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Studies of the human brain network are becoming increasingly popular in the fields of neuroscience, com-

puter science, and neurology. Despite this rapidly growing line of research, gaps remain on the intersection

of data analytics, interactive visual representation, and the human intelligence—all needed to advance our
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understanding of human brain networks. This article tackles this challenge by exploring the design space

of visual analytics. We propose an integrated framework to orchestrate computational models with compre-

hensive data visualizations on the human brain network. The framework targets two fundamental tasks: the

visual exploration of multi-label brain networks and the visual comparison among brain networks across

different subject groups. During the first task, we propose a novel interactive user interface to visualize sets

of labeled brain networks; in our second task, we introduce sparse regression models to select discriminative

features from the brain network to facilitate the comparison. Through user studies and quantitative exper-

iments, both methods are shown to greatly improve the visual comparison performance. Finally, real-world

case studies with domain experts demonstrate the utility and effectiveness of our framework to analyze re-

constructions of human brain connectivity maps. The perceptually optimized visualization design and the

feature selection model calibration are shown to be the key to our significant findings.

CCS Concepts: •Human-centered computing→Visualization techniques; • Information systems→

Data mining;
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1 INTRODUCTION

Recent advances in Magnetic Resonance Imaging (MRI) (Huettel et al. 2008)—a non-invasive tool
frequently used in medical imaging applications, have revolutionized our understanding of the
structure and function of the in vivo human brain. Particularly, diffusionMRI (Merboldt et al. 1985),
or diffusion weighted imaging (DWI), is widely used to obtain information about the neural archi-
tecture of the human brain. Most recent efforts in the field have helped model the human brain as
a complex network of connections, also known as the human “connectome.” At microscopic level,
the connectome consists of neural pathways, as dictated by the signal from hundreds of billions of
neurons (andmanymore synapses) and their neural connections. At macroscopic level, many find-
ings that focus on the human connectome (Daianu et al. 2013, 2015; Crossley et al. 2014) report on
the structural and functional properties describing the coupling between distinct cortical regions.
In this work, we target the structural human brain network at the macroscopic level recon-

structed from neuroimaging data (both DWIs and anatomical MRI scans). The brain network nodes
are defined by specialized brain regions parcellated according to neuroanatomical labels or coordi-
nated activities, also known as Region of Interests (ROIs). The network edges are the connections
between ROIs inferred from the neuroimaging data (Davidson et al. 2013), where the edge weight
represents the strength of the connection, e.g., the number of fibers going through the source and
target ROI. In such networks, the number of nodes and ROIs can range from a few tens to a thou-
sand, depending on the granularity of the parcellation. Because a 1,000×1,000 brain connectivity
network is visually complex to be interpreted by users, our preliminary study here focused on the
coarser-grained brain networks consisting of 68 or 70 ROIs segmented from the T1-weighted MRI
scans by the FreeSurfer software1 (Dale et al. 2012), and the edges were obtained from the white
matter pathways extracted from a whole-brain tractography (Jin et al. 2014).

Much progress has been made with collecting and processing data on the human connec-
tome, e.g., under the topic of brain network analysis in the data mining field (Kong and Yu 2014).

1There is a small difference in the number of ROIs across our two brain network datasets because they are processed by

different versions of the FreeSurfer software.
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However, it is not yet clear how to accurately illustrate thesemultivariate and complex networks in
order to utilize all existing information and advance our understanding of the human connectome.
It is indisputable that the visualization methods are essential in analyzing brain networks and are
of interest to various fields of research (e.g., neuroscience researchers on the data analytics side and
physicians on the clinical side). In its core, the problem of jointly optimizing the data miningmodel
and the visual representation design on brain networks has barely, if at all, been studied before.
Some of the questions that arise relate to the overall brain network representation in healthy and
diseased populations, in addition to differentiating factors between healthy and diseased patterns
of connectivity, e.g., Alzheimer’s Disease (AD) (Daianu et al. 2013). In essence, the macroscopic
structural brain networks studied here can be interpreted as multi-labeled networks—where mul-
tiple labels describe clinical and other properties about the participants and their corresponding
brain networks. These labels include the subject’s age, gender, healthy/diseased status and their
IQ level, and so on. The illustration of network differences correlated with relevant subject labels
is the main problem studied in our work.
In methodology, the motivation behind this work is to initiate and demonstrate the use of effec-

tive visual analytics (VA) techniques that combine both visualization and data mining techniques,
and then seamlessly integrate them into an interactive visualization system.We envision the neces-
sity of VA techniques on brain network analysis for three reasons. First, the nature and organiza-
tion of brain networks are highly complex, and at the cortical level, the network is denser thanmost
scale-free social networks previously studied. The graph density2 of a 70-region brain network can
reach a level of 0.4 in our dataset, which means that each region of the brain will connect, on aver-
age, to 40% of all other brain regions. In a visualization-only approach, a hairball-like picture is of-
ten drawn, making it difficult to analyze and interpret by human users. Second, the brain networks
of healthy individuals of similar age may have only small differences. For cognitive tasks such as
the network comparison subject to the clinical data (i.e., the declining cognitive scores), users can
hardly extract meaningful patterns only from the visualization of raw connectivity data. Third, the
data mining models and algorithms for brain network analysis are still in their infancy, VA systems
can serve as exploratory tools that aid the development of more accurate models and algorithms.
In this article, we target two fundamental tasks on the brain network analysis: (1) the visual

exploration of the multi-label brain network dataset, for example, to visually slice and dice a set of
brain networks into multiple groups by their labels; (2) subsequently, the visual comparison among
the groups of brain networks categorized by their labels. Recent studies on network visualization
proposed elegant algorithms to illustrate and navigate large, dynamic and multivariate networks
(Battista et al. 1998; Herman et al. 2000; Kerren et al. 2014), but little has been done on a set of

networks sorted intomultiple diagnostic groups, and how the visualization design can be optimized
to support the group-wise visual comparison. On the other hand, network topologies have been
previously studied and visualized for comparison purposes (Gleicher et al. 2011), but rarely on
weighted networks having non-uniform edge attributes, e.g., the fiber connection strength of brain
networks.
Beyond the previous conference publication, the contribution of this extended article can be

summarized as follows:

—An integrated visual analytics Framework aimed at the visualization and exploratory analysis
of multi-label weighted brain networks. Several interactions customized for the analysis of
large complex networks are introduced (Section 3).

2p/( n2 ), see Table 1 for notations.
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—Visualization designs for network comparison (Section 5) optimized according to the human
perception theory (Section 6.1) and real-life brain network datasets (Section 3.1).

