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Analyzing the urban trajectory in cities has become an important topic in data mining. How can we model
the human mobility consisting of stay and travel states from the raw trajectory data? How can we infer
these mobility states from a single user’s trajectory information? How can we further generalize the mobility
inference to the real-world trajectory data that span multiple users and are sparsely sampled over time?

In this article, based on formal and rigid definitions of the stay/travel mobility, we propose a single trajec-
tory inference algorithm that utilizes a generic long-tailed sparsity pattern in the large-scale trajectory data.
The algorithm guarantees a 100% precision in the stay/travel inference with a provable lower bound in the
recall metric. Furthermore, we design a transformer-like deep learning architecture on the problem of mobil-
ity inference from multiple sparse trajectories. Several adaptations from the standard transformer network
structure are introduced, including the singleton design to avoid the negative effect of sparse labels in the de-
coder side, the customized space-time embedding on features of location records, and the mask apparatus at
the output side for loss function correction. Evaluations on three trajectory datasets of 40 million urban users
validate the performance guarantees of the proposed inference algorithm and demonstrate the superiority of
our deep learning model, in comparison to sequence learning methods in the literature. On extremely sparse
trajectories, the deep learning model improves from the single trajectory inference algorithm with more than
two times of overall and F1 accuracy. The model also generalizes to large-scale trajectory data from different
sources with good scalability.
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1 INTRODUCTION

The recent surge of metropolitan-scale human trajectory data, e.g., mobile traces [34], taxi logs [50],
Wi-Fi probes, and geo-referenced check-ins [2], paves the way for a fundamental understanding
of the human mobility in cities. In both theoretical and empirical studies, the urban trajectory of
human is considered as interleaving segments of stay and travel [5, 6, 15]. The inference of these
segments from the raw trajectory data plays a pivotal role in solving many urban analytics tasks.
For example, in traffic planning and optimization, the detected travels are used as the training
data for the travel time estimation [42, 47]. In trade area analysis, the discovery of user’s visits to
business sites relies on the segmentation of stays and travels from the trajectory data [31].

In the literature, there is a consensus that the stay segments (also known as the stops) can be
defined as the part of the trajectory within a spatially constrained region for a sufficiently long
time [6, 17, 30]. Algorithms have been proposed that first partition the trajectory at all the record
intervals larger than a spatial threshold and infer the resulting sub-trajectories as stay by the
definition [6, 30]. On the other hand, no definition of the travel segment has been formulated on
the trajectory data. Existing works mostly assume a dense sampling rate in the trajectory data, i.e.,
seconds or a few minutes on average between the consecutive trajectory records [19, 33]. For such
data, the real-time speed of the trajectory can be calculated, which is used to accurately detect all
the travels.

Nevertheless, the metropolitan-scale measurement of human trajectories is often extremely
sparse over time for pragmatic constraints such as the power consumption and the user privacy.
For the mobile sensing data used in this article, the average record interval is as long as 2 hours,
two magnitudes larger than that of most previously considered trajectory datasets in the literature.
Existing mobility inference algorithms designed for dense trajectories do not work any more. For
instance, two consecutive records in a trajectory with a 24-hour time interval and adjacent spatial
locations will be identified as in the same stay segment (Figure 1(c)). In fact, these records could
be either two separate stays at home or pass-bys during the daily commute. We are agnostic about
their mobility given the single trajectory information only.

The inference of stay and travel on sparsely sampled trajectories are highly challenging. First,
the real-world human movement is a complex process with varied speeds and spatiotemporal
patterns. How can we formulate a comprehensive definition of stays and travels on human tra-
jectory data coping with various applications? Second, with the mobility definition, how do we
infer which part of the trajectory as stay or travel using the single trajectory information? How
can we design the inference algorithm to work with the metropolitan-scale trajectory data with
billions of records? Third, it has been known that human movements exhibit strong regularity (e.g.,
a 93% predictability [38]). How can we leverage such regularity to overcome the limit of the single
trajectory inference?

To answer the aforementioned questions, we make the following contributions in this work:

— The formal definition of both stay and travel on the continuous trajectory model using
a pair of spatial and temporal parameters. The linkage of this continuous mobility model
to the sparse trajectory data is rigorously studied, which helps to formulate our research
problem. (Section 2)
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Fig. 1. Illustrative examples of Definitions 1 and 2: (a) continuous stay/travel segments; discrete stay/travel
segments on (b) dense trajectory; and (c) sparse trajectory.

— The single trajectory inference algorithm called Slice & Doubly Sliding (SDS) de-
signed according to a generic long-tailed sparsity pattern in our trajectory data (Section 3).
The algorithm is proved to guarantee a 100% inference precision and a lower-bounded recall
subject to the single trajectory information. (Section 4)

— The application of an adapted deep learning method that captures the regularity of
human mobility at the population scale. Several neural network features are introduced to
cope with the requirement of multiple sparse trajectory inference. These customizations
include the singleton transformer design, the specialized space-time embedding of location
records, and the mask apparatus at the output side of the network. (Section 5)

We evaluate the proposed SDS algorithm and the singleton transformer deep learning model
on both simulated trajectory data and sparse trajectory datasets of 40 million residents in three
major Chinese cities (Section 6). The experiment results validate the theoretical performance of
the SDS algorithm and demonstrate three key advantages of the deep learning model on mobility
inference: the capability to utilize the spatiotemporal information from multiple trajectories, the
scalability to large training data, and the generalizability to different urban data sources.

2 PROBLEM DEFINITION

The detailed descriptions of the notations used in this article can be found in Table 1 (for a par-
ticular trajectory). We first consider the urban trajectory defined by a continuous mobility model.
During a time period T, a user trajectory I' is composed of a list of temporally continuous records
by I' = ;e < t,€(t) >. £(t) denotes the location of a user at time ¢.

Definition 1 (Continuous Mobility of a Trajectory). On the continuous segment of the trajectory
I' during a time period 7 C T, denoted as y = | J;¢, < t,£(t) >, we define its mobility by:

(a) I' is a stay segment if: [7] > AT and [|[£(t;) — €(t;)[| < AS (Vt;,t; € 7);

(b) T is a travel segment if: I' does not overlap with any continuous segment satisfying (a).

Here, | - | denotes the length of a time period, || - || is the L, norm that computes the spatial
distance between two records. AT and AS are the temporal and spatial parameters in the mobility
definition.

As shown by the red curve in Figure 1(a) where the hollow node stands for a long-time stop,
Definition 1(a) models the stay segment as a sufficiently long time period (> AT) when the
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Table 1. Notations used in this Article for a Particular Trajectory

Notations Descriptions

[ LI length of a 1D time period, length of a 2D spatial vector

T=Uper <t 0(t) > continuous definition of the trajectory composed of a list of temporally continuous location records

Y =Urer <t,0(t) >CT  any segment within the continuous trajectory

T,z CT entire time period of the trajectory and any continuous time segment within the period

£(t) 2D spatial location of the trajectory at a time point ¢

AT, AS temporal and spatial parameters in the mobility definition

I'=Uyeq < t,€(t) > discrete definition of the trajectory composed of a list of temporally discrete location records

Y =Urew < t, €(t) >CT  any segment within the discrete trajectory

Q=A{ty, ..., tL} ordered set of sample time points of the discrete trajectory

0= {tp, ..., tq} CQ ordered set of sample time points of any segment of the discrete trajectory

L, €, Umax the number of sample time points, the maximal consecutive time interval, and the maximal move-
ment speed of the discrete trajectory

Is/7(t) continuous mobility state of the trajectory at the time point # (stay or travel)

£(T), p(I) global sparsity and local coverage of the discrete trajectory

trajectory is kept within a circular region of radius AS/2. This definition is consistent among all
the previous literature [6, 17, 30]. Note that the stay segments by definition can overlap with each
other in space and time. Their enclosure is called the maximal stay segment. On the other hand,
based on the ground truth that a user can either stay or travel in any time point, the segment not
overlapped with any stays is defined as the travel segment (Definition 1(b)).

