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ABSTRACT | Social network analysis (SNA) has been a research

focus in multiple disciplines for decades, including sociology,

healthcare, business management, etc. Traditional SNA re-

searches concern more human and social science aspectsV

trying to undermine the real relationship of people and the

impacts of these relationships. While online social networks

have become popular in recent years, social media analysis,

especially from the viewpoint of computer scientists, is usually

limited to the aspects of people’s behavior on specific websites

and thus are considered not necessarily related to the day-to-

day people’s behavior and relationships. We conduct research

to bridge the gap between social scientists and computer

scientists by exploring the multifacet existing social networks

in organizations that provide better insights on how people

interact with each other in their professional life. We describe a

comprehensive study on the challenges and solutions of mining

and analyzing existing social networks in enterprise. Several

aspects are considered, including system issues; privacy laws;

the economic value of social networks; people’s behavior

modeling including channel, culture, and social inference;

social network visualization in large-scale organization; and

graph query and mining. The study is based on an SNA tool

(SmallBlue) that was designed to overcome practical challenges

and is based on the data collected in a global organization of

more than 400 000 employees in more than 100 countries.

KEYWORDS | Atlas; behavior analysis; computational social

science; enterprise; graph analysis; large-scale network;

organization; SmallBlue; social capital; social network analysis

(SNA); social network visualization

I . INTRODUCTION

In recent years, we have witnessed a drastic uptick in the

growth of information. With the recent advance of social
media and the growing use of social networking tools,

organizations are increasingly interested in understanding

how individuals, teams, and organizations harvest value

from their social networks. As estimated in 2006, the

amount of digital information created, captured, and

replicated is 161 billion GB, about three million times the

information in all the books ever written [12]. Thus, the

simultaneous explosion of social media, knowledge man-
agement, and networking tools is not a mere coincidence,

as these technologies have played an important role in

sharing and disseminating the vast amount of information

recently created. However, before formulating network

strategies on how one leverages social networks to achieve

superior outcomes, it is crucial to understand how and why

networks create advantages. It should be also noted that a

major difference of social network analysis (SNA) in en-
terprise and in online social media is its stronger interest

in finding the Bactual[ social networks and productivity

and security impacts rather than the friending networks.

Drawing from the field of economic sociology, social

network researchers have long predicted that certain

network positions are more advantageous than others. One

particular network that has perceived a tremendous

amount of attention is structural holes. Actors spanning
multiple structural holes are theorized to have more

information and control advantage than their peers. For

example, bankers with structurally diverse networks are
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more likely to be recognized as top performers [7].
Similarly, employees in research and development posi-

tions maintaining diverse contacts outside the team are

more productive than their peers [32]. Interestingly,

findings in structural holes transcend beyond individual

levels. Projects, teams, and firms that span structural holes

are also correlated with higher work performance. McEvily

and Zaheer find greater access to competitive ideas when

firms have access to nonredundant sources of advice
beyond the firm [25]. Stuart and Podolny show that firms

are more likely to create innovative products when they

establish alliances with organizations outside their own

technical area [37]. Though these studies are largely

correlations, the results collectively show that structural

holes seem to affect performance regardless of the setting,

the industry, or the level of analysis.

SNA has been an important scientific research focus in
management, sociology, and healthcare for decades. How-

ever, traditional SNA relied heavily on manual methods,

such as questionnaires and interviews, to construct social

networks. The results are usually static and the scope has

been limited. Today, workers frequently interact digitally.

Because of the limitation of meaningful data acquisition,

especially from academics, more systematic ongoing large-

scale researches are still waiting to be done to leverage the
ample data that are created by people’s interactions, such

as e-mail, call logs, text messaging, document repositories,

and web 2.0 tools in organizations. It is very difficult to

conduct large-scale cross-modality or multimodality anal-

ysis, e.g., examining how personal network structures

affect revenue. This gap is problematic, because the

literature on organizational networks suffers from the

same deficits that much of the social network literature
does. It has to focus on small, static networks, because

electronic traces reside in heterogeneous places.

In most countries, employee data generated through

company assets belong to the company. Company, as a

legal identity, is obligated to the data generated by its

employees and thus has strong legitimate needs to collect

and store all work-related data. Employees are supposedly

not allowed to use the company assets for personal use.
However, it is common that employees browse the Inter-

net and receive/send personal e-mails using company

computers and networks. Privacy law, telecommunication

law, and labor law in many countries prohibit the collec-

tion, aggregation, and use of such data that reside in scat-

tered servers.

SmallBlue went live in 2006 for enterprise collabora-

tions [10], [23] and is the first major system that overcame
the challenges and paves way to scientific insight for large-

scale dynamic SNA through continuous multimodality data

acquisition. SmallBlue has been deployed in more than

70 countries to quantitatively infer the social networks of

400 000 employees within IBM organization. We have

deployed 15 000 social sensors in volunteers’ machines to

gather, crawl, and mine more than 25 million messages,

including content and properties of individual e-mails and
instant message (IM) communications. Here, an important

solution is to gather data from users, not servers, in order to

be compliant to privacy laws, and it is important to get

explicit consents. Furthermore, we also gathered infor-

mation such as the organizational hierarchical structure,

project and role assignment, employee performance mea-

surement, personal and project revenue, etc. Except the

small-scale studies based on surveys, there was no precedent
in literature being able to link these data involving all three

aspects of capital: financial capital, human capital, and social
capital. Mining Bexisting[ social networks in organizations

can be used for various applications such as expertise and

knowledge search, social proximity and collaboration, social

recommendations, marketing, and cybersecurity. SmallBlue
was originally used for global collaborations of enterprise

employees [23], which requires solving the issues of data
gathering, privacy laws, structure and economic analysis,

culture analysis, and visualization. Since 2010, it has been

extended to accommodate other applications such as in-

formation browsing, cybersecurity and data leakage detec-

tion, anomaly detection, and content recommendation.

These applications require analysis and infrastructure for

large graph storage, mining, and visualization.

This paper describes and provides overviews of the
various aspects that an enterprise SNA system needs to

consider in practice. It is organized as follows. First, in

Section II, we introduce the data we collected in orga-

nization and the data privacy laws that guide us to the

system design. We show the guidelines that are usually

needed for enterprise to collect data about employees and

the required balance between company’s goals and em-

ployee’s privacy. In Section III, we describe a few studies
on economic studies of social network impacts toward

employee performance. Specially, we will report on a new

study of the financial impact of social media tool, such as

SmallBlue, in enterprise. In [48], we reported that adding a

person in one’s practical social network,1 on average, con-

tributes to additional $948 annual revenue to enterprise.