—Sparse regression models based on a series of regularization methods in comparison to ex-
isting network-aware feature selection methods (Section 4), to select discriminative brain
network features shown in the visualization interface, and to accelerate the task of visual
brain network comparison. The best model can be obtained through the built-in function-
ality for model selection and performance comparison. Note that in this work, we consider
the edgeweight on brain networks as features, i.e., the strength of fiber connections. Feature
selection (or edge feature selection) means selecting a set of edges on the brain network and
using their edge weights/strengths for brain network classification or visual comparison.

—Multi-modal evaluations, by the user and quantitative experiments on the JND theory
(Section 6.1), visual designs (Section 6.2) and feature selection models (Section 6.3). New
case studies are conducted with domain experts from the fields of neuroimaging and neu-
romedicine, on the brain network obtained using DWI from distinct groups of subjects
(Section 6.4, Section 6.5). All the evaluation results point to the success of the proposed
visualization design, computational models, and the integrated visual analytics framework.

2 RELATEDWORK

2.1 Brain Network Analysis

Brain network analysis emerges as a compelling topic due to the maturation of non-invasive neu-
roimaging techniques (Kong and Yu 2014). The raw neuroimaging data is oftentimes modeled as a
high-order function by a three-dimensional (3D) image and a time component. Using these com-
plex data, fundamental problems can be formulated on brain connectomics (Davidson et al. 2013).
On the network analysis, researchers define network nodes to detect brain regions with coordi-
nated activities, and define edges to detect binary or weighted relationships between these nodes.
Over the brain networks, machine-learning algorithms can be used to infer the disease patterns
(e.g., AD (Sun et al. 2009; Huang et al. 2011)) or other variables of interest that correlate with
the network difference. In this process, combining neuroimaging data with the additional patient
information (e.g., genetic profile and demographic information) can help improve the learning per-
formance (Ye et al. 2008). In addition, subgraph extraction and analysis is an active research topic
on brain networks. New methods have been proposed for frequent and discriminative uncertain
graph mining (Zou et al. 2010; Kong et al. 2013; Cao et al. 2015). Though much progress has been
made in this area of study, the problem of jointly optimizing data mining models and visualization
designs has barely, if at all, been studied before.

2.2 Feature Selection

Feature selection is a classical problem in the machine-learning research. Depending on whether
the clustering results are used during the selection process, unsupervised feature selection
can be categorized into wrapper models and filter models. Representative wrapping models
include FSSEM algorithm (Dy and Brodley 2000), co-selection of rare instance and features (He
and Carbonell 2010), mutual-information based criterion (Law et al. 2002), and evolutionary
search-based algorithm (Kim et al. 2000). Different from wrapping models, the selection process
in the filtering model is independent with the specific algorithm that generates the clustering
result. Representative approaches include Laplacian score (He et al. 2005), maximum information
compression index (Mitra et al. 2002), distance-based entropy (Dash and Koot 2009) and many
more. On the other hand, supervised feature selections aim to leverage the supervision (e.g., class
label, regression output) to guide the selection process for a subset of discriminative features.
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Representative methods include spectral feature selection (Zhao and Liu 2007), backward–forward
algorithm (Zhang 2011), relevance feature vector machines (Cheng et al. 2007). Readers can refer
to Tang et al. (2014) for a more complete survey. On our problem, feature selection methods have
been studied together with the visualization interface (Krause et al. 2014), which can be applied
to the brain network case to highlight important edge features. However, it is still unknown that
whether the feature selection method can improve the user performance on the visual comparison
task, and which feature selection model is the most appropriate on such task.

2.3 Multivariate Brain Network Visual Comparison

Wattenberg pioneered PivotGraph (Wattenberg 2006), an attribute-centric node-link visualization
of multivariate networks. PivotGraph leverages a roll-up operation to pivot the nodes with the
same value on one or two attributes into aggregations. The attributes used can be picked manu-
ally to generate different PivotGraph views. In the data selection operation, the network can be
reduced to only show node aggregations with specified attribute values. Our framework shares
the similar idea in abstracting networks by their node attributes. Beyond the aggregation method
in PivotGraph, we allow dynamic splitting of network abstractions by additional node attributes,
which works as a fundamental operation for the visual comparison task.
Many other multivariate network visualization methods have been proposed since PivotGraph.

OntoVis (Shen et al. 2006) abstracted the network based on the ontology graph of social networks.
Semantic Substrate (Shneiderman and Aris 2006) proposed a user-defined layout method to place
nodes in non-overlapping regions according to their attributes. GraphDice (Bezerianos et al. 2010)
applied a scatterplot visual metaphor to the overview of multivariate networks. FacetAtlas (Cao
et al. 2010) extracted the multi-faceted entities and relationships from a collection of documents.
While these methods focus on visually pruning a large multivariate network into smaller and
simpler abstractions for the static visualization, our framework extends to support navigation and
exploration on these network abstractions.
In the literature, the task of visually comparing weighted (brain) networks with node attributes

and edge features is largely unexplored, though the comparison on graph topologies has been
studied for a while (Gleicher et al. 2011). ManyNets (Freire et al. 2010) proposed an interface to
analyze multiple attributed networks simultaneously, but it focuses more on the comparison of
high-level statistical attributes, and not on their network patterns defined by nodal and edge fea-
tures as studied in this article. The recent work by Alper et al. (2013) might come closest to our
work. They evaluated the effectiveness of two visual representations for the weighted graph com-
parison. However, their work is more on the design side and less is done on the visual analytics
loop integrating advanced data analysis models and the comparative visualization optimized for
human perception.
While our work targets at the structural brain network and the comparison among multiple

subject groups, another class of research visualizes the functional brain network detected by func-
tional MRI (fMRI), where the time dimension can be more important than their subject classifi-
cation. The recent work of Small Multipiles (Bach et al. 2015) and Time Curves (Bach et al. 2016)
develop novel visual metaphors to represent the dynamic brain network over time. Specially, Small
Multipiles summarizes a series of brain networks into sequential piles where each pile is displayed
by a cover adjacency matrix showing the snapshot of that pile. Time Curves focuses more on the
evolution of brain networks over time, which draws a summary curve overlaid with nodes by
the Multi-dimensional Scaling (MDS) projection. The overall pattern of network similarity and
dissimilarity can be clearly delineated by Time Curves.
In summary, existingmethods for both brain network visualization and analysis mostly consider

one aspect of the question at task (i.e., either datamining or visualization) and are suboptimal when
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Fig. 1. The human brain network based on 70 cortical ROIs listed in the left column: (a) Grey andwhitematter

compartments; (b) Parcellations defined using the Desikan–Killiany atlas; (c) Nodal degree distributions

of individual and all brain networks; (d) Sagittal plane of the aggregated brain network; (e) Axial plane;

(f) Coronal plane.

both the visual and the analytical constraints are applied simultaneously. The idea of combining
visualization, rich user interaction and machine-learning algorithms has been pioneered in Apolo
(Chau et al. 2011), but their work does not target on the brain network analysis, which is the focus
of this article.

