual sensor node differ-
ent from others in terms of the dimensions of data?

• Temporal anomalies: How does each individual sensor node
evolve from its status of previous time?

To solve the problem, we first divide the dimensions of sensor data
into two categories of properties, i.e., sensor readings and sensor
counters. Each sensor node reports data at an interval of approx-
imately ten minutes and is uniquely identified by nodeID time.
Therefore, each sensor node at each reporting time will then have
two property vectors, whose elements represent the values for each
dimension.

Each high-dimensional sensor node nodeID time is mapped as
a data point onto a 2D space using a concept similar to Star Co-
ordinates [17] or RadViz [18]. The projection uses an improved
spring-force model detailed in Section 5.3. As an illustration, Fig-
ure 5 shows a unit cycle with function x2 + y2 = 1. The circumfer-
ence is equally divided by the number of dimensions, where the di-
mensions represent either the total types of sensor readings or total
types of sensor counters. The figure shows an example of temporal
dynamic of nodes 2 and 35 that change at two different timeslots
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(from t to t ′). In this view, not only the relative locations among the
sensor nodes are quickly visualized, but the temporal evolution of
the same node at different time is also analyzed.

The function for the coordinates of the dimensional anchors on
the circumference is defined as:

(xi,yi) = (r · cos(θi),r · sin(θi))

θi = i · 2π

dim , i = 0,1,2, ...,dim−1
(5)

where r is the radius, θ is the radian, and dim is the number of
dimensions.

The property value P for each sensor node i at time t is a three-
tuple, i.e.,

P(i,t) = {V,V[0,1],∆[0,1]}

where V is the original property value (e.g., the actual sensor read-
ings or counter values). To consider different scaling of proper-
ties, each dimension is normalized between 0 and 1, computed as
V[0,1]. The normalization is based on the minimum and maximum
observed values reported by each or all the sensors during the en-
tire time range, i.e., v−min

max−min , depending on the emphasis on either
temporal or spatial anomaly detection. Further, ∆[0,1] represents
the normalized delta or changes of property value from the previ-
ous timestamp, e.g., 0 means no change. In this way, it is eas-
ier to visualize the state-changing turning points. Totally, there are
“readings/counter” (2)× “{V[0,1],∆[0,1]}” (2) different views for the
high-dimensional sensor data display.

By default, each timestamp of a sensor’s reporting time is treated
as one data point mapped in the view, which means there will be
N ∗T points where N is the total number of sensor nodes and T is
the number of timestamps. To support scalable visual exploration,
we also introduce the level of granularity to automatically adjust
based on the zoom-in/out requirement. An additional parameter slot
is added in addition to start and end. Arithmetic mean is applied
to the sensor reading/counter values spanning each recurring time
slot for compression of multiple data points into one point, i.e.,
P(i,t)→ P(i,slot).

Once the spatiotemporal mapping of sensor nodes’ properties
is performed, further analysis can be performed by computing the
clusters on the sensor nodes. For example, the tool can easily be
extended to include state-of-art clustering modules. These mod-
ules can detect any data points deviated from the centroid (i.e.,
d(ni,Ck)> m ·σ ) and identify these points as outliers.

5 VISUALIZATION DESIGN

The visualization for SAVE aims to interpret all the three sensor
data facets: topology data, high-dimensional sensor data and the
correlations among dimensions. For each facet, it also encodes an-
alytics results described in Section 4. Due to the complex nature
of these facets and their analytics, the visualization for SAVE is

designed in multiple coordinated views as in Figure 1. Each view
illustrates one dynamic data facet evolving over time. All the three
views are snapped together through a shared time slider in the bot-
tom of the interface. Once a new time range is selected, all the
views will synchronously update to reflect the new data.

5.1 Sensor Topology View
The topology view shows the TEM graph generated from the raw
packet delivery paths. As the input TEM graph is strictly a directed
tree, we employ the traditional radial layout to place the sensor
node, as shown in Figure 6a. The nodes in each graph hierarchy
are ordered according to their path ID, such that the nodes with the
same path ID will be kept stable in the graph layouts upon different
time range selections. We also set the radius of graph hierarchies
to be decreasing from the sink to the brim, so as to allocate more
space for the nodes closer to the sink.