People with strong e-mail ties with a manager, or a more

diverse circle of correspondents, enjoyed greater financial
success than those who were more aloof. Teams with an

even mix of genders also performed well financially. Indi-

viduals have more diverse networks and thus have more

people who are reachable within two social steps (i.e., your

friends’ friends’ friends), which is valuable. Too intensive

communications with the same people have a negative

impact, perhaps because of the repetitive redundant infor-

mation exchange. We also discovered that the common
expression of Btoo many cooks spoil the broth[ really is

1Note that the theoretical cognitive limit of the number of people
with whom an individual can maintain stable social relationships is
bounded by a commonly used value of 150, which is usually called
Dunbar’s number [9]. This upper bound is clearly observed in our data set,
while only one out of more than 15 000 people we studied exceeds this
bound, and about 87% of people are not maintaining stable social
relationships of more than 100.
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trueVwith less success attributed to projects with too

many managers.

Channel, culture, and influence issues in people

relationships are also of strong interest in global organiza-

tions. We model the dynamic and evolutionary people’s

relationships as multilayer networks. Section IV describes

how the layers of people’s behavior can be considered as
graphical models, including a person’s networks, char-

acteristics of network edges between a pair of people, and

the dynamic graph representation of the intrinsic network

of a person. We will also show some new analyses on

culture aspects of social networks. Section V describes

several of our network visualization tools, including

visualization of large-scale networks based on hierarchical

clustering. In Section VI, we will address the next step
applications of SNA in graph mining. We will discuss

future directions and conclusions in Section VII. Note

that, although a commercial version of SmallBlueVIBM
AtlasVhas been deployed in several global enterprises, the

empirical data analyses reported in this paper are limited

to our internal deployment of SmallBlue, because data in

other companies are not accessible.

II . DATA ACQUISITION AND
PRIVACY ISSUES

Fig. 1(a) describes the fundamental structure of our

system. We implemented several methods to collect

various aspects of people’s activities in enterprise, includ-

ing: 1) social sensors; 2) clickstream capture; 3) feed

subscriptions, and 4) database access. Then, we conducted

three types of analysis: graph, behavior, and content

semantics. Various applications such as expertise search,

people and content recommendation, social search, social

path access, etc., are some of the sample applications.

A. Data Acquisition
Social sensors [23] are based on a distributed front-end

analysis mechanism that is installed in individual volun-

teer’s machines. Its usage is twofold. First, this mechanism

can distribute the computational workload by placing first
level of data gathering and feature extractions. Second, this

is an important mechanism for privacy compliance. In

several countries, it is illegal to conduct data analysis

within the communication channel. Communication

providers cannot process data for the purpose other than

providing communication services. Social sensors solve

this legal issue by processing the copy of the data that are

stored in an individual’s computer, instead of gathering
data from communication servers. This mechanism can

resolve several legal challenges. Furthermore, via distrib-

uted sensors, our system can distribute the first level of

feature extraction functions of content analysis such as

stop word removal, stemming, one-gram and bi-gram

statistics, etc., in an individual’s machine to avoid the

liability of storing the original communication content in a

Fig. 1. System for SNA in enterprise: (a) flowchart, (b) generating tripartite relationship networks via data mining.
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centralized server. Many features were designed to protect
the human rights on privacy and free speech.

Clickstream capturers were implemented and embed-

ded in several enterprise webpages to capture users’ web

browsing and clickthroughs inside enterprise. With this

mechanism, the server captures information directly

through users’ browser, which sends a small packet to

the server for each user click. Feed subscription is used for

getting user data that are provided from the service
provider via JSON or ATOM feeds. It includes the server

logs of user behaviors as well as the server data on the

content. Database access is also included because some of

the user activities are conducted through traditional

databases without going through the Web.

Table 1 shows the data we have collected in our en-

terprise. We generate tripartie social information net-

works in organization, as shown in Fig. 1(b). Several
different types of networks are generated: the dynamic

and evolutionary relationship network captured from

communications, the relationship of documents that are

captured via the content similarity as well as linkage

generated via common authors, readers, etc. (such as

collaborative filtering), and the term/topic networks that
are generated by people’s search terms in session, terms

used in a communication, etc. Afterwards, the system

conducts graph analysis, behavior analysis, and semantic

analysis.

A key issue of protecting privacy is to detach the

personal identifiable information from the collected data,

if any analysis is done without the explicit personal con-

sent. Sensitive data need to be hashed. Furthermore, con-
tent collection of e-mails and IMs needs to avoid capturing

the original sentences which can be deanonymized, in

comparison to the statistics of one-gram or bi-gram fre-

quencies. Users also need to be able to set up controls on

what/when contents should not be captured and have the

right to modify any incorrect inference. Section II-B will

describe the key issues about the privacy law. Note that for

some specific types of sensitive information, such as health
histories used in healthcare industry, a stronger protection

based on cryptography is required. A new research thread is

merging, based on the end-to-end encrypted domain data

mining mechanism to protect sensitive information using

full-homomorphism cryptography while allowing data

mining applications such as recommendations without

decryption [34]. That method can prevent system owners

from accessing the content and thus provide strongest
protection to privacy and is better immune to system

cyberattacks.

B. Privacy Laws
Privacy is a fundamental human right, as described in

the United Nations Universal Declaration of Human

Rights in 1948. Article 12 specifies:

BNo one shall be subjected to arbitrary interfer-

ence with his privacy, family, home or correspon-

dence, nor to attacks upon his honor and reputation.

Everyone has the right to the protection of the law

against such inference or attacks.[A fundamental

element of privacy is data privacy, the ability to

control one’s personal information (PI), where PI is

defined as any information that relates to a living
individual who can be identified from that data, or

from that data plus other information which is in

possession of, or is likely to come in possession of

the data controller. Data-privacy-related legislation

varies widely across the world, a critical legislative

element being the European Union (EU) Personal

Data Protection Directive 95/46/EC, where there is

the added complication of interpretation and en-
forcement of the legislation varying in each of the

27 member states. Fig. 2 shows the current status

of privacy laws worldwide.

In an organizational setting, other factors related to

employment legislation also had to be considered. The

employer/employee relationship can compromise the

Table 1 Data Description
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ability to gain free and informed consent of participants in

some countries. There are strict limitations around, and in

some countries (e.g., Germany and Austria), prohibitions

on employee monitoring at work. Together these mean

that social software features that present few or no issues
in an Internet setting can present significant issues in an

enterprise setting [36].