3 VISUAL ANALYTICS FRAMEWORK

In this section, we first give an overview of the human brain network studied in this work, then
we propose a modeling of the brain network data and the visual analytics framework over the data
model.

3.1 Human Brain Network and Characteristics

The generation of human brain networks is quite challenging and may be accomplished using var-
ious approaches. In this work, we follow the process to generate the brain network as described
in these articles (Daianu et al. 2013; Gray et al. 2012). The raw inputs are the 3D anatomical scans
from structural MRI; these images can be segmented into white and grey matter compartments
(Figure 1(a)), and further parcellated into 68 or 70 distinct ROIs using the Desikan–Killiany atlas
(Desikan et al. 2006) as implemented in the FreeSurfer software (Dale et al. 2012) (Figure 1(b)).
These ROIs are listed in the left column of Figure 1. Next, DWIs are used to infer the neural path-
ways and connectivity patterns of the brain’s connectome through a method called tractography
(Jones 2008). DWI is capable of capturing subtle changes in the white matter make-up using mea-
sures that are sensitive to white matter fiber integrity and microstruture, otherwise not detectable
with structural MRI. From DWI, we define the edges (i.e., fiber bundles) that interconnect the pairs
of nodes in the network and allow information transfer among regions of the brain. The edges can
be assigned a variety of weights, most commonly, by the function of the edge strength, which is
determined by the total number of fiber connections (i.e., fiber density) that pass through a pair of
nodes. The resulting brain network describes the overall connectivity pattern of the human brain.
We studied two datasets in this work, each composed of the brain network of multiple subjects

together with the demographics (labels) of each subject. The first dataset was obtained from the
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).3 In total, 202
subjects underwent whole-brain MRI at 16 different sites across North America with ages ranged
from 55 to 90 years. Among these 202 subjects, 50were healthy controls, 72 had earlymild cognitive
impairment (eMCI), 38 had late mild cognitive impairment (lMCI), and 42 were AD patients. For
each subject, we reconstructed a network with 68 ROIs using the Desikan–Killiany atlas (Desikan
et al. 2006). We also ran whole brain tractography using the Hough transform to define the fiber
connections (i.e., network edges) with weights describing the fiber density between a pair of ROIs.
To focus on the network-level patterns, we removed the connection from each region to itself (i.e.,
the diagonal cell in the adjacency matrix), which left 2,278 edge features in each brain network.
Each subject is recorded with three labels: gender, age, and the diagnosis information.
The second dataset included the brain network from 113 subjects released by the OpenCon-

nectome project.4 For each subject, a brain network with 70 ROIs (i.e., nodes) according to the
Desikan–Killiany atlas was computed. The edge weight between a pair of nodes represented the
normalized fiber density between two ROIs. In this OpenConnectome dataset, each subject had
demographic information on gender, age, Full-Scale IQ (FSIQ) scores, Composite Creativity Index
(CCI), and the Big Five personality traits. We classified the value of each measure into several
classes to facilitate the network comparison tasks. For example, FSIQ and CCI were categorized
into two classes each: the high class with FSIQ or CCI higher than or equal to 100 (the average
across population) and the low class with FSIQ or CCI smaller than 100. Notably, all subjects were
from young and educated population. Their ages ranged from 18 to 29 years, and 90% of them
obtained a FSIQ score above the average. Therefore, on the comparison task for this dataset, we
focused on the two CCI groups that had more balanced group sizes.
To showcase the necessity for newmethods on the brain network visual analytics, we have con-

ducted an empirical study on the characteristics of the 113-subject OpenConnectome dataset. In
Figure 1(c), the cumulative distributions (CDF) of the nodal degree in the 70-region brain networks
are illustrated, including the networks of nine randomly selected subjects and the overall degree
distribution of all 113 networks (in red). It is noticeable that the brain network is considerably
dense—about a half of nodes have a nodal degree greater than 30 (i.e., connecting more than 40%
regions in the whole brain network). Also, the networks are similar among subjects, the degree
distributions of all the nine sampled networks vary within a ±15% range from the overall degree
distribution. Considering the exponential distribution of the edge strength and the 3D node layout,
the brain network can be highly complex in a full-scale visualization. In Figure 1, we depicted the
aggregated 113-subject brain network in the sagittal plane (left/right) (Figure 1(d)), axial plane (an-
terior/posterior) (Figure 1(e)), and coronal plane (superior/inferior) (Figure 1(f)). Throughout this
study, we will mostly use the axial plane because of its better performance for visual comparison.

3.2 Data Model

We generalized the multi-label brain network datasets into a unified data model to conduct brain
network analysis and visualization across multiple subjects. The model is similar to the classical
multivariate network model with a set of local attributes attached on each node/edge. The major
difference lies in the introduction of global attributes, also known as the network labels, which
are defined for each subject at a higher level than the local attributes of each node and edge. For

3The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.

The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
4http://www.openconnectomeproject.org.
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Fig. 2. The visual analytics framework for a set of multi-label brain networks. The initial SMD view (S1) lists

the brain networks of all subjects, allowing to sort by subject attributes. The SMD view can be aggregated

into a single network (S2) showing the average connectivity of all subjects. The aggregation network can be

further split according to certain subject attribute for the comparison purpose.

example, subjects can have their demographic information recorded (e.g., age and gender). To adapt
to the use of global attributes, the straightforward change to the data model is to replicate all the
labels of a subject onto each node (brain region) of the subject, but this would lead to a significantly
larger dataset, and slows both the data loading and processing. We designed an extended multi-
label graph data model that stores the subject labels in a global data section. This data model is
implemented in the GraphML format5 (other lightweight formats such as JSON are also possible).
The new content beyond the standard network model includes the subject metadata under <key>
tags, the subject labels under <graph> tags, and the replicated subject index on each node under
the <node> tag, all without violating the GraphML standard. Upon an attribute query on graph
nodes, the graph metadata is first examined to find out whether the query is on the global attribute
of the subject or the local attribute of the graph node. In case of global attribute, the subject index is
retrieved as the key to query the subject label, while in case of local attribute, a standard GraphML
query process is followed.