Recall that in the TEM graph, there is time series data at-
tached to each node. In the sensor network scenario, it records
the sending times of packets initiated or relayed through the node.
To visualize this packet sending pattern, we borrow the idea of
GrowthRingMap [14] and compose a temporal ring for each node.
Each time value in the raw time series is first normalized into [0,1]
according to the current selected time range. Then, starting from
the earliest one to the latest, each normalized value is drawn as a
ring on the node, with each ring radius increased by one from the
previous ring. The color of each ring is selected by interpolating
two boundary colors using the normalized value. In our case, we
choose orange to indicate the earliest time and blue to indicate the
latest time. The resulting drawings could effectively guide the users
in detecting temporal topology changes. In Figure 6a, we may no-
tice that there are a cluster of orange nodes on the bottom right and
a cluster of blue nodes on the top right, with quite similar topolo-
gies. It could be inferred that these two clusters contain the same
set of physical nodes, and have experienced a major route change
at their shared ancestor.

The anomaly analytics results in Section 4 can also be drawn on
the TEM graph. Figure 6b highlights the loop paths detected in the
topology in red color. It also renders the major paths in TEM with
thicker stroke and non-major paths with dashes. The packet sending
time series anomalies within each node are drawn by anomaly rings.
The time points with ascending packet deliveries are rendered to the
solid-line color rings while the time points with descending deliver-
ies are drawn in dash rings. In both rings, the color hue still follows
the temporal ring color at its time point. As shown in Figure 6d, it
is more clear that the top right node cluster are counterpart of the
cluster in bottom right after the major route change, because their
anomaly rings have the same color hue.

One deficiency of the TEM graph is that each physical node may
split to multiple path nodes which may confuse the user. To al-
leviate that, we introduce an overview+detail graph visualization
approach. Once the user selects a path node in TEM graph, an ego-
centric graph of its corresponding physical node is also composed
and presented in another coordinated view, as shown in Figure 9a.
The egocentric graph is made up of physical nodes and essentially
represents the path changes from the selected node to the sink.

5.2 Dimension Correlation View
We design the correlation graph to visualize the data dimension cor-
relations in one or a group of sensor nodes within the selected time
range, as introduced in Section 4.3. For the case of selecting mul-
tiple sensor nodes, we compute the average correlation graph for
these nodes. Based on the sensor data available, two types of corre-
lation graph are presented, one among sensor network counter val-
ues (Figure 7a) and the other among sensor readings (Figure 7b).

Figure 7a gives an example of the correlation graph. Each node
indicates one data dimension and each edge indicates a correlation



(a) TEM with temporal rings (b) TEM with loop and major paths (c) Flat TEM (d) Flat TEM with anomaly rings

Figure 6: TEM graph visualization of sensor network routing topologies and their anomalies.

(a) Counter correlations (b) Reading correlations

(c) Delta correlations (d) Correlation anomalies

Figure 7: Correlation graph views.

calculated between the connected dimensions during the selected
time range. In this graph, the layout is computed in force-directed
approach by setting the optimal length of the edge inversely propor-
tional to the correlation value. We also encode the correlation value
to the edge thickness for better data perception.

When the users diagnose network dynamics with correlation
graphs, it is sometimes difficult for them to tell the differences as
most of the correlation graphs are quite similar. To overcome this
limitation, we introduce the delta correlation graph visualization, as
shown in Figure 7c. In this mode, only correlations that increase or
decrease significantly compared with the previous time window are
added to the graph. The graph layout in this case computes the op-
timal node distance from correlation changes, rather than from the
absolute correlation value. To help the user identify positive and
negative changes, we map correlation increases into green edges
and decreases into red edges, with the edge thickness encoding the
absolute change value. Similarly, green nodes correspond to those
with increased overall correlations with the other dimensions, and
red nodes correspond to the opposites. In additional to the delta
graph from the previous time window, we also support another delta
graph by comparing the current correlation graph with the average
correlation graph throughout the data set. It is believed that anoma-
lies are rare in the entire data set, so this delta graph mode will
effectively represent the anomalies in the sense of dimension corre-
lations. Figure 7d shows an example anomaly correlation graph. In
all correlation graph modes, a slider is included in the view to filter
out the edges with low correlations (changes).