In order to make the social network mining system a

practical and valid application in a global organization,

several aspects of privacy had to be considered. The first

was the maturity of the organization with respect to

privacy, in terms of privacy polices and the ability of the

organization to accommodate the processing and global
transfer of data in line with applicable legislation. The

second was to design the platform so that the different

legislative and privacy related requirements of applicable

geographies can be accommodated. The system was de-

signed to have a flexible set of user types with differing

characteristics for data capture, sources, processing, and

application use. These were made configurable at a num-

ber of different levels (e.g., country, division) so a privacy
policy and organization-segment-driven approach to im-

plementation is possible. The third was to adopt the EU

data protection principles [16] of notification, purpose, con-
sent, access, information standards, and security, as shown in

Table 2, into the design of the platform, the result being

the appropriate balance of maximum utilization of data

with the ability for users to fully control their participation

level, visibility in the system, as well as the data used to
represent them in the system.

From a practical aspect, the system had to be approved

by the data privacy officers responsible for each country

with applicable legislation in addition to labor union

(works council) approval in some EU countries. Engaging

with the privacy and legal departments early on was cri-

tical, with some of the configurable features required to

protect the privacy being the product of a collaborative

design process with privacy practitioners making Small-
Blue, to our knowledge, the first system in literature to be

legally deployed globally for enterprise SNA and a unique

privacy preserving system.

III . VALUE OF SOCIAL NETWORK

SmallBlue allows us to track how individuals’ networks

evolve over time. To evaluate the performance implica-

tions of social networks, we also obtained the performance

Fig. 2. Worldwide privacy laws. In Europe, most countries have also derived their own privacy law based on the EU data protection directive.

Table 2 EU Data Protection Principle, Adopted by the SmallBlue System

Design
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metrics of these individuals. The longitudinal nature of the
analyses enables us to explore the potential causal linkage

between social networks and performance and observe the

micromechanisms of how networks drive productivity. The

detailed recording of electronic communication archives

also helps reducing the potential biases derived from using

surveys and self-reports. Often, networks constructed

using self-reports are subject to memory errors and related

biases. For example, recent interactions are more mem-
orable than distant interactions. SmallBlue alleviates this

type of error because each electronic communication

exchange is recorded with a timestamp and the content of

these messages is also encoded and stored in archives. The

system has a perfect memory of all the electronic commu-

nication records. Social networks derived from such data

are thus rarely subject to memory errors or recall biases

that often mire the validity of survey instruments in
earlier network studies [24]. However, social networks

instantiated using electronic communications are also not

always a perfect representation of a person’s overall net-

work. After all, face-to-face interactions, especially im-

promptu encounters around water coolers, cannot be

recorded easily, and accordingly, networks generated

from electronic communications do not include im-

promptu face-to-face interactions, thus potentially biasing
the real social network of individuals. Furthermore, what

constitutes a tie also differs in the online world as op-

posed to the offline world. When two people e-mail each

other once, it does not necessarily mean that a real net-

work tie exists between the two of them. They may not

ever communicate again. Thus, we have to be extremely

careful in determining what constitutes a tie in electronic

communications.
To achieve this goal, we tested various criteria to best

represent a tie between two people and matched the re-

sults against a survey we conducted about people’s rela-

tionships and interactions. We find that a network tie

exists between two individuals only when they have com-

municated enough to pass a certain communication

threshold. This threshold may differ across individuals

because it incorporates the propensity to use electronic
communication in the calculation. If a person who e-mails

frequently requires a higher threshold to register a tie than

someone who rarely uses e-mail

X0i;j ¼
0; Xi;j � 3þ logðXi;jÞ
Xi;j; otherwise.

�

The above formulation indicates that a tie exists

between people only when they have communicated on

at least three occasions. The tie strength is approximated

by the log of total electronic communications between

persons i and j, i.e., log X0i;j. We calculated a normalized tie

strength pi;j, which presents the faction of the network

strength i has devoted to j, pi;j. It is then used to calculate
the structural holes [6]

pi;j ¼
log X0i;j

� �
P

k log X0i;k

� �

Structural Holesj ¼ 1�
X

j

pi;j þ
X

q

pi;qpq;j

 !2

; q 6¼ i; j:

Structural holes measure the degree to which a per-
son’s network is redundant. If a person’s social connec-

tions are all connected with each other, then this person

has a maximally constrained network and all her contacts

are redundant in the sense that all her friends can access

the same resource she has. The structural holes measure

for this person is very low. However, if a person’s con-

nections are not connected, her structural hole measure

would be high, indicating that her network is not
redundant.

A. Network Effects on Personal Revenues
To leverage the longitudinal nature of our network

data, we created a panel of networks using both three- and

six-month intervals with a sliding window of one month.

We matched these time-varying network data with

consultants’ performance as measured by billable revenue.

We also gathered information about these consultants such

as their gender, division, hierarchy within the firm, seniority,

job role as well as the type of work and the industry these

consultants typically work for. These factors serve as the
control for our econometric analysis to eliminate con-

founding factors such as more senior consultants are more

likely to generate more billable revenue.

We leveraged both random-effect and fixed-effect eco-

nometric models to eliminate many confounding factors

that are unobservable in our data, such as personality traits
or inherent abilities. For example, if certain individuals are

very social and they also happen to be the star performers,
the positive relationship between diverse networks and

performance may be spurious because both are the results

of an underlying personality trait, instead of having a real

causal nexus. Similarly, a person could have a diverse

network because her positions and hierarchical order re-

quire her to reach out to many people. Again, the positive

relationship between performance and network positions

is a result of the person’s inherent job role, as opposed to
network positions actually enabling performance. By eli-

minating these factors using panel data, we greatly reduce

this type of bias in estimating the effect of social networks

on performance. Recording the network change of indi-

viduals over a long period of time (over three years), as we

have done in SmallBlue, allows us to explore how the

change in networks relates to performance.
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We found that certain network characteristics are
highly correlated with performance. Using both random-

effect and fixed-effect models, we found that structural

holes are highly correlated with performance in a statisti-

cally significant way at 5% p-value, after controlling for

seasonal shocks and demographics. Specifically, we found

that one standard deviation of structural holes is associated

with billing $882.4 of additional monthly revenue for the

company. We controlled for seasonal shocks because it is
possible that a person is able to bill more simply because it

is a good market during holiday seasons and her work is in

high demand. Similarly, we controlled for demographics

because economic conditions in a certain region can be

better than in others and consultants residing in those

well-off regions can naturally bill more than others.