The continuous mobility model can not be exactly computed in the real world as the human
trajectory is hardly measured continuously. In most cases, the trajectory is composed of a list of
discrete records on certain time points (e.g., Q = {t;,...,1.}) denoted by I' = J,cq < t,€(t) >
where L denotes the sample size of the trajectory. A discrete mobility model can be defined in
analogy to the continuous model.

Definition 2 (Discrete Mobility of a Trajectory). On the discrete segment of the trajectory I' in a
time series w = {tp,...,tq} € Q (1 < p < q < L), denoted as y = U;e,, < t,(t) >, define its
mobility by:

(a) y is stay if: t, — t, > AT and [|£(t;) — £(t;)|] < AS (Vt;, ) € w);

(b) y is travel if: y does not overlap with any discrete segment satisfying (a).

The discrete mobility model can be optimally computed by an exact algorithm (Algorithm 2 in
Appendix A). Nevertheless, the resulting mobility is not always equivalent to that of the contin-
uous model with the full trajectory information. For example, in Figure 1(b), the stay and travel
segments detected on a densely sampled trajectory by the discrete mobility model generally echo
those by the continuous model (Figure 1(a)). In comparison, the detected segments shown by Fig-
ure 1(c) on the same but sparsely sampled trajectory turn out to be erroneous and largely de-
viate from the continuous model. The theorem below reveals the relationship between the two
models.

THEOREM 1 (INTRINSIC LINKAGE BETWEEN DISCRETE AND CONTINUOUS MOBILITY OF A TRAJEC-
TORY). Consider a discrete segment y of the trajectory. Let € be the maximal time interval between
the consecutive records of y, Umax be the maximal movement speed in y:

(a) y satisfying Definition 2(a) under the parameters of AS and AT is also a stay segment by Defi-
nition 1(a) in the continuous model under the parameters of A’'S = AS + 2 - € - Upax and A'T = AT;

(b) y satisfying Definition 2(b) under the parameters of AS and AT is also a travel segment by
Definition 1(b) in the continuous model under the parameters of A’S = AS and N'T = AT + 2 - €.
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Table 2. The Metadata of Each Urban Trajectory Record

[ Field [ Description [ Sample ]
Time Timestamp of record 18:02:41/07/12/2016
Lon. Longitude of location 116.523625
Lat. Latitude of location 39.792935
Mid Unique device ID 1370021020431

The proof is given in Appendix A. By Theorem 1, for the discrete trajectory satisfying ¢ <<
min (3 ﬁjm , %), i.e., having a dense sampling rate, the discrete mobility of the trajectory com-
puted by the exact algorithm can approximate its continuous mobility with tiny parameter changes.
Unfortunately, the measurement of human trajectories in big cities is often extremely sparse over
time for pragmatic constraints such as the power consumption and the user privacy (e.g., the
datasets in Section 3.1). This work studies the inference of the continuous mobility from the sparse

trajectory, which can not be approximated by Theorem 1.

Problem (Mobility Inference on Sparse Trajectory).

Given: (1) a set of urban users; (2) each user’s sparse trajectoryT’ = | J,eq=1s,.....
dj € [1L,L),|1t; = tjll > min(z.fjm , %); (3) the parameters of AS and AT that define the mobility
of the trajectory.

Infer: the continuous mobility of the sparse trajectory at the time of each record, which is denoted by
IS/T(ti), Vi e [I,L].

Note that the parameters of AS and AT determine the spatiotemporal scale of mobility. Unless
otherwise noted, we use AS = 800 m, AT = 30 min to study the intra-city mobility. The parameter
selection is discussed in Appendix B.

3 SPARSITY ANALYSIS ON TRAJECTORIES

By Theorem 1, our research problem seems intractable on sparse trajectories. In this section, we
analyze a set of real-world trajectory data and discover a generic sparsity pattern that can be
utilized in accurately inferring the human mobility.

3.1 Data Source

The trajectory data are provided by a mobile analytics company that keeps track of billions of smart
devices in China, including mobile phones, tablets, wearable devices, and so on. The company’s
third-party APIs are registered inside more than 100,000 types of mobile apps in a wide spectrum of
domains. When a registered app is activated on a device (not necessarily being used), the API will
report the location of that device to the company server. The metadata of each trajectory record
is shown in Table 2.

We extract the full-scale trajectory data within three major Chinese cities during a period of 90
consecutive days in 2016, as shown in Table 3. The datasets are immensely huge, e.g., in Beijing it
captures the trajectory of 31.8 million devices, which accounts for ~50% of the city’s population.
The spatial precision of each record is kept within 100 meters, by using the records collected by
GPS and Wi-Fi.

3.2 The Long-Tailed Sparsity Pattern

We study the sampling statistics of the trajectory data. The time intervals between consecutive
records inside the trajectory are averaged to ~2.5 hours in all the three datasets. With these ex-
tremely sparse trajectories, it seems impossible to infer their continuous mobility. As a reference,
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Table 3. Three Trajectory Datasets Used in This Work

| City | #Device | #Record | Size [ Length |
Beijing 31,849,742 | 8,407,648,917 | 738.1 G | 90 days
Tianjin 8,011,128 | 2,858,575,880 | 206.8 G | 90 days
Tangshan | 2,786,668 | 920,364,499 64.8 G | 90 days
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Fig. 2. The long-tailed sparsity pattern: (a) the distribution of between-record time intervals; (b) an example
trajectory.

most journeys in a city elapse no longer than 2 hours, during which less than one record is reported
on average.

Taking a closer look, we identify that the sampling pattern in our dataset, though sparse,
is highly skewed. Figure 2(a) depicts the distributions of between-record time intervals in all
trajectories, which follow power-law like decays in the log-log scale. We call this pattern the
long-tailed sparsity: Most intervals are very short, while there are also quite a few extremely long
intervals that contribute to the large average. The long-tailed sparse trajectory is then defined
as the trajectory that fits this pattern. Take the dataset in Beijing as an example, 88.9% intervals
are smaller than 30 minutes (a typical AT for Definition 1). At the trajectory level, it is observed
that most trajectories are composed of multiple densely sampled segments that are far apart from
each other over time. An example trajectory is depicted in Figure 2(b).

To capture the long-tailed sparsity pattern, we define two metrics on each trajectory. These
metrics are shown later to correlate with the capability for the mobility inference.

Definition 3 (Sparsity Metrics of a Trajectory). For any trajectory I' observed at Q = {t1,...,t.}:

(a) global sparsity is the average time interval between the consecutive records of I': £(I') =
E(ti+1 - tl)9Vl € [1,L - l]a

(b) local coverage is the ratio of the records within the dense segment: p(I') =
L=I(ti=ti1 > AT, tis—t;>AT) .

intin A ten=t280) g ¢ [2,1 - 1].

Here, E(-) and I(-) denote the mean function and the size of a set. Note that the global sparsity
is independent of the temporal parameter AT, while the local coverage is related to AT.

We compute the sparsity metrics in the trajectory data of Beijing under five parameter set-
tings (AT = 5, 10, 15, 30, 45 minutes). The distribution of the metrics are depicted in Figure 3. The
global sparsity in Figure 3(a) follows a power-law like decay similar to the distribution of the
between-record intervals in Figure 2(a). The distribution of the local coverage in Figure 3(b) shows
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Fig. 3. The distribution of the sparsity metrics in the data of Beijing: (a) global sparsity; (b) local coverage;
and (c) average trajectory length by global sparsity.

an exponentially increasing pattern that most of the trajectories have a high local coverage (with an
average of 0.897 at AT = 30 minutes). This demonstrates that most of the records in the long-tailed
sparse trajectory are in the densely sampled segment of the trajectory. As shown in Figure 3(c),
the trajectories with extremely low and high sparsity tend to be smaller in length, i.e., the densely
sampled short snippets or a few long-distance samples of a trajectory. The trajectories in both
cases are therefore exempted from the subsequent analysis.

Note that the long-tailed sparsity pattern is also found in other datasets and application domains.
For example, Gonzalez et al. studied the mobile phone user’s trajectory data where the location
of the user is reported upon each phone call or text message [15]. The time intervals between
consecutive records follow a long-tailed power-law decay. In a recent work, Chen et al. analyzed
the sparsely sampled geo-tagged social media data [7]. The distributions of the time interval and
distance between records follow power-law decays within the space and time scale of a single trip
(1 day, 500 km).