5.3 Dimension Projection View
Apart from the correlation graphs, we also incorporate the dimen-
sion projection view to visualize the high-dimensional data values

associated with the sensor nodes and their changes over time. The
basic idea is to draw a scatter plot to show the distribution of high-
dimensional data value for each sensor node at each sensing time,
so that both spatial and temporal outliers are identified in the view
and operable further by the user.

Figure 8a gives an example of the dimension projection graph.
There are several super nodes in red connected together as a bound-
ing circle in the outside part of the graph, showing the data dimen-
sions measured in the application. Inside the circle, numerous plots
are drawn, each corresponds to one multi-dimensional data mea-
surement for a particular sensor in a given time point. The color of
the plot indicates the time of the measurement, with the same color
mapping scheme as the topology graph view: orange indicates early
measurements in the selected time range, blue indicates late mea-
surements. Edges are added between each consecutive measure-
ment time point of the same sensor node to visualize the temporal
changes of the dimensional value. As introduced in Section 4.4,
each value in the multi-dimensional measurement is normalized to
[0,1] among all the plots. The placement of each plot is further
calculated from these normalized multi-dimensional values. We
apply a graph drawing approach here. Initially, optimal distances
between each plot and the corresponding dimension super nodes
are computed with the normalized value. Further, spring embed-
ders are added between the plot and all the dimension super nodes.
The final layouts are computed by finding an equivalence for all the
embedders installed on the plot.

From Figure 8a, we can find that the most increasing dimensions,
identified by the accumulated blue plots, are ParentChange, Dupli-
cate and TaskEvict, which infer the most significant issues of the
sensor network. However, due to the large number of plots drawn
(in this case more than 200 × 48 plots), the graph appears quite
cluttered and the user finds it hard to further diagnose with it. Also,
from rendering performance perspective, it is costly to plot every
time point. Herein, we introduce an interaction to let users choose
the projection granularity as they like. Figure 8b shows the example
for the same data but with only 5 averaged measurement plots, the
visual clutter is alleviated in some degree. Further aggregating to
one measurement per node, we create Figure 8c which highlights
the spatial dynamics among sensor nodes. In this graph, we can
tell that apart from the previous three major dimensions, Transmit-
NoAckRetransmit also shows up as another distinguishing factor.

Another concern from the user is that as the counter values are
designed to be cumulative, the distribution of the value itself may
not accurately track the anomalies at its exact time. The higher
value of one counter could be due to a burst from a previous issue.
To solve this problem, we introduce the dimension temporal change
projection graph. The only difference from the original projection
is that we use normalized delta value compared with the last known
measurement in each sensor for the projection. Details can also be
found in Section 4.4. The temporal change projection graph on the
same data is shown in Figure 8d. From the graph, more anomalies



(a) Original counter projections (b) 5 aggregated measurements (c) 1 aggregated measurement (d) Temporal change projections

Figure 8: Correlation-based radial dimension projection views.

as busty value changes are located, such as Receive, SelfTransmit
and SuccAck. Also, some previous identified dominant counters,
such as ParentChange and Duplicate, actually has very rare extreme
dynamics in short time.

The dimension projection view provides multiple customized
user interactions for better navigation and diagnosis of the data:

• Dimension sorting: Upon clicking one dimension super
node, all the other dimensions are reordered according to the
correlations with the selected dimension. The dimension with
smaller correlation is placed to the further location in the di-
mension circle. The resulting plots will better present the dis-
tribution and temporal trend of the selected dimension value.

• Dimension manipulation: The user can manually drag the
dimension super node to reorder it with another dimension.
In this way, projection graph with better customization can be
created for user’s specific scenario. The user could also delete
the existing dimension node or add them back to simplify the
projection graph.