We explored how network size affects performance.

We found that each communication exchange in the form
of e-mail, IM, and calendar event has a negligent effect on

performance, and one extra person that communicated has

a modest return on performance. Overall, results indicated

that the network structure rather than the network size or

communication volume dominates the return on perfor-

mance, even after eliminating confounding factors such as

individual abilities, personality traits, positions within the

organization, and seasonality shocks that may bias the
estimates.

B. Network Effects on Projects
We explored the implication of structural holes at the

project level where each node in the network represents a

project and each link in the network represents the com-

munication instances exchanged between the two projects

forming the link. Similar to the findings at the individual
level, project networks that span structural holes are asso-

ciated with positive increases in a project revenue, after

controlling for the total number and the type of people in

each project, temporal and regional shocks such as busi-

ness cycle at various regions, and the line of business the

project is in. We also employed random and fixed-effect

specifications to eliminate other time invariant factors.

Specifically, a one standard deviation of structural holes at
the project level is associated with additional billing of

$776 in revenue.

Interestingly, we found that the number of managers in

projects is positively correlated with the overall project

revenue, probably because more managers may send

positive signals to the client that the firm is staffed with

its best employees for the project. However, the relation-

ship exhibits an inverse-U shape that having too many
managers involved in a project can actually hurt the pro-

ject’s revenue. We studied 1029 consultants (including

66 managers) and 2952 projects in 39 countries from June

2007 to July 2008. The coefficient on quadratic of man-

agers is negative, implying a concave relationship, such

that more managers in a project team are associated with

greater revenue to a point, after which there are dimi-

nishing marginal returns, and then negative returns to

increased number of managers

rev¼�þ �1mgrþ �2mgr2 þ �1factor1 þ � � �
þ �kfactork þ �:

Using linear regression, we got coefficient of �1 being

$2733.9, with the heteroscedasticity-consistent standard

error being $537.5, and �2 being �$682.02 with the stan-

dard error of $215.3. The best fitting curve is shown in

Fig. 3. The result is statistically significant with p-value

G 0:001. Perhaps, lacking a clear leadership role intensifies

internal debates among managers and derails the consul-

tant from making progress. Our interview with consultants
further confirms our hypotheses.

Overall, we show that certain configuration of network

ties can have a positive effect on work performance both at

the individual level and at the project level. These results

inspire us to explore whether social media can play a role

in helping individuals achieve superior work performance.

C. Impact of Social Networking Tool
If social networking tools can facilitate the process of

finding the right resources that are critical to the task at hand,

they could have tremendous implications for organizations,

especially for creating strategies on how to invest and use

these technologies to improve firms’ bottom line.

We studied 2038 anonymized global business consul-

tants for two years. In Fig. 4, we plot the relationship

between individual work performance as measured by

billable revenue and the number of months since the
adoption of SmallBlue. We controlled for factors including

temporal shocks, individual characteristics such as job

roles and hierarchies within the organizations, and the

characteristics of each project such as the line of business

and the region when the project was initiated. After elimi-

nating these confounding factors, we graph the relation-

ship between the time since the adoption of SmallBlue and

Fig. 3. The fitted curve of the revenue versus the number of managers

in a project.
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the work performance of these consultants. The X-axis

labels the number of months since a person has adopted

SmallBlue; the zero value indicates a person has just

adopted SmallBlue; negative values indicate the number of

months before a person has adopted SmallBlue; and posi-
tive values indicate the number of months after a person

has adopted SmallBlue. The Y-axis indicates the extra reve-

nue generated in each month since the adoption. As indi-

cated in the graph, the billable revenue of a person

gradually increases after the person has adopted SmallBlue.

Prior to the adoption, the coefficient estimates range be-

tween $2300 and $3300 in monthly billable revenue. After

the adoption, the coefficient estimates for each month
grow gradually from $2500 to $3600 in the first five

months, and then increase to more than $3600 in the

eighth month. It is important to note that this graph is a

comparison within an individual over time, measuring on

average how a person’s billable revenue has increased over

time since the adoption of SmallBlue.

These results show that networking tools can play a

critical role in facilitating individuals to locate resources
and expertise within the firm. On average, we saw an in-

crease of $584.15 revenue per month (i.e., $5257 in nine

months) for an adopter. As a result, their overall perfor-

mance improved significantly over time, especially after a

few months of adopting the tool. The lagged effect may

come from the fact that it takes time for the newly found

resources to translate into tangible performance metrics.

One caveat is that we use the time since adoption as a way
to proximate use of the tool. Obviously, it is possible that a

person can sign up to use SmallBlue but never actually use

it. In that case, we would expect SmallBlue to have no effect

or a negligent effect on the overall performance for these

people and the overall effect from using SmallBlue would

be downwardly biased. We have been designing and con-

ducting causality studies that will pinpoint the exact effect

of each change and can test the reference groups. We
acknowledge that no strong conclusion can be confirmed

until such rigid social scientific experiments are com-

pleted, which can take up to several years. The fact that we

found a positive relationship between performance and

time since adoption underscores the importance of social

media on work performance. Overall, these results indi-
cate the importance of leveraging social media as an

important corporate strategy to facilitate information-

intensive work.

IV. CHANNEL, CULTURE, AND
SOCIAL INFERENCE

Another aspect of the study is to understand how em-

ployees behave in terms of the channel, culture, and

influence perspectives. In [50], Yang et al. showed the

culture being the most significant factor in shaping per-

ception and behavior via a survey of near 1000 people from

four countries in an organization. For instance, Chinese
and Indian users are more likely to use online social net-

work tools for Q&A, in comparison to the U.S. and U.K.

users. Culture is particularly important for a large organi-

zation that operates globally. Employees from different job

roles, geography, nation, culture, gender, and educational

backgrounds need to work together to achieve common

goals. Understanding these issues is definitely a key to a

successful global collaboration [51].
We first focus on computationally modeling people’s

interaction behavior in an organization as multilayer net-

works, shown in Fig. 5. These models allow us to inves-

tigate how people spread information to achieve their

objectives, such as stronger ties with colleagues and higher

productivity. Based on such understanding, SmallBlue can

then build applications to recommend people/activities to

Fig. 5. Three layers of human behavior in networks. The granularity

increases from the top to the bottom. (a) Complex people networks can

be filtered to multiple personalized relationships (composed of

individuals or communities) for different needs. (b) A relationship is

built through multiple means of interaction between people, tailed to

an individual capabilities. (c) An individual’s capabilities can be

modeled as evolving expertise networks.