4 SINGLE TRAJECTORY INFERENCE

We propose the mobility inference algorithm on the single trajectory. The main idea is to leverage
the long-tailed sparsity pattern discovered in our trajectory data (Section 3.2). Though the average
record interval in a trajectory is too large to apply Theorem 1, each trajectory can be decomposed
into multiple densely sampled segments, on which the continuous mobility can be confidently
inferred.

Definition 4 (Dense Stay Segment). A discrete segment y of the trajectory I' defined in the time
series @ = {ty,...,tq} (1 < p < g < L)is adense stay segment of T if:

(a) y is a stay segment of I by Definition 2(a);

(b) any consecutive time interval of y is small enough: Vp < i < q, tix1 — t; < AT. AT is the
parameter used in Definition 2(a).

OBSERVATION 1 (CONTINUOUS STAY ASSUMPTION). Consider a dense stay segmenty detected from
the long-tailed sparse trajectory, which is defined in the time series w = {tp, ..., 14} (1 <p <q < L).
For any unobserved time point t € (t;,1;41),¥Vp < i < q, we hypothesize that ||{(t) — €(t;)|| < AS and
I1E(t) = £(tiva) || < AS.
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Observation 1 states that if a user is observed frequently in a region of diameter AS, any interme-
diate location between observations is also within a similarly constrained region. We empirically
validate this observation by the experiment in Appendix B on our trajectory datasets. The proba-
bility of violating the observation is below 10~ in most cases. When Observation 1 holds, we can
develop two theorems that characterize the continuous mobility of stay and travel on long-tailed
sparse trajectories.

THEOREM 2 (CONTINUOUS MOBILITY OF DENSE STAY SEGMENTS). In the long-tailed sparse trajec-
toryI':

(a) any dense stay segment y satisfying Definition 4 under the parameters of AS/3 and AT is also
the stay segment by Definition 1(a) in the continuous model under the parameters of AS and AT;

(b) the continuous mobility of any discrete segment y in the time period T € [t,, t;] can be inferred
as stay by Definition 1(a) under the parameters of AS and AT only if y defined in w = {tp, ..., tq} is
the dense stay segment under the same parameters.

THEOREM 3 (CONTINUOUS MOBILITY OF TRAVEL RECORDS). Consider a discrete trajectory I de-
fined in the time series Q = {t1,...,11}:

(a) any record at time t; (1 < i < L) is in the travel segment by the continuous model of Def-
inition 1(b) under the parameters of AS and AT if only there exist 1 < p < i < q < L that: (1)
16(t:) = E(tp) 11 = AS; (2)116t) = £(tg)| = AS; (3)tg — 1, < AT;

(b) any record at time t; can be inferred as in the travel segment by Definition 1(b) under the
parameters of AS and AT only if there exist 1 < p < i < q < L that: (1) [|€(t;) — £(tp)I| = AS/2; (2)
[1€(t:) — E(tg)l| = AS/2; (3) tg — t, < AT.

The proofs are given in Appendix A. By Theorems 2 and 3, we design a new algorithm to infer
the continuous mobility of a single long-tailed sparse trajectory, called SDS. As shown in Algo-
rithm 1, the algorithm first slices the trajectory into multiple dense segments at all the intervals
larger than AT (L2). On each dense segment y, the stay/travel segments are detected respectively
(L3~10, L11~19). In particular, the stay detection checks all the segments of y with the condition
in Definition 4 under the parameters of AS/3 and AT by Theorem 2. To avoid the worst-case O(L*)
complexity, we introduce a doubly sliding window data structure which keeps track of the cur-
rently checked segment. The key of the algorithm lies in that, when one pair of records no closer
than AS/3 are found (L6), all the segments containing this pair of records will be pruned early in
the detection and the sliding window will advance aggressively (L10). The travel detection follows
Theorem 3. The average-case complexity of SDS is O(L - W) where W is the average number of
records in a maximal stay segment.

According to Theorems 2(a) and 3(a), the SDS algorithm guarantees a 100% precision in the
mobility inference of both stay and travel. By Theorems 2(b) and 3(b), the lower bounds of the re-
calls in detecting the stay and travel are SSDg é{rSSAf S/,S’AAT? and Sf)gfls’r’T’T’A@‘j’z’AAT}), respectively, where
SDS(T,S/T,AS, AT) are the number of stay and travel records detected by the SDS algorithm
from I' under the parameters of AS and AT. Note that the recall is defined on all the stay and
travel records that can be detected given the single sparse trajectory, not on the continuous mo-
bility of records given the full trajectory information. Another advantage of the SDS algorithm
lies in that it also works for dense trajectories, each of which is treated as one densely sampled
segment.

We applied the SDS algorithm to our dataset in Beijing. 47.0%~50.2% and 0.044%~0.83% records
are detected as stay and travel, depending on the parameters of AS and AT. Figure 4 shows the
average stay/travel percentages by the global sparsity of a trajectory. All the curves are bell-
shaped with only one peak: The highest ratio of stay is found at the global sparsity around 1.6
min (97.3%~98.5%, Figure 4(a)); the highest ratio of travel is found at the global sparsity from 5 to
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ALGORITHM 1: SDS on long-tailed sparse trajectories.
Input :T = U;ep,1) < ti,€(t:) >,t1 < -+ <t (sparse trajectory), AT, AS (space, time parameters)
Output:Is,r(t;), Yi € [1, L] (mobility of each record)

1 begin
/* T into M segments (y;) at every interval larger than AT */
2 {Yj ={< ti ks f(tj,k) >}k€[1,Lj] }j=[1,A1] « Divide(T, AT)
3 for j « [1,M], head < 1 do
/* detect all the stay segments on y; */
4 for cursor « [2,L;] do
/* iterate all the records backward from cursor — 1 */
5 for anchor < [cursor — 1, head] do
/* cut at the first escape outside the range of % */
6 if ||€(tj,cursor) - g(tj,anchor)” > % then
/* stay segment */
7 if tj,cursor—1 — tj head 2 AT then
8 for k « [head, cursor — 1] do
9 L IS/T(tj,k) <3S
10 head < anchor + 1, Break
/* detect all the travel records on y; */
11 for cursor « [2,L; — 1] && Is;T(tj,cursor) # S do
/* find the first left record outside the range of AS */
12 for | « [cursor —1,1] do
13 if [[€(t),cursor) = €(t; 1)l = AS then
14 L left « I, Break
/* find the first right record outside the range of AS */
15 for r « [cursor +1,L;j] do
16 if ||€(tj, cursor) — C(tj,7)|l = AS then
17 L right < r, Break
18 if tj,right _tj,left < AT then
19 L IS/T(tj,cursor) «T
20 | return g 7(4;),i=[1,1]

10 min, which increases with AT (0.34%~3.8%, Figure 4(b)). Before the peak of stay, the trajectory
is mostly composed of less than 10 records (Figure 3(c)), with a time period shorter than AT and
can not be inferred as stay. After the peaks of stay and travel, the ratio of detected records drops
due to the increased sparsity of the trajectories. This validates Theorem 1 that sparser trajectories
are harder for the continuous mobility inference.

By the empirical result, the parameters of AT = 30min and AS = 800m are chosen and used
throughout this work. The details are explained in Appendix B. We also note that though SDS is
designed to infer the continuous mobility of a single trajectory, the same SDS algorithm can be
applied to infer the discrete mobility of the same trajectory, using different parameters: (AS, AT) for
the stay state of discrete mobility, (AS/2, AT) for the travel state of discrete mobility, according to
Theorems 2 and 3. In addition, although we use the classical machine learning metrics of precision
and recall to evaluate the SDS algorithm, the algorithm itself is not a machine learning-based
method. It is deterministic and the 100% precision is achieved by definition.
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Fig. 4. Percentages of stay/travel on the trajectory with different global sparsity values and AT (AS fixed to
800 m).