• Drill-in to values: The user can hover or select one data plot
to access the numerical multi-dimensional data value. Each
dimension value is shown as one edge connecting the data
plot to the corresponding dimension node. Both the label and
the edge thickness indicate the value.

5.4 Discussion
SAVE introduces three novel visualizations to illustrate the multi-
facet sensor data. We further show here, compared to their alter-
native designs, the visualizations of SAVE perform much better to
reveal anomalies within the data.

One standard visualization of the dimension correlations would
be the correlation matrix [11]. In the matrix, both the columns and
the rows represent the list of dimensions. The correlation value be-
tween any two dimensions is color-coded to the cell at the intersec-
tion of the corresponding row and column. This correlation matrix
is equivalent to the correlation graph in SAVE, however, is less in-
formative and intuitive for our case. In the GreenOrbs scenario, the
number of varying sensor data dimensions in the correlation graph
reaches up to 13 in average, the number of dimension correlations
larger than 0.1 sums up to 40 in average and will be much smaller if
we set the correlation threshold to 0.5 to only reveal the significant
correlations. Based on researches in [30], for such small graphs
with sparse connections, the node-link representation performs bet-
ter than the matrix visualization in most graph visualization tasks.

The tabular representation would be an alternative to the dimen-
sion projection view on the multi-dimensional sensor data. A stan-
dard design assigns the sensor dimensions to the columns of the
table and the sensor nodes to the rows. In our scenario, the sensor
data in one measurement cycle will lead to a table with 25 columns
and more than 300 rows. Such a large table with numeric value
in each cell is hard to interpret and detect anomalies. To track the

trends in a full day, 144 such tables need to be created and com-
pared. Comparatively, in our dimension projection view design,
each multi-dimensional value is reduced to a single point and the
points of the same node are connected together to show the tempo-
ral trends. Although still several thousands of points are rendered in
a view and lead to visual clutter, the few abnormal measurements,
which show significant bias in certain dimensions, will be placed
far from the center of the view and are identifiable by the user.

6 EVALUATION

We have deployed the SAVE system to the GreenOrbs site to help
the sensor network developers and administrators better operate the
network. Through several period trials, the operators found the sys-
tem to be quite good in identifying potential network anomalies.
Below we give an detailed case demonstrating the usage of SAVE
in the diagnose of salient link failures. We also report the initial
feedbacks from domain users.

6.1 A Case on Sensor Failure Diagnosis

Consider John, the GreenOrbs system scientist, who was analyzing
a one-day data collection from GreenOrbs sensor network deploy-
ment. His task was to investigate the data to find out the poten-
tial failed sensor nodes, and if possible discover the root cause of
such failures. After preprocessing the data with SAVE, he started
by selecting the data set from the afternoon, because he could in-
fer some issues there from the changing size of the temporal data.
Upon John’s operation, an overview of the sensor data from after-
noon was composed by SAVE, as depicted in Figure 9a, showing
both the network topology and the sensor counter value dynamics.
John quickly identified that there were several spatiotemporal out-
liers in the sensor counter projection view, compared with the other
sensors and the other time points. With his extensive knowledge on
GreenOrbs deployment, he first selected the data plot most close to
NoParent dimension node (shown in Figure 9a) since this symptom
told that the sensor could not find a parent node as next hop in its
transmissions and generally led to serious routing problems. From
the bottom-right details panel, he learned that it was sensor node
543 and indeed it experienced a burst in NoParent value.

John found from the scented time slider that there was a blank
time period just corresponding to the NoParent burst, when no
packet was successfully transmitted to the sink node for recording.
He then refined the time slider to the exact time range containing
such temporal anomalies. SAVE returned the data view as in Figure
9b. John went to the details by checking the correlation graph view
of sensor 543. He filtered out some low-strength correlations with
the slider. It turned out that the most significant correlation changes
from the normal case included: NoParent which has increased cor-
relations with TaskSendFail and TaskEXe; TaskPost which has de-
creased correlations with the latter two counters. Expanding these
four counter values in the details panel, his hypothesis was further
validated that due to the trouble in finding the routing parent, a por-
tion of tasks issued by sensor 543 finally failed.