Fig. 4. Normalized average monthly revenue increases since the

adoption of SmallBlue.
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improve collaboration, or detect abnormal behavior to en-
sure security.

In complex people networks, an individual usually de-

velops different types of relationships with different sets of

people, and for various objectives. Moreover, to build such

a relationship, the person may leverage multiple means of

interaction, which we call channels, such as e-mail, meet-

ings, friending activities, etc. Therefore, SmallBlue con-

siders three layers of granularity of human behavior in
networks. The coarsest layer considers multiple relation-

ships involving multiple information sources from mul-

tiple friends as well as multiple types of social networks.

The next level considers multichannel communication

methods between two people. In the finest level, we con-

sider a person’s inner interest or expertise represented as

network graphs (e.g., the ExpertiseNet model [35]).

Toward this goal, SmallBlue provides large-scale multi-
faceted data in which people’s behavior can be observed in

multiple different sources in enterprises. In contrast, on

the Internet, it is very difficult to collect comparable mul-

tifaceted activity data of individuals. In particular, it is

extremely challenging to match user ID across different

sites, and most user activity logs have to be anonymized

before they are processed. Therefore, SmallBlue offers a

unique opportunity to study how a people network forms
and changes in multifaceted activities. In this section, we

focus on community and channel level modeling.

A. Channel Level Modeling
People usually use multiple channels to interact with

each other. Their behavior can be different in different
channels. SmallBlue models channel-specific behavior, as

well as cross-channel behavior.

1) Channel-Specific Modeling: Here we describe one such

model: the information spreading model in e-mail. More

specifically, we focus on modeling structural properties of

information spreading trees in which e-mails are for-

warded by users to their contacts. We found, in contrast to

the spreading trees observed in the Internet chain letter
and virus diffusion, the trees in e-mail are brushy and

ultra shallow. The information fans out, but quickly dies

out. Previous models, such as Galton–Watson branching

model [44], which can be used to model Internet chain

letter with selection bias [14], cannot explain such ultra-

shallow depth, or the stage dependency of the branching

factor (i.e., the number of children each node has depends

on the distance from the root). SmallBlue models the dis-
tribution of �, a random variable of the number of each

node’s children. A good model can predict the observed

tree structure (e.g., width and size), if the distribution,

denoted as Pð�Þ, can generate a random tree structure

with similar properties. Let us denote the stage-indepen-

dent distribution of the number of recipients for all the e-

mails being sent as P0ð�Þ. We model the stage-dependent

branching factor distribution as

Pð�jd ¼ 0Þ ¼A 1� ð1� pÞ�ð ÞP0ð�Þ
Pð�jd > 0Þ ¼ P0�Þ

where A is the normalization factor, and p is the proba-

bility that a piece of information is forwarded. P0ð�Þ and p
can be independently measured in the experiments [43].

The correction term for d ¼ 0 means that the original e-

mail with more recipients is more likely to get forwarded,

as there will be more people to make a decision on whether

to pass on the information. This model explains more than

2000 e-mail spreading trees in SmallBlue data very well, as
illustrated in Fig. 6. This indicates that, despite the com-

plexity in real life, the macroscopic structures of informa-

tion spreading processes can be well captured and

explained via simple mechanisms.

2) Cross-Channel Modeling: The way people choose dif-

ferent communication channels reveals their preferences,

either intentionally by context or unintentionally by

Fig. 6. (a) Distributions of depth of the trees. (b) Pð�Þ predicted by our model (solid lines) versus the experiment measure

(scattered squares and circles).

Lin et al. : Social Network Analysis in Enterprise

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2767



culture, education, etc. In a global enterprise, culture plays
important roles. We investigate how culture factor affects

people’s preferences over the multiple channels [51]. To

the best of our knowledge, this is the first large-scale em-

pirical study of cultural differences in terms of social in-

teraction channels in organizational context. We consider

three channels: e-mail, IM, and calendar meetings (coor-

dinated through the format of e-mail). For this analysis, we

select eight countries with a sufficient number of users
(e.g., > 200), including Japan (JP), United Kingdom (UK),

the United States (US), Canada (CA), Germany (DE),

Brazil (BR), India (IN), and China (CN). We also control

confounding variables (e.g., job role and gender) to ensure

that the results of each culture are statistically significant.

We measured the ratios of a user’s contacts that she

communicates using different combinations of the three

channels. A contact is a colleague who she has commu-
nicated with through one of the channels. Fig. 7 shows the

comparisons of the ratios for users in different countries.

Countries such as China and India are more likely to use

IM to communicate with their contacts, whereas Western

countries have very few contacts through IM. Japan is an

exception for Asian countries, as it is the least likely to use

IM. In contrast, JP shows a preference for communicating

through e-mail for most contacts. Comparing calendar
meeting and IM, we see an opposite usage pattern: Western

countries tend to adopt calendar meeting for more con-

tacts. Since the preference might be affected by a person’s

job role, we examined this difference on a controlled group:

business consultants, and we found that the patterns are

consistent. The observed significant cultural differences

echo the inherent cultural characteristics as suggested by

cultural theories [42], and warrant the incorporation of the
culture variable into people’s behavior models.

In Fig. 8, we show the analysis on the sentiment of the

words a person uses in her communications. In this study,

we focus on English communications, since English is the

primary language in which business is conducted by the

company. We use an open source English dictionary of the

positive and negative words and calculate the percentage of

these words that are used in one’s composed e-mails and IMs

[51]. We can see people in most countries fall in a similar

positive/negative ratio. English speaking countries are mostly
more willing to express their feelings, while people in the

United States are more often showing positive sentiments.

We also observed a clear outliner that, in Germany, people

are more willing to express negative sentiments.

B. Community Level Modeling
Users typically interact with different sets of people for

different purposes. In other words, they can participate in

a diverse set of communities where interests/attributes in
each community may be quite different. Users within a

community usually share certain attributes, which makes it

possible to infer one’s interests from her social neighbors

[27]. Such inference can help to improve personalized

services and privacy control. It is, however, challenging to

obtain consistently high-quality results in inferring user

interests from social neighbors [45]. Even in the same

community, especially a weak community, users may still
have diverse attributes [27]. To address this challenge, we

proposed an optimization-based method to exploit the

correlation among multiple attributes of a user, in addition

to the social correlation of an attribute among a group of

users [46]. It first uses social correlation to obtain initial

inference from neighbors. Then, it refines the inference

using attribute correlation to remove less likely attribute

combinations (e.g., Bsocial software[ and BVLSI[).
Given an initial set of attributes A0 inferred based on

social correlation for user i, the method tries to find the

optimal subset A ¼ ha1; . . . ; ani by balancing three con-

straints. First, the total degree of interests on attributes in

A should be maximized. Next, the overall pairwise attri-

bute correlation in A should be maximized. Finally,

smaller size of A should be favored, if everything else is

Fig. 8. Sentiment analysis of the type of content by people in

different countries.