3.3 A Three-Stage Visual Analytics Framework

Based on the proposed data model, we introduced a visual analytics framework that can not only
support the visual comparison among sets of multi-label brain networks, but also conduct explo-
rative analysis over the brain network dataset. In Figure 2, the framework is conceptualized into
a three-stage pipeline. In the initial stage (S1), the set of input brain networks are visualized in
small-multiple displays (SMD), with each subject’s brain network shown as a thumbnail. These
thumbnails can be sorted by certain attributes of the subject to reveal the correlation of the brain
connectivity with the selected subject attributes. This feature is known as the SMD sorting. The

5http://graphml.graphdrawing.org.
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Fig. 3. The user interface of the proposed brain network visual analytics tool ((a–f) compose one screen

shot of the tool, and (g, h) are alternative tabs of the bottom-left filter panel). The dataset is part of the

ADNI Consortium and includes 202 subjects: 42 Alzheimer’s Disease (AD) patients, 38 patients with late

mild cognitive impairment (lMCI), 72 with early mild cognitive impairment (eMCI), and 50 healthy controls.

The edge color saturation and line thickness indicate the average fiber strength at each connection. Only

discriminative edge features selected by a chosen model are displayed for comparison purposes. Our results

are in line with previous findings in the neuroscience literature (Thompson et al. 2001; Daianu et al. 2013),

which indicate that AD patients undergo certain breakdown of fiber connections in the frontal, temporal

and parietal lobes, predominantly in the left hemisphere (right part in this back-side view, e.g., R10 and R28).

SMD view gives an overall snapshot of the entire dataset, but is information-overloaded for any
detailed analysis on network connectivity. To proceed to the second-stage analysis, users issue an
interaction to aggregate all the brain network nodes by their region indices. In other words, the
nodes from all subjects indicating the same brain region are represented by one group node, and
the edges are aggregated accordingly. In this way, a single view representing the brain network
of all the subjects is displayed, as shown in the S2 stage of Figure 2. This aggregation view en-
ables the visual analysis of the overall brain connectivity, and also allows pattern discovery on
an average brain network structure. In the third stage (S3), the single network view is split into
multiple sub-views by adding one or more subject labels into the attribute list for aggregation.
The resulting side-by-side visualization can help users complete the visual comparison task and
analyze the relationship between the brain network connectivity and the subject’s label informa-
tion. For example, when users select the gender label in our dataset, two brain network sub-views
aggregated from the network of 50 female subjects and 63 male subjects are generated and dis-
played in a side-by-side comparison display. Note that the three-stage pipeline presented here is
a recommended visual analytics paradigm designed based on our practice on the brain network
analysis. Many other analysis trails are also feasible within our framework. For example, from the
SMD view (S1) showing the brain network of every single subject, users can directly proceed to
the visual comparison view (S3) by configuring an appropriate aggregation attribute list.
We have implemented a brain network visual analytics tool based on the proposed three-stage

framework. Figure 3 gives the user interface. Besides the key design feature of aggregation-by-
attribute that stitches together adjacent stages in the pipeline, our tool also supports several other
user interactions to help customize the visualization for the purpose of brain network comparison,
explorative analysis and navigation. These interactions are summarized as below.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 1, Article 5. Publication date: February 2018.
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SMD sorting. The thumbnail view in SMD can be arranged by selected subject attributes. Two
subject attributes can be specified. First, the brain graphs are sorted into multiple groups by their
value on the primary subject attribute. Within each subject group, the brain graphs are further
sorted by the secondary subject attribute. For example, in the S1 stage of Figure 2, subject’s brain
graphs are sorted first by their gender and then by age. The labels on top of each brain graph in
the SMD view indicate the selected primary and secondary attribute values on each subject.

Node/Subject filtering. The bottom-left part of the visualization interface (Figure 3(b)) is equipped
with a multi-tab network filtering panel. The first tab (Figure 3(g)) allows users select one item
from the local node attributes or global subject labels, as defined in the data model. The values
of the selected attribute/label from all brain network nodes are then listed. For example, when
“diagnosis” is selected, the value list of “AD, eMCI, lMCI, and Control” shows up. Users can add
binary filters to remove the subjects with undesirable attribute values from the visualization. In
Figure 3(g), the filters are configured to filter out subjects with eMCI and lMCI in diagnosis. Note
that this filtering mechanism works at all the three stages of the proposed pipeline in an iterative
manner that the network display in all the following operations will be affected.

Edge aggregation pruning. The second tab of the network filtering panel, as shown in Figure 3(h),
allows users to prune brain network edges by their statistical measures. In the network aggrega-
tion/comparison view, each edge aggregation is composed of a set of single-subject edges onwhich
several statistical measures can be defined, such as the average, standard deviation, and coefficient
of variance of edge strengths. Users can select one of these measures to display its CDF over all
edge aggregations. Dynamic queries on both the top and the bottom edge aggregations are pro-
vided to guide the edge pruning operation. Note that we support two modes on the edge pruning.
In the default mode, the edges are pruned temporarily and will come back upon the next opera-
tion. In another iterative mode, the pruned edges are removed in the data model, so that all the
following operations will work on the pruning result, which enables the iterative analysis over
brain networks.

View specification. The network view in each stage can be customized to deliver more informa-
tion. First, the statistical measures on the node and edge aggregation can be mapped into different
visual channels on the network display, including the color saturation, the line thickness, and the
node size. Linear feature mapping is used by default, and we also propose non-linear mappings to
optimize the visual comparison performance (Section 5). The edge measures are also accessible as
textual labels. Second, by using different projections, we support to observe the 3D brain network
from three viewpoints: the sagittal view, the axial view, and the coronal view. Third, users can
apply traditional network interactions, such as zoom and pan, drag and drop, click and range se-
lection, to examine the details of the brain network. By the selection interaction, the information
of the selected nodes/aggregations/subjects is shown in the list panel (Figure 3(e)) and the detail
panel (Figure 3(f)), respectively,

Edge feature selection. On the third-stage comparison view (S3), the aggregated brain networks
for different groups are often indistinguishable in the visualization, due to the similar brain struc-
ture among subjects. In our framework, we introduced the computational edge feature selection
method to extract fiber connections that are both discriminative and visually salient among com-
paring subject groups. This is achieved through the interaction on the third tab of the network
filtering panel (Figure 3(b)). Users start by designating one feature selection model from the drop
down list. This model is applied so that only the edge features selected by the model are displayed
in the comparison view. A default model parameter (i.e., the sparsity in this implementation) is
used initially, and the parameter can be tuned with the model selection slider (bottom part of
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Figure 3(b)). Above the slider, the number of selected features under each sparsity parameter is
depicted by default as the performance curve. This curve can be switched to report other per-
formance measures of the model. The candidate measures include the cross-validated prediction
accuracy, the perception-level visibility by the ratio of visible features, and the clustering coeffi-
cient of selected features, which indicates the degree of grouping. Users can choose the best model
according to their preference on the model performance.