5 MULTIPLE TRAJECTORY INFERENCE

The single trajectory inference algorithm (i.e., SDS) can correctly predict the continuous mobility
of about a half records in each trajectory. For the other half of records, it is infeasible to infer
the mobility from the single trajectory information only because the conditions in Theorems 2(b)
and 3(b) do not hold for these records. In addition to using data from the single trajectory, multiple
trajectory inference also considers the similarity of different trajectories. To take multiple trajec-
tories as input for mobility inference, we propose to employ deep learning methods, which have
been proven to deliver good performance given large amount of training data. It is expected that
the multi-trajectory model could learn the spatiotemporal regularity of human mobility, beyond
the theoretical mobility definition used in the SDS algorithm.

As mobility state inference is a typical sequence-to-sequence learning problem, we consider the
deep learning methods developed for processing sequential data. In the literature, most state-of-
the-art deep neural network architectures for sequence modeling have been applied to the problem
of next-location prediction (see Section 7.3 for details), which is quite close to our problem. Nev-
ertheless, the next-location prediction only accepts input sequences precedent to the currently
predicted location, while our problem allows to incorporate the full trajectory information. To
leverage this advantage, we decide to apply the encoder-decoder architecture that computes full
representation on each trajectory. In addition to this difference, there are also several special chal-
lenges in designing the deep learning architecture for our problem. For example, we do not have
100% labels in the output side of the training data because the SDS algorithm only labels discrete
location records on each trajectory. This brings difficulty both in the decoder side of the architec-
ture and in specifying the cost function of the entire model. In the following, we first propose a
transformer-based deep learning architecture and then introduce several customized designs to
tackle the special challenges of our problem.

5.1 Singleton Transformer Architecture

As shown in Figure 5(a), we adopt a transformer-like sequence-to-sequence deep learning archi-
tecture. The raw trajectory is labeled by the SDS algorithm for the true stay/travel state before
input to the neural network. Notably, we introduce a mechanism to truncate variable-length long
trajectories into fixed-length sub-trajectories. This is because typical sequence-to-sequence deep
learning models generally take a sequence of tokens up to several hundreds (e.g., a long sentence
of 100 words). While in our problem, the user trajectory could be much longer, up to 5,000 records.
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Fig. 5. The sequence-to-sequence deep learning architecture for multiple trajectory inference: (a) the overall
neural network structure with several design customizations (in red text); (b) the singleton transformer with
self-attention mechanism.

With sequence truncating, local context can be trained on each sub-trajectory while still preserv-
ing the expressibility for inference, as proposed by Luong et al. [27]. After that, the location records
in each sub-trajectory are embedded by exploiting customized space-time representations for our
task (Section 5.2). The latest transformer architecture is applied in the final stage to construct the
multiple trajectory inference model.

In the deep learning community, the transformer [44] is preferred over classical encoder-decoder
architectures using RNNs/LSTMs/GRUs [40] because the transformer design better captures dis-
tant dependencies within a long trajectory. Also, its self-attention neural network can be trained
and applied more efficiently via parallel processing as the sequential, recurrent operations in con-
ventional encoder-decoders are avoided. In our mobility inference setting, we find that the standard
transformer design does not work quite well. It is mainly because the mobility state labels in the
training data are largely discrete, leaving about a half of records unlabeled. Providing these sparse
labels to the decoder side of transformer disrupts the consistency of training context and leads to
poor performance (see Section 6.2 for results).

We propose a singleton transformer (STF) design (Figure 5(b)) that removes the decoder net-
work and only leaves the encoder network taking the trajectory representation as input. The key
mechanisms in transformer remain largely unchanged in our design. The core self-attention mod-
ule in the center of Figure 5(b) adopts the scaled dot-product attention function to alleviate the
effect of large dot-product. The multi-head attention mechanism is also employed to exploit the
full representation capability on input trajectory. The self-attention is further enhanced by residual
connection, layerwise normalization, and a stacked design to amplify the nonlinearity of represen-
tation. Finally, we introduce a masking apparatus in the output side of the STF architecture to cope
with the unlabeled training data, which is detailed in Section 5.3.

ACM Transactions on Intelligent Systems and Technology, Vol. 14, No. 1, Article 18. Publication date: January 2023.



18:12 L. Shi et al.

5.2 Space-Time Embedding

In our trajectory data, both space and time information are recorded in high resolutions, i.e., by a
millionth of degree (longitude/latitude) and a millisecond (timestamp). Adding these raw inputs to
the neural network could affect the model performance in converging and learning. After examin-
ing the mobility inference task, we extract several task-relevant spatial and temporal features from
the raw input, discretize their values, and compute vector embeddings to represent their essential
information. The embeddings are updated online during the training process.

In more detail, spatially we divide the territory of each city into grids of 0.001 degree lati-
tude/longitude. The location of each record is converted to the latitude and longitude indices of
the grid it belongs to. Each grid index is represented by a vector of length E. Temporally, we divide
the timestamp of each record into two indices and embed them separately. The first is the absolute
hour index of the timestamp. For example, the timestamp of 12:50 a.m. on Monday has an index of
124 24 - 1 = 36. The hour index indicates the time of day and the day of the week upon the obser-
vation, which can be related to the mobility of the record. The second is the relative minute index
defined as the elapsed time in minutes from the start of the current segment in the trajectory. Here,
the segments of a trajectory is computed by the SDS algorithm (L2 of Algorithm 1). Both hour and
minute indices have a length of E in the embedding. Finally, the space and time embeddings are
concatenated into a vector of length 4E, which is provided as input to the STF architecture. The
embedding for each grid and time index is randomized upon the initialization. We use E = 100 by
default.

5.3 Output Mask

In the output side, we only have the mobility state label (stay or travel) for a subset of records on
each trajectory. If we only include these labeled records in the training, the test performance might
downgrade because of the loss of consistent context, as empirically shown by the performance of
variant of STFs (Section 6.2). In an improved design, we propose to feed the full trajectory to the
input side of the neural network, but mask out losses for the records without labels in the output
side. This allows the STF network consistently capture the dynamics of the entire trajectory and
be trained with supervisions if available.
The final loss function for training is

Loss = — Z y D logp(¥"), (1)

tE€Siabel

where y(*) denotes the mobility label at the time step t, §*) denotes the prediction result at the
time step t, and Sj4p.; is the set of record indices labeled by the SDS algorithm.

6 EVALUATION
6.1 Experiment Setup

Data. We evaluate the SDS algorithm and the proposed deep learning model on three types of data
extracted from the raw data in Section 3.1.

— Full data are a set of randomly selected trajectories. We apply the SDS algorithm to create
the stay/travel labels on each trajectory. Because the travel labels are rare (<1%) and a large
percentage of short trajectories have no travel label at all, we only select the trajectories with
at least 10 travel labels. Note that this criterion does not lead to a biased selection for the
mobility inference. The eligible trajectories have an average global sparsity mildly smaller
than the average in all the datasets. We extract 2 X 3 groups of non-overlapping 10 K, 40 K,
and 100 K trajectories for train and test, respectively. They are called FU-10K, FU-40K, and
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FU-100K. By default, the dataset collected at Beijing is used. Only labeled records on the full
data are evaluated.

— Re-sampled data are used to evaluate the inference performance on unlabeled records.
Given a trajectory from the full data, we randomly keep each record with a probability (i.e.,
the re-sampling rate). The re-sampled training data is re-labeled by the SDS algorithm, nor-
mally generating a smaller percentage of labels than the full data. On the re-sampled test
data, we re-use the labels generated in the full data. The series of data re-sampled from
FU-10K is called RE-10K. All the records with labels in the full data can be evaluated.

— Simulated data are used to evaluate the SDS algorithm itself, as no true label can be detected
beyond this algorithm. The simulated data is generated using the timestamps in the full data
and then re-sampled. More details of the data generation are described in Appendix C. The
labels of all the records in the simulated data are known and can be evaluated.

Method. Nine alterative methods except for the proposed STF model are applied to the mobility
inference problem. Four are deep learning methods with different architecture:

— Transformer. The original transformer model by Vaswani et al. [44]. The trajectories and
their mobility labels are used as input in the encoder and decoder side of the neural network.
At the decoder side, a mask apparatus is also applied to bypass unlabeled records in self-
attention.