Fig. 7. Relative preferencesVratio of contacts being allocated,

between: IM versus e-mail, calendar meeting versus IM. The chart

contrasts the proportion of contacts reached by two separate

individual communication channels versus proportion reached by both

channels together.
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equal (i.e., Occam’s razor principle). This optimization can

be formulated as a generalized assignment problem, which

is NP-hard [11]. Therefore, we use a greedy approach to

approximating the optimization. Fig. 9 shows that our

method significantly outperforms a previous community

clustering method called mixed membership stochastic
blockmodels (MMSBs) [3] and an inference method only

using social correlation [45]. Currently, our method does

not take into account the temporal evolution of attributes.

We plan to incorporate this factor into our method so that

it can address the changes of people’s attributes over time.

V. VISUALIZATION

Network visualization is the most intuitive way to bring

network analytic results to general users. There is no one-

fit-all network visualization design, as each user may have

a rather specified information need. A famous site

VisualComplexity.com [2] has accumulated hundreds of

network visualizations over diverse network data and

scenario. For quite many cases, the standard node-link
representations are employed; for others, the matrix vi-

sualization is also applied, mainly for networks with dense

connections so as to increase the network readability [13].

We follow this general guideline and design network

visualizations to meet users’ two key requirements:

1) understanding the entire social network within the en-

terprise; and 2) understanding the personal network

subject to the user, a.k.a. the user’s ego network. As the
SmallBlue networks are essentially large and dynamic, we

also develop techniques to transform and interactively

represent such huge and evolving networks.

A. Social Network Visualization
In SmallBlue Net, we depict the fundamental social

network of people in enterprise in the traditional node-

link form, as shown in Fig. 10. The major challenge here is

how to deal with the potential network size up to half a

million nodes. We take a straightforward approach: to fil-

ter the network into a smaller size, so that the network

layouts can be computed in a reasonable time and the
graph complexity can be controlled on a readable scale.

We introduce a two-stage filtering strategy for the vi-

sualization, including a first-stage in-disk query and a

second-stage in-memory filtering. In the query stage, a

search interface is provided, as shown in the upper side of

Fig. 10, which includes the input for subject keywords and

drop box selections for the country site and division of the

company. More search terms such as the category of con-
nections in the network can also be specified in the ad-

vanced search mode. Upon the search, only the network of

people working on these topics and in this country/division

is fetched from the graph database to the SmallBlue Net
visualization engine. In the filtering stage, the nodes in the

queried network are further ranked in memory, typically

by a kind of centrality. The user could manipulate the rank

slider in the right panel of Fig. 10 to show more or less
network information. Highlights of part of the network are

also supported with the interaction toolbox given in the

right panel of Fig. 10. A group of highlighted people can be

selected according to their betweenness centrality, degree

centrality, the degrees to the user querying the network,

and also directly through a name search.

B. Ego Network Visualization
In SmallBlue Ego, the personal social capital man-

agement tool, we present a dynamic ego network view to

help the user access his connectivity to the collaborators,

their profiles, and his ego network evolvements, hence to

increase the user’s social situational awareness in the

enterprise. In its static mode, as shown in Fig. 11, the ego

network visualization is designed as a disk in the back-

ground divided into multiple slices indicating different

Fig. 10. SmallBlue Net visualization showing the subject network and

supporting various filtering functions.
Fig. 9. The performance comparison of our approach with MMSB [3]

and the baseline method [45] in inferring explicit user interests.

Lin et al. : Social Network Analysis in Enterprise

Vol. 100, No. 9, September 2012 | Proceedings of the IEEE 2769



countries or divisions. The current user is placed to the

center of the disk with his direct collaborators scattered

out in slices according to their country/division attributes.

The closer the collaborators are placed to the center, the

stronger they connect to the current user.

The SmallBlue Ego visualization supports a movie

mode [1]. Upon the user’s click on the Bplay[ button, the
user’s ego network in each time period is shown frame by

frame. Staged animations between each of the two conse-

cutive frames are added. In the first stage, the disappearing

collaborators in the current time frame fade out with ani-

mations, then in the second stage, the remaining colla-

borators move to the updated locations from the previous

time frame, and finally in the last stage, the new colla-

borators emerging in the current time will appear and
move to their locations from the center. These animations

work to smooth out the display between frames and help to

keep the user’s visual momentum.

C. Huge Graph Visualization
Although SmallBlue Net is shown to be useful in pre-

senting topic-centric network information, there is still a

need to understand the whole picture of the enterprise

social network, the communities within it, and the inter-
connections and structural holes of the network. The

simplex methods to filter the huge graph into readable size

bring the side effect of losing the overall topology of the

network, and more importantly prohibit the access to net-

work details, which could be critical in the user’s naviga-

tion tasks. In SmallBlue, we introduce a novel technique

called HiMap [33] to more effectively visualize huge graphs

up to millions of nodes. The design goals of HiMap are
fourfold. 1) Each graph view of the network should be

visualized adaptively in a readable manner, easy to be

comprehended, independent with its scale, topology, and

the screen size to display. 2) A suite of navigation methods

should be provided so that it is capable to visualize and

diagnose every detail of the network. 3) Smooth animations

should be presented between any view changes, so as to

keep the user’s momentum [28]. 4) The visualization sys-
tem should run fast enough and keep lightweight to catch

up with the animation speed.

The basic idea is to combine the well-studied hierar-

chical graph clustering algorithm with the interactive

visualization to present the user with a top view of the

network and also allow the user to freely traverse the graph

hierarchy to access the details, quite coherent with the

information visualization mantra: BOverview first, zoom and
filter, then details-on-demand.[ It is divided into two major

stages: the offline data manipulation and the online adap-

tive visualization. The core to the offline data manipu-

lation part is the hierarchical graph clustering module.

Initially, the graph is clustered with the method in [29]

into a binary tree. To obtain balanced hierarchical cluster-

ing structure, we invoke the algorithm recursively until the

predefined maximal tree depth is reached. It is well known
that the online social network possesses a highly clustered

and self-similar community structure. The clustered graph,

which could reveal their built-in hierarchy information, is

one of the best ways to visualize it, let alone providing

semantic abstraction that makes the readable visualization

possible.