4 SPARSE REGRESSION MODEL

The side-by-side visualization introduced in this work is designed to optimize the human compar-
ison task on edge features (i.e., the brain network connectivity). This is feasible for users when
most features in comparison have significant differences. In the experiment of Section 6.1, we in-
jected controlled differences on 50% edge pairs displayed in the visual comparison and varied the
difference ratio during the study. Results showed that 50% users can recognize an injected differ-
ence larger than 10.9% of the maximal edge feature value, aligning well with the theory of Just
Noticeable Difference (JND) as explained in Section 6.1. On the other hand, take the ADNI dataset
as an example and compare the average brain network of 42 AD patients and 50 healthy controls.
Only four pairs of edge features have a larger difference than 10.9% of the maximal edge feature
value in the aggregated average networks. Applying the feature capping method (Section 5) can
increase the number of noticeable edge pairs to 31, but still only covers a 1.36% share of all 2,278
edge pairs displayed in the full-scale comparison. The large amount of similar edge pairs introduce
a masking effect that slows or even prohibits users from detecting significantly different edges in
the comparative view.
We propose to apply the computational feature selection method to the visual comparison of

brain networks. The basic idea is to jointly optimize the utility of the selected features for both
statistical analysis and visual comparison. Besides the sparsity requirement in the general feature
selection methods, we introduce two additional objectives to optimize on the selected features:
(1) the group-level classification and prediction accuracy; (2) the visual difference among groups
in the comparison. In the final model-driven visualization, only the selected edge features are
displayed. This helps users focus on significant differences, without interruptions by the homoge-
nous background mask. On the other hand, in the scenario of brain network analysis, there can be
a much smaller number of subjects (N ) than the number of edge features (D). The feature selection
method greatly reduces the effect of overfitting in the predictive model.
Before introducing the feature selection method for visual comparison, we first define some

necessary notations, which are listed in Table 1. The raw input of the method is the brain network
of N subjects, denoted by G1, . . . ,GN . Each network has the same number of nodes (cortical re-
gions), denoted by n; andp edges (fiber connections) between pairs of nodes, denoted by e1, . . . , ep .
The edge weight is defined by the strength of the edge, in our scenario, the total number of fiber
connections going through the source and target cortical regions. On Gi , the network of the ith
subject, the edge strengths are denoted by the weight vector Xi = (xi1, . . . ,xip )

′. For simplicity,

we assume that every brain network has the same number of edges by p = n (n−1)
2 . For those edges

that do not have fiber connection, we set their components in the weight vector to zero.
At the network level, each subject and their brain network is associated with a discrete outcome

variable, e.g., the demographics and the diagnosis of a patient. The value of the outcome on N
subjects is denoted by the vector Y = (y1, . . . ,yN )

′, where yi has K possible levels. This outcome
variable classifies all subjects into K disjoint subsets by S1, . . . , SK . In the visual comparison, the
brain networks in each subset are aggregated together into one sub-view by the region index, thus
generatingK sub-views in total, denoted byV1, . . . ,VK . Due to the homogeneity of brain networks,
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Table 1. Notations

Symbol Description

N , Gi # of subjects and their brain graphs

n, p, ej # of nodes, # of edges and each edge in the brain graph

X , xi , xi j edge weight matrix on all subjects, edge weight vector onGi , and the com-
ponent on ej

Y , yi outcome value on all subjects and Gi

K , Sk , Vk # of groups for the outcome variable, the subset of subjects for each group,
and their aggregation views for comparison

R, rk , rk j transfer function on edge aggregations, edge weight on Vk and ej

γ , γj edge feature selection vector and the component for ej

Xγ , Vk (γ ) partial edge weight matrix, the view after feature selection

each sub-view still has n nodes and p edges. The edge weight on each sub-view is determined
by a transfer function R over individual edge weights in the single-subject brain network. By
default, we apply the mean function which is used in the standard visualization tool to illustrate
the average brain connectivity of a group of subjects. The edge weight vector on the sub-view
Vk is denoted by rk = (rk1, . . . , rkp )

′, where rk j denotes the weight of the jth edge feature. In this
work, without loss of generality, we target the pairwise comparison (K = 2) between two sub-
views (V1,V2) aggregating the brain networks of two subject groups split by one binary label. A
typical example is the pairwise comparison between the brain networks of AD patients and healthy
controls. Note that, the generalization to multi-category or continuous labels is straightforward,
and omitted for brevity.
Finally, over the brain networks, the feature selection method chooses a subset of edge features

for comparison, which is defined by the feature selection vector γ = {0, 1}p . The jth edge feature
will be selected if γj = 1. According to our design rationale, the problem is defined as selecting a
set of features to satisfy two objectives simultaneously.

D1. Predictive power by maximizing the binary prediction accuracy on the outcome label with
selected features:
max P(ŷi = yi |Xγ ,y),
where Xγ denotes the partial design matrix after the feature selection, ŷi is the predicted
label on graph Gi ;

D2. Significant difference in the visual comparison by enforcing a lower bound on the visibility
of difference:
P( |r1j − r2j | ≥ JND |γj = 1) ≥ ξ ,
where the visibility of difference is defined by the ratio of features with visible difference
in all the selected features. The difference on a feature between sub-views for compar-
ison is considered as visible if the absolute value of difference is no smaller than the
perception-level JND, denoted as JND. The desired visibility threshold is denoted as ξ
(Section 6.1).

In principle, many existing feature selection methods can be applied in our problem: (1) the
unsupervised feature selection with a mutual-information-based criterion over the feature clus-
tering results (Law et al. 2002); (2) the statistical hypothesis testing with an one-way analysis of
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variance (ANOVA, the F-test). The ANOVA test checks whether each feature takes different val-
ues among comparing groups in a statistically significant way; (3) the sparse regression model that
extends the basic regression analysis with feature norm constraints to impose the sparsity. Finally,
we adopt the sparse regression model in this work for the following reasons. First, unsupervised
feature selections generate universal results for all outcome variables (labels) and thus are compu-
tationally efficient. However, the class labels essential in the visual comparison are not considered,
which degrades the predictive performance. Second, independent feature selection methods such
as the hypothesis testing only look at each feature at a time and therefore do not model either the
interaction effect or the inherent feature grouping nature on brain networks. For example, on the
OpenConnectome dataset, the 129 significant edge features selected by one-way ANOVA predict
the outcome of CCI group with a 0.523 accuracy, which is very close to the baseline method of
random guess. On the contrary, the sparse regression model applies a joint optimization over the
prediction accuracy and the overall sparsity for feature selection. The interaction and grouping
effect among features can be captured through the feature norm constraints (e.g., the group lasso)
to model the underlying brain network structure. The best prediction accuracy with the sparse re-
gression model reaches 90% on some cases of our dataset. Third, the sparse regression model can
be naturally generalized to deal with different types of outcomes, including the binary (e.g., high
CCI vs. low CCI), multi-category (e.g., the healthy control, early and late mild cognitive impaired,
and the AD patient) and continuous variables (e.g., age of subject).
The basic sparse regression model, also known as the lasso (Tibshirani 1996), predicts the

binary outcome (the subject label), while selecting important edge features. This model has the
following objective function:

Minimize

N∑

i=1

log(1 + e−yiW
TXi ) + λ | |W | |1, (1)

where W = (w1, . . . ,wp )
′ denotes the weight vector for all the p edge features. The edge with

a larger weight means that it has a higher influence on the outcome variable. The lasso model
explicitly combines two terms: the Negative Log Likelihood (NLL) of a logistic regression model,
and a L1-norm regularization term. The NLL term stresses the predictive power of the model,
while the regularization term shrinks all components in the weight vector W toward zero to
achieve the model sparsity, i.e., the effect of feature selection. Here, the parameter λ controls the
degree of sparsity.
The lasso model achieves good prediction performance, however, when interaction effects

among features are strong, it tends to select only one feature from each correlated feature group.
This prohibits interpreting the overall comparison picture. A better model is to use both L1-norm
and L2-norm as regularization terms, which is called the Elastic Net model (Zou and Hastie 2005)
(i.e., stretches a fishing net to retain all big fishes).

Minimize
N∑

i=1

log(1 + e−yiW
TXi ) + αλ | |W | |1 + (1 − α )λ | |W | |2, (2)

where the new parameter α = [0, 1) balances between the sparsity and the feature grouping effect.
Another similar model called the sparse group lasso has been proposed recently (Simon et al.

2013), which also combines the L1 and L2 norms in the regularization and allows the control of
both within-group sparsity and group-wise sparsity. This improved model enjoys an additional
advantage over the Elastic Net in that it can specify the feature grouping information by exploiting
the inherent brain network structure. We apply a variant of this sparse group lasso model in our
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scenario, which has the following objective function.

Minimize
N∑

i=1

log(1 + e−yiW
TXi ) + αλ | |W | |1 + (1 − α )λ

M∑

m=1

θm | |W (m) | |2, (3)

whereM denotes the number of feature groups,W (m) is the partial weight vector of themth feature
group.
The major difference of the proposed model from the original sparse group lasso (Simon et al.

2013) lies in the new parameter θm > 0 that controls the priority of each group of features. θm
is therefore called the priority parameter. This parameter is optimized according to the human
perception theory in Section 6.1. The heuristics is, when one group of features are relatively un-
noticeable in the visual comparison, we set the corresponding θm to a larger value than one, so that
the probability to select this group is reduced. On the contrary, when there are significant visual
differences on a feature group, we apply a θm smaller than one to increase the feature selection
probability. More details on this prioritized sparse group lasso model are introduced in Shi et al.
(2015).

Note that the prioritized sparse group lasso method considers the feature grouping information
on brain networks, but does not explicitly incorporate the graph structure in the regression pro-
cess. In fact, there are a few recently proposed lasso-based methods that are optimized for the net-
work scenario, such as Network Lasso (Hallac et al. 2015) and graph-guided fused lasso (GFlasso)
(Chen et al. 2010). Nevertheless, on the brain network comparison scenario, all these methods can
not be directly applied. Network Lasso formulates a generic optimization problem on networks,
whose minimization objective adds together two convex cost functions on nodes and edges, re-
spectively. The edge cost function is fixed to the square loss, i.e., the L2-norm, so that Network
Lasso is more appropriate for node clustering in addition to optimization, but not good for feature
selection. This is analogous to the use of L1 norm in lasso for sparse solutions rather than the ridge
regression with L2 regularization. On the other hand, the GFlasso models the relationship of mul-
tiple outcome variables as a graph and optimizes the feature selection on all outcome variables in
a single process. The goal is to obtain a similar set of input features (i.e., to fuse them) for the out-
comes related by the graph. Compared to our problem, GFlasso operates and constructs the graph
on the output variables for multi-task learning, but does not incorporate the graph structure on
input features, such as the brain network. More importantly, all these network/graph-based lasso
methods define the input feature/variable on network nodes, while in our scenario the features are
the connectivity strength of network edges. The straightforward way to convert to the line graph,
i.e., define edges as nodes, can somehow solve this problem, but the resulting line graph will have
a quite different structure due to the high edge density of brain graphs, most likely dominated by
connected cliques. Applying the network-based lasso on the line graph will lose the structural and
group information on the original brain network. A promising future work will be exploring the
subset relationship among brain network edges that can be taken into account in a standard fused
lasso model (Tibshirani et al. 2005).
To solve the proposed variant model of sparse group lasso, we apply the Moreau-Yosida

regularization-based algorithm in Liu and Ye (2010). The best model parameters are determined
in two steps. First, for parameters depending only on the dataset, e.g., the overall sparsity λ, we
sample over possible value ranges and evaluate each resulting model by a 10-fold cross-validation.
The parameter leading to the best prediction performance is applied. On the other hand, for pa-
rameters that control the interpretability of the model, e.g., the group-wise sparsity parameter
α , we allow users to manually tune the model, with the corresponding performance measures
shown as feedbacks. In the real usage of the model, all the edges having non-zero components in
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Fig. 4. Alternative designs in mapping the brain connectivity measure to the visual channel: (a) initial design

using the linear mapping from the full feature space to the color saturation; (b) optimized design based on

the perception theory, applying three new methods: color palette, feature capping, and redundant coding.

the weight vectorW = (w1, . . . ,wp )
′ are displayed in the side-by-side visual comparison. All the

other edges having the zero weight, which are classified as the background mask, are removed in
the comparative view.