— DWSTTN. The Deep Wide Spatio Temporal Transformer Network [1] is a transformer-like
encoder-decoder architecture designed for the prediction of a taxi’s next destination. In both
encoder and decoder sides, taxi’s trajectory information is embedded and injected, which
is different from the original transformer using only labels in the decoder side. Notably,
each transformer module is split into two neural networks to embed spatial and temporal
information separately.

— ST-LSTM . The Spatial-Temporal Long-Short Term Memory (ST-LSTM) [18] enhanced
over the original LSTM network for the sequence learning problem of location records. It in-
troduces spatial-temporal factors into the basic gate mechanisms of LSTM. Spatial-temporal
relations in the trajectory data are embedded to mitigate the sparsity effect. Note that ST-
LSTM leverages Area of Interest (AOI) information, which is unavailable and replaced by
the spatial-temporal grid index in our setting.

— LSTM. The classical sequence deep learning method using unidirectional LSTM cells. Only
labeled records are fed as input into both train and test.

Another two methods are customized classifiers for spatial-temporal trajectory data proposed
in the literature:

— CB-SMoT. A speed-based spatial-temporal clustering approach [29], which could also be
used for mobility inference over trajectory data (See Section 7.2 for details). The algorithm
parameters are set to AS = 800 m, AT = 30 min.

— ST-DBSCAN. A density-based spatial-temporal clustering approach for trajectory data [4]
(See Section 7.2 for details). The algorithm parameters are set to AS = 800 m, AT = 30 min,
MinPts = 3, according to the heuristics given in Ester et al’s work [10].

Finally, the other three generic machine learning classifiers are compared. To apply these clas-
sifiers, we conduct window-based feature extraction. On each location record of a trajectory, W
records before and after the record are selected, which should also locate within the dense segment
containing the record (generated by L2 of Algorithm 1). Then, a feature vector of length (2W +1) -4
is formed in which four spatial-temporal indices are used to represent each record (see Section 5.2
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Fig. 6. SDS inference on simulated data: (a) stay; (b) travel.

for details). We test through W = 1 ~ 10 and find that W = 4 achieves the best tradeoff between
performance and cost for most classifiers.

— LG. Tt applies the logistic regression over the extracted features.

— DT. 1t applies the decision tree over the extracted features.

— HMM. The stay/travel label is used as the state of Hidden Markov Models. The spatio tempo-
ral offset between consecutive records is used as the observation. The prediction is computed
by the Viterbi algorithm [45]. The method mimics the technique in the next location predic-
tion using Markov chains [13].

In each experiment, we measure the Precision and Recall in predicting the Stay and traVel labels
separately, which are denoted as SP, SR, VP, VR. The overall prediction accuracy of the two classes
of labels is denoted as ACC. As the distribution of label classes is unbalanced (much fewer travels
than stays), we also report F1 — ACC, the harmonic mean of the F1 measures in stay and travel
predictions. The source code is available at https://github.com/LUOyk1999/MobilityInference.

6.2 Quantitative Result

SDS algorithm. We evaluate the SDS algorithm on the simulated data over RE-10K, with re-
sampling rates ranging from 1.0 to 0.1. As shown in Figure 6, the precision of both stay and travel
predictions (dashed lines) is 100%, regardless of the re-sampling rate and the speed used in the
simulation. This validates the theoretical result in Section 4. As the re-sampling rate decreases,
which leads to a linear increase in the global sparsity by Definition 3(a) (X-axis), the recall drops
at a rate slightly slower than the empirical result in Figure 4.

Deep learning architecture. We evaluate five design choices of the singleton transformer on
the FU- 10K dataset: # of attention heads (4), # of stacked attention layers (3), the dropout probabil-
ity (0.1), the truncate size on long trajectories (200), and the use of mask in the output side (with).
The experiment results are listed in Table 4 and the best hyperparameters are given in the paren-
theses above. It shows that multi-layer multi-head self-attention with a moderate dropout works
better in our scenario. The use of output mask and truncating to smaller segments also improve
the prediction performance.

Model comparison. On the labeled records of FU-10K data, Table 5 compares the performance
of all the multiple trajectory inference methods. The proposed STF model performs the best in over-
all metrics of ACC and F1—ACC (0.97 and 0.95). The standard transformer model (TF) has a poor
result in the recall of travel records (0.26) because of the lost of consistent labeled context in the
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Table 4. Performance with Different Transformer Hyperparameters on FU-10K Data

# Heads # Layers Dropout Prob. Truncate Size Mask
1 2 4 1 2 3 4 0.1 0.2 03 04 100 200 300 with  w/o

Pre. Stay(SP) 098 098 098 098 098 0.98 0.98 0.98 098 098 0.98 097 098 099 0.98 0.93
Travel(VP) 089 092 091 086 090 0.91 0.91 0.91 091 093 093 091 091 089 091 0.99

Rec.  Stay(SR) 098 099 098 097 0.98 098 0.98 0.98 098 099 0.99 098 098 098 098 0.998
Travel(VR) 0.88 0.89 091 090 091 091 0.91 0.91 091 087 0.88 085 091 093 091 0.59

ACC 096 097 0.972 096 097 0.972 0971 0.972 0971 097 097 09 0972 097 0.972 0.93

F1 093 094 095 092 094 095 094 095 094 094 094 093 095 095 095 0.84

Best result in bold text.

Table 5. Comparison of Inference Methods on FU-10K Data

STF  TF[44] DWSTIN[1] ST-LSTM[18] LSTM LG DT HMM CB-SMoT ST-DBSCAN

SP 0.98 0.87 0.94 0.92 0.93 0.84  0.93 0.85 0.99 0.92
VP 0.91 0.77 0.95 0.97 0.80 029  0.50 0.86 0.45 0.25
SR 0.98 0.99 0.99 0.99 0.97 1.00 087 1.00 0.88 0.91
VR 0.91 0.26 0.68 0.53 0.59 0.00  0.66 0.10 0.91 0.29
ACC 097 0.87 0.94 0.93 0.91 0.84  0.84 0.85 0.88 0.85
F1 0.95 0.55 0.87 0.80 0.79 0.00  0.69 0.30 0.73 0.42

Best result in bold text.

decoder side. The similar transformer-based DWSTTN model gets the second highest performance,
still 10 % worse than STF in F1—-ACC. Among other classifiers, ST-LSTM, LSTM, CB-SMoT, and DT
perform moderately and achieve an F1 — ACC of 0.69~0.8, respectively. Notably, CB-SMoT obtains
the best SP and VR by a biased classification toward travel states, which is penalized by a VP of
only 0.45. The other models (ST-DBSCAN, LG, HMM) all perform badly in predicting the travels,
with a VP or VR smaller than 0.3. Though LG gets the best SR, it achieves that by classifying all
the records as stay.

Extending to the unlabeled part of the RE-10K data, we summarize the performance compar-
ison with datasets under decreasing re-sampling rates in Figure 7. These re-sampled data also
correspond to trajectory input with increasing global sparsity (refer to Figure 6). Because the
stay records are generally well-predicted by most methods, we only depict ACC, VP, VR, and
F1 — ACC. Note that the performance of the SDS algorithm is also plotted, serving as the upper
bound achieved with the single trajectory information only. The STF model is still the best in most
metrics when the re-sampling rate is higher than 0.1, except that DWSTTN, ST-LSTM, and HMM
has high precisions on much smaller portion of travel records (VR < 0.5 for most cases). CB-SMoT
and ST-DBSCAN obtain high VRs while having low VP.

The proposed STF model surpasses the SDS algorithm on ACC from the re-sampling rate of 0.8,
starting to enjoy the bonus of multiple trajectory information. Even on the metric of F1 — ACC
favoring the travel prediction, STF outperforms SDS from the re-sampling rate of about 0.6. Al-
though SDS guarantees a 100% V P according to the theoretical result in Section 4, its travel predic-
tion performance dives quickly with re-sampling rates below 0.5. Also, the trajectory completion
technique [20] does not improve the inference performance. Even worse, because the technique
needs to pre-compute a junction network using spatially dense trajectories as input, the test data
before completion is constrained into a 5 X 5 km? square region. The precision and recall of SDS
in spatially constrained datasets is worse than the randomly sampled FU-10K data.