A snapshot visualization is given in Fig. 12. The clusters

are drawn as circles without an explicit frame, and back-
ground color for each cluster is painted from the center in

a descending lightness along the radius to indicate its

boundary. The clusters not capable of showing their inter-

nal structure due to the screen constraints are drawn as a

much smaller circle without any subclusters (nodes) in it.

When the subcluster only represents one leaf node, it is

shown as a people icon instead. The background color of

the cluster is set according to its depth in the entire tree
structure, rendering darker for the deeper depth. By de-

fault, the edges between any two leaf nodes are drawn in

the view by the straight line. To reduce the visual clutter

commonly found in densely connected graphs, we also

introduce two edge bundling methods: the geometric edge

bundling and the hierarchical edge bundling. The geom-

etric bundling implements the solution similar to [8]. It

works by carefully selecting some control points in the
graph and forcing all the edges to traverse them. The other

method bundles all the edges between any two upper

hierarchy cluster together and only shows the intraedges

inside each cluster for the lower hierarchy subclusters. We

have implemented three kinds of zooming operations: the

hierarchical zooming that navigates through different hie-

rarchies, the semantic zooming that focuses the view on a

Fig. 11. SmallBlue Ego visualization for social dynamics of the

SmallBlue user.
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smaller/larger portion of the previous graph and adaptively

reload graph data, and the traditional geometric zooming

operation. To maintain visual momentum, we have also

designed customized animations for each interaction upon

view changes.
We also used several network visualization functions,

such as the information flow modeling in complex net-

works [21], in which we proposed to model user node

transitions as susceptible–active–informed (SAI) states

and edge transitions as a Markov model with susceptible–

dormant–active–removed (SDAR) stages. We can then

predict information flows in a social network. Demos of

network visualizations can be found in [1].

VI. NETWORK GRAPH MINING

In enterprise, relationships of entities can be mined from

various data sources and form networks of millions or bil-
lions of nodes and edges. Networks of people can reach

millions, if all internal and external contacts are includes.

When information content represents the node of a graph,

then it is very easy to achieve graphs of billions of nodes

and edges. In a newer version of SmallBlue, we addressed

the scalability issue mainly through two complementary

efforts: 1) system supportVwe built a general and scalable

graph mining foundation that can support a variety of
core operations on large graphs, based on Hadoop,

stream processing system, and/or data warehouses; and

2) algorithms designVwe designed scalable algorithms spe-

cific applications, such as anomaly detection and diversity

enhancement.

A. GBase: Graph Database for Hadoop Framework
Numerous applications (e.g., neighborhood search,

PageRank, subgraphs, proximity, etc.) are common to net-

work graph analysts. Our goal is to develop a general and

scalable graph mining framework for SmallBlue to support

a variety of common core operations on large graphs. The

design objective is threefold: 1) efficiently store and man-

age huge graphs in parallel, distributed settings to answer

graph queries efficiently; 2) define common, core algo-

rithms to satisfy various graph applications; and 3) exploit
the efficient storage and general algorithms to execute

queries efficiently.

Large graphs cannot be fit in main memory or at least

the disk of a single workstation, on which most of existing

graph algorithms have been built. Thus, we need to rethink

those algorithms, and to develop scalable, parallel ones, to

manage graphs that span terabytes and beyond. Moreover,

these methods have to be scalable with respect to indexing
time, storage cost, as well as online query time.

The second challenge lies in the application heteroge-
neity. Different graph applications require different kinds

of inputs as well as (seemingly) different types of opera-

tions on the graphs. As a result, most, if not all, of the

existing graph indexing techniques have to restrict them-

selves to a particular type of applications. Here, the goal is

to find a set of popular, Bcore[ graph operations, that most
applications require.

We designed GBase [17] to address the above chal-

lenges. As shown in Fig. 13, first, we propose to index large

graphs on homogeneous block levels. By exploring this

community-like property that exists in many real graphs,

we can largely reduce the storage cost. In addition, by

organizing the graph in such a blockwise structure, it also

helps with online query response. Second, to handle the
challenge of application heterogeneity, we proposed a uni-

fied query execution engine which unifies the different

types of queries on graphs by generalized matrix–vector

multiplications. There are two key advantages of the pro-

posed graph management system: 1) it is scalable in the

sense that it is linear in indexing and querying time; and

2) it is general in the sense that it can support a broad

range of queries, spanning from node-level queries to the
graph-level query, with the community-level query in the

middle.

Table 3 summarizes the queries (the first column) that

are supported by our graph mining system. These queries

construct the main building blocks for a variety of im-

portant graph applications (Table 3). For example, the

PageRank [30] query provides a natural ranking function

Fig. 12. SmallBlue huge graph visualization. Zooming operation:

(a) initial view, the blue frame shows the virtual zoom-in window;

(b) the view after geometric zoom-in; the items are signified; (c) the

view after semantic zoom-in, more items are visualized adaptively;

and (d) the view after drilling in the cluster in the left of (a).
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to find important nodes on graphs. The diversity of random

walk with restart (RWR) [41] scores among the neighbor-

hood of a given edge/node is a strong indicator of abnor-

mality of that node/edge [38]. The ratio between the

number of edges (or the summation of edge weights) and

the number of nodes within the egonet can help find ab-

normal nodes on weighted graphs [4]. The K-cores and
cross edges can be used for visualization and finding com-

munities in large graphs [5].

B. Scalable Algorithms Design: Case Studies
Orthogonal to the general graph mining system, we also

designed application-specific scalable algorithms. Here, we

present two case studies: 1) nonnegative residual matrix

factorization for interpretable graph anomaly detection

[40]; and 2) diversified ranking on large graphs [39].

1) Nonnegative Residual Matrix Factorization: Matrix fac-

torization (i.e., to decompose the adjacency matrix of the

graph by the multiplication between two low-rank ma-
trices plus a residual matrix) is powerful to find graph

patterns. For instance, the two low-rank matrices often

capture the community structure of the graph; and the

residual matrix is often a good indicator for anomalies on

graphs. A new application of SmallBlue aims at finding

anomalies in enterprise. In this scenario, matrix factor-

ization is important.

Among others, it is now widely recognized that non-
negativity is a highly desirable property for interpretation

since negative values are usually hard to interpret. For

example, for the task of community detection, the so-

called nonnegative matrix factorization often leads to part-

based, or subcommunity-based decomposition [15], [20].

However, most, if not all, of these methods impose the

nonnegativity constrain on the two low-rank matrices.