(a) Locate the NoParent anomaly (b) Drill-down to a node and its dimensions (c) Trace up to the suspected parent node

Figure 9: Link failure diagnosis: the user starts by locating the NoParent anomaly in node 543 (Figure (a)), drills down to the node and
abnormal time range to show the topology, dimension and correlations (Figure (b)), traces up to the suspected ancestral node 401 for in-situ
analysis (Figure (c)), finally validates node 457 to be normal and concludes with the link failure between node 401 and 457 (Figure 10).

However, with SAVE, John continued his diagnosis in the faith
that the root cause of this symptom may not be sensor 543, because
he found in the egocentric topology graph that sensor 543 did not
have multiple parents in this time period. Actually if it were the
failure in its best routing path to the sink, the symptom would have
been similar since it took some time for the ETX-based routing
scheme to converge to the new path, before which all the packets
may be dropped. With this idea, he turned to click on the most
suspected node 401 in the egocentric topology graph which had
two routing paths during this time period. Figure 9c showed the
returned view centric to the new node. Through the delta correla-
tion graphs, John further detailed the Duplicate, ParentChange and
TransmitNoAckRetransmit in the right charts, which are anomaly
identifiers compared with the other status counters such as Trans-
mit and TaskPost. The juxtaposing curve graphs proved that node
401 had both parent change and duplicate packet, also most of its
transmissions are not ACKed. From the transmitted packet trends,
it could be inferred that due to its sending failures, its child sen-
sor nodes did not send packet up anymore during the blank period
before it found another good path directly through sensor 467.

However, there exists another possibility that its previous parent
– sensor 457 failed, which led to the similar symptom. To validate
that, John clicked on sensor 457 in the egocentric graph view and
got result in Figure 10. To validate its normality, he also switched
the topology graph to flat mode where only self-initiated packets
were visualized. Through the graph, he found that there was no
problem with sensor 457: the periodical reporting packets, the rout-
ing path, the data correlations and the TaskPost vs. TaskEXe effect
did not show major fluctuations. Finally, John concluded that the
simple NoParent symptom of node 543 actually traced upward to
the link failure between node 401 and 457.

6.2 User Feedback

During the period of deployment, the domain users provided us a lot
of valuable feedbacks for SAVE on the useability, functionality and
scalability of the tool. The most attractive features of SAVE in their
opinion are the user-friendly interfaces that present the data and the
practical function to drill down to a fault’s root cause in a visual
manner. Previously, most of their diagnostic tools simply focus on
detecting certain types of faults, with little or no illustration of the
source data for the potential diagnosis of another type of fault. What
they liked most is the dimension projection view that could present
the distribution of all the dimensions in a single view, especially
the interaction to show the detailed values upon hovering the plot.
They are positive to the TEM graph view for the intuitive radial

Figure 10: Validate the health of the parent node.

way to describe the topology, although they do need some time and
tutorials to understand the solution.

The users suggested several improvements to the tool for our fu-
ture work. In their daily jobs, a basic requirement is to check the
status of the system regularly and report on demand. It will be quite
helpful if SAVE can provide a simpler view to automatically report
the faults that can be detected routinely. They also mentioned the
data quality issue. The current visualizations in SAVE are mostly
over processed data, assuming the correct data transformation from
the raw sensor data. How to visualize the anomalies raised due to
the low sensor data quality, which is quite common in reality, is still
a open question. One user with good visualization experience sug-
gested to consider the radar chart as an alternative to the dimension
projection view. Another wanted a query box to search the sensor
node by ID to locate it in the TEM graph.

7 CONCLUSION

In this paper, we have presented SAVE, a visual analytics system
that provides a new way for operators and administrators to iden-
tify sensor network data patterns, diagnose potential failures, and
locate root causes of these failures in a user-friendly and interac-
tive manner. In designing SAVE, we have developed several novel
visualizations based on generic anomaly detection methods, for ef-
fective representation of the dynamic high-dimensional sensor data.
Through deployments and case study with a real-world sensor net-
work system, we demonstrate that SAVE is able to save great hu-
man efforts and optimize their exploratory analysis process in con-
ducting the sensor network diagnosis task.
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