We try to improve the mobility inference by using the densely sampled trajectory as the training
data, i.e., the 100% re-sampled data in RE-10K; and test on the sparse trajectory, i.e., RE-10K with
re-sampling rates of 0.1~1. This is realistic in the model building. As shown in Figure 8, with denser
trajectories and more labels in the training, the test performance of the STF model (straight lines
in cyan with symbols) is improved from the model with sparse input (cyan lines without symbols),
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Fig. 7. Comparison of inference methods on RE-10K data. Dashed lines are the proposed STF model.

especially in the travel prediction and the re-sampling rates below 0.4. Taking this finding one
step further, we use 100K 100% re-sampled trajectories in training (the RE-100K data). The result
is much better—the STF model outperforms the upper bound of SDS from the re-sampling rate
of 0.9. In a 10% re-sampling setting, the STF model achieves 2.24 X ACC and 2.08 X F1 — ACC
compared with SDS.

Scalability and generalizability. We carry out the same experiment on the full dataset with
higher numbers of trajectories. As shown in Table 6, the performance keeps steady using the same
FU-10K as the training data and test on 10 K, 40 K, and 100 K full trajectory data (FU-10K: 10K, etc.).
This shows that the model trained on a small dataset can be generalized to much larger datasets.
Training on the larger data further improves the test performance, which is nearly optimal for
FU-100K : 10K (ACC = 0.995, F1 — ACC = 0.99).

We conduct the same experiment on RE-10K with the dense trajectory input, using the datasets
in Tianjin and Tangshan. Compared with Figure 8(b) for Beijing, the F1 — ACC of the STF model in
Tianjin shows a similar curve (Figure 9(a)), surpassing the SDS from a re-sampling rate of 0.6. On
the other hand, the STF model does not work better than the SDS on the Tangshan data (Figure 9(b)).
We hypothesize that this is because the selected train/test data in Tangshan has a much lower
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Table 6. The Scalability of the Proposed Deep Learning Model

16K 16K:46K 10K:100K 100K:16K 100K:46K  100K:100K

SP 0.98 0.98 0.98 0.998 0.997 0.997
VP 0.91 0.91 0.89 0.98 0.98 0.98
SR 0.98 0.98 0.98 0.996 0.996 0.996
VR 0.91 0.92 0.92 0.99 0.99 0.98
ACC 097 0.97 0.97 0.995 0.99 0.99
F1 0.95 0.95 0.94 0.99 0.99 0.99
Time (s) 0.87k 094k 1.15k 8.78k 8.78k 9.86k

Best result in bold text.

percentage of travel labels (5.56%) than Beijing (10.64%) and Tianjin (16.94%). The model can not
learn useful patterns given fewer labels. Tangshan is also a smaller city than Beijing and Tianjin,

where we have fewer data (Table 3).

Implications. The experiment result demonstrates that the SDS algorithm is accurate on the
single trajectory (100% SP and VP). The optimized deep learning models can learn from the mul-
tiple trajectory input to improve the single trajectory mobility inference through the excellent
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generalizability to sparse trajectories and the scalability to large training data. In fact, we expect
the proposed model to perform even better in comparison to the SDS algorithm. We only evaluate
on the part of the trajectory labeled in the 100% re-sampled test data. For the unlabeled test data
(38.9% for Beijing), it is reasonable to guess that our model performs similarly to the labeled part,
while the SDS can not infer at all. In future, we plan to develop the re-sampling mechanism on the
simulated data to test on the 100% labels of the trajectory dataset.

7 RELATED WORK
7.1 The Study of Urban Trajectory

Using the trajectory data in the city to understand the urban activity and human mobility has been
a recent focus of study [51]. On the continuously measured trajectory, the detailed route informa-
tion is available for analysis [21, 22, 50]. For instance, the trajectories of taxis can be used to classify
drivers by their job performance [22] or aggregated as time-dependent landmark graph [50] and
trajectory visualization [21], in order to compute the fastest route for drivers. Based on over one
million bank note circulation reports in US, Brockmann et al. explained the human mobility as the
combination of a scale-free jump and a heavy-tailed wait, and proposed a random-walk model to
characterize these findings [5]. The group of Barabasi explained the high degree of spatiotemporal
regularity in human mobility by the tendency to avoid visiting new places and to return to the
previously visited locations [15, 37].

On the analysis of urban trajectories, the need for separating stay and travel has been partially
met by the greedy algorithms similar to Algorithm 2 in Appendix A [6, 17]. Nevertheless, none of
these works formally define the stay/travel state of a trajectory, nor do they consider the mobility
inference problem on sparse trajectories.

7.2 The Inference of Sparse Trajectory

There are two definitions of the sparse trajectory in the literature of urban data analysis. The first
one considers a sequence of infrequent reports from vehicles, e.g., the floating car data recording
the location, speed, direction, and time information of the vehicle [43]. These trajectories are usu-
ally collected in a uniform time interval of seconds or a few minutes. We call them the temporally
sparse trajectory [19, 33, 36]. The second class is the spatially sparse trajectory data in which many
road segments in a city are not covered by any of the trajectory, especially for a given period of
time. For a queried path of the road network, there is often no such trajectory in the data exactly
following the path. The literature on this class of data mostly studied the travel time estimation
problem [19, 36, 47].

We mainly consider the mobility inference problem on the temporally sparse trajectory, as our
dataset covers most of the city regions. The recent works on this topic focus on the extraction of
travel paths [19, 33]. Typically, the problem is decomposed into two tasks: the map-matching and
the path-inference. In map-matching, each location record on the trajectory is matched to a point
on a particular segment of the road network [32]. In path-inference, the matched points on the
map are connected by shortest paths to form the travel path [25].

The map-matching-based techniques can not be applied directly to our mobility inference prob-
lem. First, the trajectory data in our case encompasses not only the movement of high-speed ve-
hicles on the ground, but also those by bikes and subways. The locations of these trajectories
may not be on the road network, thus are not appropriate for map-matching. It is also costly to
evolve the technique with the fast-changing road network of modern cities. Second, we have both
travel and stay in our data, while the previous approaches mostly work on the travel part of the
trajectory with a temporal sparsity two orders of magnitudes smaller than our case. The trajec-
tory completion techniques can also be applied to compute dense trajectories from known sparse
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ones. In Yang et al’s work [20], a geometry-based method was proposed which pre-computed the
junction networks in cities and then predicted the missing part of the travel trajectory, without
knowing the city map. However, their technique requires the speed and heading information of
each location record, and spatially dense trajectory dataset to pre-compute the junction network.
Applying the same trajectory completion technique on our problem leads to worse performance
than the proposed deep learning method.

Meanwhile, spatial-temporal clustering algorithms can also be applied for mobility inference
of trajectory data. ST-DBSCAN [4] mimicked the classical DBSCAN algorithm. It starts from the
first point p of the trajectory and retrieves all points following p in the trajectory that are density-
reachable from p. The parameters of AT and AS in the mobility definition are used as the radius of
the neighborhood in DBSCAN (ST-DBSCAN). If p is a core object, a cluster is formed and all points
of the cluster are classified as stay records. If p is a border or noise point, then the algorithm iterates
to the next point of the trajectory. The algorithm repeats until all points have been processed.
Palma et al. proposed another spatial-temporal clustering algorithm called CB-SMoT [29]. The
algorithm classifies stay/travel states based on the speed of the trajectory. Similar to ST-DBSCAN,
core points are detected, but by the speed of the trajectory with a threshold of AS/AT. The points
of clusters formed by core points are classified as stay records, while the other points are classified
as travel records. We have implemented these algorithms and compared with our approach in the
experiments. Results show that clustering algorithms do not perform well in temporally sparse
trajectory, as shown in Section 6. At the same time, they are costly in computational complexity,
e.g., O(L - log L) for ST-DBSCAN in average, which is the longest among all methods compared.