Consequently, these existing methods are tailored for the
task of community detection. It is not clear how to improve

the interpretation for the task of anomaly detection from

the algorithmic aspect. Can we impose similar constraints

(e.g., nonnegativity) on the residual matrix to improve the

interpretation for graph anomaly detection?

In response to such challenges, we proposed a new

matrix factorization in [40]. While the exact/global

optimal solution is hard to obtain due to the nonconvexity
of the problem, we proposed an efficient approximate

Table 3 Applications of Our Graph Mining System. Notice That it Can

Support a Wide Range of Both Global (Top Three Rows) and Targeted

(Bottom Five Rows With Bold Fonts) Queries With Applications, for

Example, in Browsing [22], [30], [41], Ranking [30], [41], Finding

Communities [19], [22], Anomaly Detection [4], [18], [19], [38], and

Visualization [5], [22]

Fig. 13. Overall framework of GBase. 1) Indexing Stage: Raw graph is clustered and divided into compressed blocks. 2) Query Stage: Global and

targeted queries from various graph applications are handled by a unified query execution engine.
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algorithm. The core idea is to recursively find a rank-1
approximation for the current residual matrix; in the

meanwhile, it requires that the new residual matrix is

always nonnegative. One major advantage of this method

is the scalabilityVit enjoys linear complexity with re-

spect to the size of the graph in both time and space

cost. More specifically, our method solves the following

optimization problem:

arg minF;G

X
i;j;Aði;jÞ>0

Aði; jÞ � Fði; :ÞGð:; jÞð Þ2

s.t. for all Aði; jÞ > 0 :

Fði; :ÞGð:; jÞ � Aði; jÞ

where F and G are the two low-rank matrices, and A is

the adjacency matrix for the graph.

2) Diversified Ranking on Networks: Diversified ranking

on graphs is a key factor to address the uncertainty and

ambiguity in an information need, and to cover the dif-

ferent aspects of the information need [31]. A recent study
shows that diversity is also positively associated with per-

sonnel performance and job retention rate in a large

organization [47].

Two important questions remain open. The first chal-

lenge is the measure: For a given top-k ranking list, how

can we quantify its goodness? Intuitively, a good top-k
ranking list should capture both the relevance and the

diversity. In an enterprise setting, given a task which ty-
pically requires a set of different skills, if we want to form a

team of experts, not only should the people in the team

have relevant skills, but also they should somehow be

Bdifferent[ from each other so that the whole team can

benefit from the diversified, complementary knowledge

and social capital. However, there does not exist such a

goodness measure for the graph data in the literature. The

second challenge lies in the algorithmic aspect: How can
we find an optimal, or near-optimal, top-k ranking list that

maximizes the goodness measure?

Bringing diversity into the design objective implies

that we need to optimize on the set level. In other

words, the objective function for a subset of nodes is

usually not equal to the sum of objective functions of

each individual node. It is usually very hard to perform

such set-level optimization. For instance, a straightfor-
ward method would need exponential enumerations to

find the exact optimal solution, which is infeasible even for

medium size graphs. This, together with the fact that real

graphs are often of large size, reaching billions of nodes

and edges, poses the challenge for the optimization

algorithm: How can we find a near-optimal solution in a

scalable way?

We addressed these challenges from an optimization
point of view in [39] by a new goodness measure

fðSÞ ¼ 2
X
i2S

rðiÞ �
X
i;j2S

Bði; jÞrðjÞ

where S is the subset of the nodes in the ranking list;

rðiÞ is the ranking score for the node i; and B is the

personalized adjacency matrix for the query. It intuitively

captures both 1) the relevance between each individual

node in the ranking list and the query node; and 2) the
diversity among different nodes in the ranking list. The

core idea of our algorithm is to explore the so-called sub-

modular (i.e., diminishing return) property of the good-

ness measure.

In this section, we have introduced the use of graph

mining algorithms for enterprise uses such as browsing,

ranking, community finding, security, and visualization.

Specifically, we introduced two use cases that show more
details in anomaly detection and diversified ranking that

are especially useful for cybersecurity and personalized

search and recommendation.

VII. CONCLUSION

We have discussed various challenges and solutions for

conducting SNA in enterprise. We considered multimoda-

lity aspects of people relationships, including social aspect,

financial aspect, and human property aspect. We also

discussed various system challenges such as large-scale

graph mining and large-scale network visualization. This
paper focused on the fundamental research and system

issues. It did not discuss the various applications of enter-

prise SNA such as collaboration (e.g., enterprise location,

social proximity access, social recommendation, social

search, etc.), cybsersecurity (e.g., anomaly detection,

fraud detection, etc.), and commerce (e.g., social market-

ing and selling).

On the scientific aspect, there are many unsolved
issues. For instance, despite having collected the largest

enterprise data set in literature for employee interactions,

we still have not obtained the teleconference data (al-

though it can be approximated by the calendar info) and

the face-to-face interaction data [49] in a large setting. The

accuracy of inferred social networks obtained in this study

is much better than that from internal social media which

is still in the early stage of wide adoption in enterprise.
Our preliminary studies show that the use of e-mail and

IM is so intense that even people who meet face-to-face

or on teleconferences spend comparable time in commu-

nicating with each other by e-mail and IM.

One other challenge is to understand the economic

impact of social networks on people other than consul-

tants. Due to the sensitivity of data, we could only obtain
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the revenue generated by about 200 000 employees with
external consultant revenue. We did not get the detailed

performance impact of sales, hardware, and software de-

velopers. Using a relative small set of 532 salespersons, we

observed different impact of social networks. For sales,

long-term strong ties between networks demonstrate to be

more important than the diversity of networks. This is

probably due to the nature of Btrust[ needed in sales. We

will continue pursuing this thread if we received more
comprehensive data.

Causality study on the impact of the Bcontrol of net-

work[ is one of our current research threads. It involves

the strategies in influencing people to change their net-

works and then observing their real-world revenue im-

pacts. This type of researches requires several years of
studies. We will report on that in the future.

Based on the knowledge we gained from studying

multimodality data for people multinetworks, we will

extend our research to the study of the difference on these

networks and the online social media networks. We will

also report on their differences in the future. Network

visualization, especially visualizing it in large-scale and

evolutionary manner, is a challenge. Studies on how to
associate network visualization with browsing and ma-

chine learning tasks are emerging. With the rapid growth

of network data, how to read, write, store, and query

dynamic and large-scale data in large-scale and/or stream

environments are also very challenging issues. h
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