5 VISUALIZATION

The primary task targeted in this study is the visual comparison among brain networks of different
subjects or subject groups. Figure 4 illustrates examples of the design to serve this task on the
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case of the ADNI dataset. Our design juxtaposes the brain networks of AD diagnostic groups in
the side-by-side layout for comparison. In each sub-view of the layout, a sketch of the human
brain in the axial view is depicted as the background image, having the same aspect ratio with the
dimensions of a real human brain. Over the background image, 68–70 light blue nodes are drawn
to represent the cortical regions of the human brain by the Desikan–Killiany atlas, with each node
placed at the geometric center of a region. Because of the similarity among human brain networks,
the individual/aggregated networks drawn in all sub-views share the same nodal alignment (i.e.,
the brain region division) and layout, which helps to accelerate the visual comparison task.
While the originally measured brain regions are in a 3D space, our visual design supports three
alternative projections in the final node layout, i.e., embedding the brain network into YZ/XY/XZ
planes, namely the Sagittal/Axial/Coronal views, as shown in Figure 1(d)–(f), respectively.
On the other hand, the fiber connections between pairs of regions are drawn as straight lines

in the graph. The key design choice is how to visually represent the connectivity measure (a.k.a.
edge feature) of the individual edge or the edge aggregation to fulfill the network comparison
requirement.We propose two separate designs. The initial design follows a traditional linear visual
mapping. For example, the average strength of the edge aggregation in a group of brain networks
is represented by a line color saturation and/or a line thickness proportional to the value of the
strength, as shown in Figure 4(a). More edge statistical measures can be displayed in similar visuals
for the comparison, including the number of individual edges, the probability for each edge, and the
average, sum, standard deviation, and coefficient of variance of edge strengths on the aggregation.
A legend is embedded in the top-left of each sub-view to indicate the edge measure in the display.
For example in Figure 4, the legend indicates the color saturation used for different range of average
edge strengths and the detailed visual mapping of features. To ensure the visibility of important
edges, all the network edges are drawn in the ascending order of the selected edge measure, so
that visually stronger edges are shown on top of the weaker ones.
Over the linear visual mapping design on network edges, we introduce an improved non-linear

design as shown in Figure 4(b). According to the experiment results presented later in Section 6.2,
this new design can optimize the task performance in comparing the edge features among brain
networks. Three guidelines are followed in this non-linear visual design.

Color palette. Beyond the continuous mapping from the edge measure (feature value) to the vi-
suals, we apply a discrete visual mapping mechanism. For example, when both the color saturation
and the line thickness are selected, a 9-class sequential color palette is designed following the sug-
gestion in ColorBrewer (Harrower and Brewer 2003). The number of classes of the color palette is
determined by the experiment result in Section 6.1 that more than 50% people are sensitive to a
visual difference larger than 10.9% of the maximal value in both views. Therefore, the number of
classes is selected as 1/0.109 ≈ 9, so that most people will sense the difference between adjacent
classes. The edge measures are then fitted into nine sequential bins by their value. The value in
each bin is drawn by the color of the corresponding class in the palette. Using the color palette can
effectively enhance stereoscopic depths in the visualization and ease the detection of differences
in the visual comparison.

Feature capping.Through a preliminary analysis of the brain network in our dataset (Section 3.2),
it was found that only a few edge features have a larger difference between comparative views
than the noticeable threshold in human perception (i.e., >10.9%). We developed the feature cap-
ping method to amplify the small features so that the visual differences are stronger and more
noticeable in the comparison. For example, in Figure 4(a), the case of ADNI dataset comparing
42 AD patients and 50 healthy controls, the maximal edge strength is 353. If we pick a pseudo
upper bound of 90 and use the nine-class binning, the visible difference threshold is reduced to
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90 × 10.9% ≈ 10 from 353 × 10.9% ≈ 39. For edges with a strength larger than 90, we use a single
capping color to encode the edge measure (dark red by default). Applying this feature capping to
compare the aggregated network of AD versus control subject groups, 96 features out of 2, 278 × 2
edge aggregations are capped and only six pairs of the capped features have visible differences
larger than the noticeable threshold (10.9% of the maximal edge value). Figure 4(b) presents the
design in the resulting 10-color palette with the last class indicating all the feature values above
the cap. Comparing Figure 4(b) with Figure 4(a), except for a few individual edges with significant
differences found in both figures, we also identified in Figure 4(b) two areas of cortical regions
in the middle-left and bottom-right where several edges in each area had noticeable differences
between the two sub-views.

Redundant coding. In the improved design, more than one visual channels on the edge can be
selected to display the same edge measure, which is called the redundant coding method. For
example, use both color saturation and line thickness to encode the average edge strength. The
experiment results in Section 6.1 show that the redundant coding can significantly improve user’s
performance in the visual comparison. As the feature value is capped in the color coding, we also
propose to vary the line thickness to show the difference above the value cap for coloring. To
ensure a coherent visual mapping design, we carefully calibrate the slope of the line thickness
above the value cap, i.e., to 2.2 times of the slope below the cap, according to the JND profile on
the redundant coding and the thickness-only coding (0.238/0.109 ≈ 2.2). This is illustrated in the
legend of Figure 4(b).

6 EVALUATION

6.1 JND Theory and Perception Experiment

As described in previous sections, our visualization and feature selection model design rely on
the assumption that human users will only sense relatively large visual differences. In perception
theory, this is known as the theory of JND. Quantitatively, JND is defined as the minimal amount
of perception magnitude that something must be changed for human to notice the difference.
Given a reference stimulus of magnitude I on certain human perception channel, which is the
original intensity of the sensible signal, the JND profile, denoted as JND (I ), quantifies the minimal
magnitude of the increased stimulation I + JND (I ), at which just P% of human users can detect
changes from the previous stimulation magnitude. Normally P takes the value of 50, so that a
half of the population will sense the change at least as large as JND (I ). By Weber’s law, JND
profile is approximately proportional to the original intensity in that: JND (I ) = k · I . The factor k
takes a constant value, but varies significantly across different user bases and modalities of human
perception (e.g., sound, vision, and heaviness).
On data-related perceptions, Chou and Li (1995) have studied the pixel-level JND model for un-

derstanding image and video. In this work, we further extend the JND theory to the perception
of node-link graphs. An edge on a subgraph G is said to be (just) noticeable if its visual differ-
ence between groups is at least JND (G ). To determine the value of JND (G ) in our scenario, we
conduct a controlled user experiment. Three visual coding methods are used to display the edge
features in the visual comparison, including color saturation, line thickness or both. The detail of
the experiment is given below.

Design.We recruited 17 subjects for the experiment, 10 weremale and 7were female. All subjects
were graduate students in CS or art programs. They were tested before the experiment to avoid
the color-blindness. The experiment followed awithin-subject design that every subject entered all
the tasks (65 in total) and each task was independent of each other. The first 5 tasks were designed
for the training purpose and the remaining 60 tasks were the test phase, with 20 tasks testing each
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Fig. 5. The user study result to calibrate the subgraph JND model in our scenario: (a) Distribution of user’s

answers on the visual difference. (b) 50% JND of three visual coding methods: color saturation, line thickness,

and color+thickness.

of the three visual coding methods: color saturation, line thickness, and the redundant coding in
both color and thickness.