7.3 Deep Learning for Human Mobility

Modern deep learning methods have been applied intensively in many analytical tasks related to
human mobility [26]. One class of tasks focus on human mobility at the crowd level where the
movement pattern is modeled collectively on the group of people, e.g., the crowd flow prediction
[16, 39, 52] and the crowd flow generation [24, 49]. In comparison to the crowd-level analysis, the
mobility inference problem studied in this article is more relevant to the other class of existing work
on individual-level human mobility analysis where every single trajectory is treated separately.
The dominant tasks include next-location prediction [3, 9, 14, 28] and trajectory generation [12, 46].
Specially, the next-location prediction problem is defined as the forecast of an individual’s next stay
location given its historical trajectory data and is the closest to the mobility inference problem
studied here. Below we will mainly discuss the literature on the next-location prediction task. For
more extended introductions on the field of deep learning for human mobility, we refer to the
latest survey by Luca et al. [26].

Some early work applied generic neural network designs to predict the next location on the indi-
vidual level. De Brébisson et al. [9] presented a multi-layer perceptron architecture with the ReLU
activation function that won the taxi destination prediction challenge in the 2015 ECML/PKDD
conference. The input data to the architecture include both the trajectory prefix data in GPS points
and the metadata of the taxi trajectory such as the departure time, the driver id, and the passen-
ger information. Lv et al. [28] proposed T-CONV, a multi-layer convolutional neural network that
models each trajectory as a two-dimensional image. Their design elaborates the multi-scale spatial
pattern embedded in the trajectory data to achieve more accurate destination prediction. These
traditional deep learning methods, though shown to be effective in particular data and task, do
not explicitly take the temporal information of the trajectory into the consideration. In contrast,
most recent approaches on next location prediction treat the trajectory as sequence data and apply
specialized neural network designs for temporal data, notably RNN, GRU, LSTM, and the encoder-
decoder architecture.
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Liu et al. [23] introduced ST-RNN that extends the original RNN architecture with time-specific
and distance-specific transition matrices to model different time intervals and spatial distances.
ST-RNN can therefore embed local temporal and spatial context to better predict individual’s next
location. Experiment results on benchmark data show that ST-RNN significantly outperforms the
original RNN. Feng et al. [11] proposed DeepMove, a hybrid neural network architecture to com-
bine an attention model for periodic patterns from historical trajectories and a GRU model for
complicated sequential information from the current trajectory. Kong and Wu [18] developed HST-
LSTM with the Spatial Temporal LSTM (ST-LSTM) as its building blocks. ST-LSTM was invented to
mitigate the sparsity effect in trajectory data by embedding their spatial-temporal relations. Next,
HST-LSTM applies an encoder-decoder architecture over ST-LSTM to finally predict the next loca-
tion. Rossi et al. [35] proposed a LSTM network equipped with self-attention modules for the next
location prediction problem. Importantly, they enhance the semantics of the input trajectory with
geographical information from location-based social networks. Yang et al. [48] designed a mod-
ified RNN architecture by introducing the flashback mechanism. Flashbacks allow to explicitly
search the historical hidden states on the RNN that share similar contexts as the current trajec-
tory. These context and hidden states can then be utilized to better predict the next location of the
current trajectory. Chen et al. [8] proposed DeepJMT, a deep model that jointly predict the individ-
ual’s next location and the arrival time. DeepJMT integrates three neural network modules that
include a hierarchical RNN encoder capturing the user’s mobility regularities and temporal pat-
terns, spatial/periodicity context extractors modeling patterns on spatial neighbors and periodic
trajectories in the history, and a social-temporal context extractor learning from the user’s social
relationship. Most recently, Tang et al. [41] proposed an integrated deep learning architecture that
takes three key mobility data for trip destination prediction of taxi drivers: the partial trajectory
of on-going trips, the historical trajectories, and the side information such as driver’s characteris-
tics, and land-use information of geo-locations. Both LSTM networks to process sequential data
and fully connected neural networks to embed/combine side information are utilized. Abideen
et al. [1] introduced the latest transformer design to an encoder-decoder architecture called
DWSTTN. Notably the spatial information and temporal information are embedded via two sepa-
rate transformer modules.

Overseeing the state-of-the-art deep learning literature on next location prediction, the major-
ity of approaches adopt non-encoder-decoder designs that reply on the partial trajectory as input
for prediction. A few methods also introduce side information such as social network information
and user’s demographics which are not available in the large-scale trajectory dataset of our work
collected and processed via a privacy-preserving protocol. Importantly, the mobility (state) infer-
ence problem studied here is different from the next location prediction in that the full trajectory
is feasible and probably viable for learning. This is a missed opportunity for non-encoder-decoder
architectures.! For these reasons, we conducted experiments to compare our method with two
encoder-decoder-based models described above (DWSTTN [1] and ST-LSTM ([18]). The experi-
ment results have been reported in Section 6. Notably, the encoder-decoder approach by Deep]MT
[8] is not compared as it depends on the user’s social relationship which is not ready in our dataset.

8 CONCLUSION

This article studies the problem of mobility inference over sparse trajectories. Based on the observa-
tion of a long-tailed sparsity pattern in the trajectory data, we design a single trajectory inference
algorithm that detects the mobility of close to half of trajectory records with a guaranteed 100%

1Unless a bidirectional LSTM network is adopted, which is not available in the literature because the next location predic-
tion problem does not have access to the full trajectory information.
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prediction precision. Furthermore, we apply an adapted singleton transformer deep learning archi-
tecture that captures the mobility pattern from multiple trajectories. The proposed deep learning
model outperforms baseline models in both deep and conventional machine learning classifiers,
as well as customized algorithms for spatiotemporal trajectory data. In particular, by feeding the
large-scale densely sampled trajectory data as training input, our model achieves a near-optimal
overall accuracy on the records labeled by the single trajectory inference algorithm. On unlabeled
records, our model outperforms the single trajectory inference by a factor of two with extremely
sparse trajectories as input. Experiment results also demonstrate that the proposed model gener-
alizes to different urban data sources and scales to large datasets.

APPENDICES
A  PROOFS AND THE EXACT ALGORITHM

THEOREM 1 (INTRINSIC LINKAGE BETWEEN DISCRETE AND CONTINUOUS MOBILITY OF A TRAJEC-
TORY).

ProoF. Theorem 1(a). For the discrete stay segment y in the time series @ = {t,,, ..., tq} (tg—tp >
AT), consider its corresponding continuous segment y” in the time period 7 = [t,,,]. y’ satisfies
7| = tq—tp = AT.Vt;,t; € T,wehave ||((t;)=C(t) || < [[€(t:)—CEDI+IE@) - EED () =L (@),
given that the straightline is the shortest distance between £(t;) and £(t;). Here, t; and tjf are the
closest time point in w to t; and t; respectively. Because ||£(t]) — {’(tjf)|| < AS, |E(t;) — (@) <
€ Umax ||€(t]f) = ()l < € Vmax, we have [[£(t;) = €(tj)|] < AS+2-€-Upmax. Thatis, y’ is a stay
segment by Definition 1(a) under the parameters of A’S = AS + 2 - € - Uy and A’'T = AT.

Theorem 1(b). For the discrete travel trip y in the time series w = {t,,..., 4}, by definition,
we have Vti’,tjf € w (tJ’ -t/ > AT), there exist two time points t,,,t, € o (t] < t;, < t; < t]’)
satisfying [|€(¢t;,) — €(t})|] = AS. Consider the corresponding continuous segment y’ in the time
period 7 = [tp, t4], Vt;,t; € T (tj — t; 2 AT + 2 - €), we can find ;] (the closest time point in w no
smaller than f;) and ¢} (the closest time point in w no larger than t;), having t; — ¢/ > AT. There
exist two time points t,,,t; € w (t; <t] <1}, <t < t; < t;) satisfying |[€(t},,) = £(t;)]] > AS. That
is, y’ is a travel trip by Definition 1(b) under the parameters of A’S = ASand A’T = AT +2-e. O

THEOREM 2 (CONTINUOUS MOBILITY OF DENSE STAY SEGMENTS).

ProOF. Theorem 2(a). For the dense stay segment y defined in the time series w = {tp, ..., tq),
consider its corresponding continuous segment y” in the time period 7 = [t,,1,]. We have |7| =
tq —t, = AT because y is the dense stay segment. For any two time points t,t" € [¢,, t4], denote
the closest time points in the time series of w to t and t" ast; and t; (p < i < g, p < j < q). We
have [|£(t) = €(")I] < [16(2) = €@+ [1€(8:) — E@E)I+ [1€(8) — €@ < AS/3+AS/3+AS/3 = AS
by Observation 1. The conditions for the continuous model of the stay segment in Definition 1(a)
then hold.

Theorem 2(b). For the discrete segment y defined in the time series w = {,, ..., 4}, consider its
corresponding continuous segment y” in the time period 7 = [t,,,t,]. If Ip < i < q, t;y1 —1; > AT,
i.e., the unobserved time period of (¢;, t;+1) has a duration longer than AT. Observing a time period
7’ C (t, ti+1) with |7’| = AT can detect a different stay segment from the other part of the segment
in (t;, ti+1). Then, there can be travel trips surrounding the segment in 7’ to connect the trajectory.
This possibility can not be validated or rejected given the information of the discrete segment
y only. Therefore, the corresponding continuous segment y’ can not be inferred as stays, unless
vai<q, tivi — b < AT.

On the dense segment y, if the corresponding continuous segment y’ is the stay segment, by
Definition 1(a), V;,t; € w C 7, [|€(t;)—£€(tj)]| < AS. Therefore, y must be a dense stay segment. O
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THEOREM 3 (CONTINUOUS MOBILITY OF TRAVEL RECORDS).

Proor. Theorem 3(a). For the record at time ¢;, consider any time period 7 = [¢,t’] satisfying
|7| > AT and t; € 7. If the three conditions hold, the time period of 7" = [¢,, t,] satisfies |7'| < AT
and t; € 7. We have t, € 7 or t; € 7. Otherwise, we will have t, < t and t4 > t’, which leads to the
contradiction of |7’| = t; —t, > t' —t = |r| > AT. For the either case of t, € 7 or t; € 7, we have
[1€(t:) — £(tp)|| = AS and ||£(t;) — £(tg)|| = AS. This contradicts to Definition 1(a). Therefore, the
record at time #; can not be in any stay segment, and it must be in a travel trip by Definition 1(b).

Theorem 3(b). For the record at time ¢; (1 < i < L), if the condition does not hold, V1 < p < i <
q < L satisfying t, — t, < AT, we have [|€(t;) — ()| < AS/2 or [|[€(t;) — £(tg)|| < AS/2.

Consider the smallest time point ¢; satisfying t; > t; and [|{(t;) = €(t;)|| = AS/2. We should
have t; — t; < AT because otherwise Vt; < tx < t;, [[{(t;) — C(tx)Il < AS/2. There exists a
time period of 7/ = [t;,t;), for all observed t; € 7/, ||{(t;) — €(tx)|| < AS/2. Then Vi, ty € 7/,
(k) — C(ti)] < [1E(t) — C(te)l] + 11€(t) — €(trr)]] < AS, t; will be possibly in a stay segment,
without the information to reject the possibility.

Having t; — t; < AT and [|£(t;) — €(tj)]] = AS/2, using the proof by contradiction, we have
Vk < isatisfying t; — t; < AT, we have ||£(t;) — €(tc)|| < AS/2. Consider the largest time point ¢;
satisfying t; — ty > AT, we can construct a time period of (¢, t;), for all the observed time point
of t; having j* < k < j, we have ||€(t;) — €(tx)|| < AS/2. The distance between these observed
time points is below AS. Then there can be a continuous segment in the time period of " C (5, t;)
satisfying |7’| = AT. We do not have any information to reject the inference of stays on this
segment. Therefore, the record at t; € 7’ can not be in any travel trip. O

We introduce an exact algorithm to infer the discrete mobility (Definition 2) from densely sam-
pled trajectories, as shown in Algorithm 2. The algorithm iterates all the candidate segments in
a trajectory to decide whether they meet the condition of stays. The records not in any stay seg-
ments are travels. The algorithm has a computational complexity of O(L*) (L is the number of
records in a trajectory), which is computationally infeasible for the large-scale trajectory data. In
our targeted scenario, we do not have the densely sampled trajectory.

B MATERIAL FOR THE SDS ALGORITHM

To validate Observation 1, we conduct an experiment on the full dataset in Beijing. For each record
in a trajectory, we explicitly remove the record and detect all the dense stay segments from the re-
maining trajectory. If the record is within a dense stay segment, we check whether the record,
as time ¢, violates Observation 1. As shown in Figure 10, among 10-billion potential <record,
interval> pairs for each parameter setting, the probability of violating Observation 1 is below
107° if AS > 800m and AT < 30min.

In the mobility definition of the trajectory model, the parameters of AS and AT need to be
determined. In fact, these parameters provide the flexibility to capture the multi-scale mobility in
the human trajectory. Inside the city boundary, AT and AS can be minutes and meters to describe
the short-term stays and travels; while in the state level, AT and AS can be days and hundreds of
kilometers to characterize the stay in a city and the travel between cities.

We focus on the detection of intra-city travels because the number of travel records is much
fewer than the stay and the detection of stay is relatively insensitive to the parameter change
(Figure 4(a), Figure 11(a)). The goal is to detect more travels while keeping the mobility definition
reasonable. According to Figure 4(b), we pick AT = 30min because the detected ratio of travel does
not increase much when switching to AT = 45min and it does not impose a strict stay definition
which violates Observation 1. Similarly, according to Figure 11(b), we pick AS = 800m which
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settings in [6, 17].

maximizes the recall of travel ( ) and allows a mild stay definition compared with

C GENERATION OF THE SIMULATION DATA

First, we apply the CTRW model in [5, 15] to generate artificial human trajectories. The model
characterizes the human trajectory as a two-state interplay between the scale-free displacements
(travel) and a long-tailed waiting time distribution (stay). The probability density functions of both
the travel distance and the waiting/stay time apply the truncated power-law function observed in
[15]. The exponent parameters of the function are calibrated by our trajectory dataset applying
the SDS algorithm. Each trajectory starts from a random location. Within each stay period, the
location at any time is computed by the stay location plus a random spatial offset smaller than
AS/2. The travel between consecutive stay locations is assumed to be a straight-line, constant-
speed trajectory. The parameter speed controls the ratio of the stay/travel time.

Second, each trajectory is sampled using the timestamps in the full data of Section 6.1. The
generated trajectory is further re-sampled by the given re-sampling rate for the real usage in the
experiment.
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ALGORITHM 2: The exact algorithm on dense trajectories.
Input :T = Ujep, 1) < ti, €(t;) >, t1 < --- <ty (dense trajectory), AT, AS (the space and time

parameters)
Output:Is,r(t;), Vi € [1, L] (the mobility of each record)
1 begin
2 for head < [1,L — 1] do
3 for cursor < [head + 1,L] do
/* iterate all the candidate stay segments */
4 if teursor — thead = AT then
5 for i « [head, cursor — 1] do
6 for j « [i + 1, cursor] do
7 L if [[€(t;) — £(tj)]] = AS then
8 L Stay <« False, Break
9 if Stay! = False then
10 for i « [head, cursor] do
1 | Is/r(ti) «S
/* the remaining records are travel trips */
12 fori « [1,L] do
13 ifIS/T(ti)! = S then
14 | Isyr(ti) «T
15 return Is/7(t;),i = [1,L]

D REPRODUCIBILITY INFORMATION

Upon the publication of this article, we will provide the software codes and the compiled mod-
els including but not limited to the SDS algorithm, the optimized deep learning architecture, the
baseline neural network models, and the alternative feature-based classifiers. On the dataset, we
will make open a sample sparse trajectory dataset (FU-10K) and its labeled version by the SDS
algorithm. Because the authors are not permitted to re-post the raw trajectory dataset, the sample
trajectories will be open with pre-defined offsets added to both location records (longitude and
latitude) and timestamps. It has been tested that these offsets do not affect the model performance
used in this work. Upon request, we will point interested researchers to the owner of the raw
trajectory data for the permission to access it.
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