Data and task. There were two sub-views to compare in each task of the study: one with the orig-
inal brain network, and the other with planned differences added on the edges of some subgraph.
All original networks were the average brain network of the 113-subject dataset from OpenCon-
nectome. The other sub-viewwith difference was generated as such: first, we randomly picked one
non-trivial subgraph from the pre-computed graph clusters; then, each edge in this subgraph was
selectedwith some probability (0.5 by default). All selected edges were increased/decreased in their
feature values by a ratio of the original value. The ratio was uniformly controlled between 5% and
100% (20 samples). One of the three visual coding methods was applied to display the difference
in each sample, so that we had 60 samples/tasks in total for each subject. We ensured a balanced
design so that the full parameter space of each method can be explored. For each task, users were
asked to choose from three levels of differences between the two comparative sub-views: (1) no
difference; (2) little difference (random noise); and (3) significant difference. We recorded both the
user’s choice and their completion time.

Results. We collected 1,105 user answers in total and analyzed their overall distribution. As
shown in Figure 5(a), on average, users indicated 82.7% tasks to have at least little difference and
48.5% with significant difference. In our scenario, users are expected to detect meaningful brain
network differences, which is more stringent than the original definition of just-noticeable. There-
fore, we decided to use significant vs. non-significant as our boundary of JND. Also, we noticed
that one user (#15) had largely skewed answers from the other users, and we excluded his entries
from the analysis. For each of the 60 tasks in the testing phase, we checked whether there were at
least 50% users answering with the significant difference. This result described whether the task
setting was beyond the JND or not. The binary outputs were then used as the outcome in a logistic
regression model, and the controlled ratio of difference was used as the input. In Figure 5(b), it
is shown that in every visual coding method, the beyond/below JND outcome can be perfectly
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classified by the ratio of feature difference. A classification boundary of 0.183 for the color satura-
tion coding, 0.238 for the line thickness coding, and 0.109 for the color+line thickness redundant
coding were derived by solving the logistic regression model. These results demonstrate that the
color coding has a better capacity than the line thickness coding in visual comparison, while the
redundant coding achieves the best performance. Notice that the ratio of difference here is mea-
sured as the absolute difference of feature values in comparison divided by the maximal edge
feature value in the background subgraph. Therefore, the ratios are not uniformly distributed on
[0,1] as we have set them initially.
The experiment result suggests many implications to our proposed methods. First of all, it is

shown that the JND notion from the perception theory still holds in the visual comparison of
brain networks. Based on this notion, only a small portion of edge features (<1% in the ADNI
dataset) between the brain networks of different diagnostic groups are considered to be notice-
able by human users. To increase the number of noticeable edge features in the comparison, we
have introduced the optimized visualization design with feature capping and redundant coding
methods, whose performance is evaluated in the next subsection.

6.2 Design Experiment

We conducted a controlled user experiment to compare our visualization and feature selection
method with alternative visual designs and feature selection models, by comparing their task per-
formance in the experiment.

Design.We recruited 20 subjects, of which 12 were males and 8 were females. All subjects were
graduate students in CS or art programs. They were tested before the experiment to avoid the
color-blindness. The experiment followed a between-subject design and the subjects were ran-
domly divided into two groups for comparison. The subjects in the first group conducted the
experiment with the initial linear visualization design (Figure 4(a)) and the subjects in the sec-
ond group conducted the experiment with the optimized design (Figure 4(b)). Each subject was
required to complete five tasks. The first task was a sample visual comparison task for training.
The other four tasks were the same in data and task design, but applied four different feature selec-
tion models: the basic lasso model, the Elastic Net model combining L1 and L2 regularization, the
standard sparse group lasso (SGL) model, and the prioritized sparse group lasso model proposed
in this work (p-SGL).

Data and task. In this study, the basic task was again to compare two brain network sub-views
in the side-by-side visualization, where the network is generated from the 113-subject OpenCon-
nectome dataset. The sub-view in the left displayed the average brain network of 60 subjects with
high CCI scores (≥100), and the sub-view in the right displayed the average brain network of 53
subjects with low CCI scores (¡100). Only edges selected by the current feature selection model
were shown in the visual comparison. For each task, the subject was asked to select all the edges
that they found to have a significant difference between the sub-views in comparison. A point
selection interaction was developed to help users select discriminative edges. All users were in-
structed to work in a best-effort manner. We recorded all the edges they selected and the time of
completion on each task.

Result. The raw experiment result of the user selected edges were processed to compute the visi-
bility of difference measure in the user side, i.e., by the percentage of edges selected by users out of
the original model-selected edges. This visibility measure was summarized as the grouped box plot
in Figure 6(a). It can be found that the optimized visualization design consistently outperforms the
initial design on the visibility of difference, under all feature selection models. The improvements
are significant on Elastic Net (p < 0.001), SGL (p < 0.016), and p-SGL (p < 0.028). This result is
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Fig. 6. The user study result comparing the initial visualization design in linear feature coding (Init) with the

optimized design applying the non-linear coding (Opt): (a) Percentage of edge features selected by the user

in each experiment, corresponding to the visibility of difference. (b) The actual number of features selected

by users. (c) User’s completion time.

supported by the JND theory that the optimized design has a smaller JND profile than the initial
design, and therefore more differences can be manually discovered. Meanwhile, the p-SGL model
achieves the best visibility of difference, which aligns well with the proposed objective D2 of p-
SGL to guarantee the visibility of difference bound. We should note that on the actual number of
selected features (Figure 6(b)), p-SGL did not have an advantage. Users selected the highest num-
ber of features under Elastic Net and SGL models where their initial number of features in the
visual comparison are also the highest. With p-SGL model, the initial model-selected number of
features is the smallest, and therefore p-SGL suffers from a highest variance on the visibility of
difference. Finally on the completion time measure, as shown in Figure 6(c), the optimized visual
design performed comparably as well as the initial design on two models, and had a moderately
smaller time cost on the other two models (not significant).

6.3 Quantitative Experiment on Feature Selection Models

Besides the user performance in completing the visual comparison task, we also evaluate the ef-
fectiveness of feature selection models by their quantitative performance measures.
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Table 2. The Performance of Feature Selection Models

in Maximizing the Prediction Accuracy

Model

Measure
Accuracy Visibility #Features

No Feature Selection 0.433 0.189 1,354

Lasso 0.855 0.232 83

Elastic Net 0.788 0.212 165

SGL 0.847 0.219 118

p-SGL 0.942 0.278 54

Data and task. In this experiment, we focus on the 113-subject OpenConnectome data set. The
task is to computationally predict the binary CCI label on the brain network using their fiber con-
nection strengths as edge features. All 2,415 edge features are pre-processed before the experiment
to remove all trivial brain connectivities for which the average strength among subjects is smaller
than 10 (note that the maximal connectivity strength is 26,474 in this dataset). This leaves 1,354
non-trivial edge features. Over these features, four feature selection models are applied and com-
pared: lasso; Elastic Net; SGL; and p-SGL under a ratio of visible difference threshold (ξ ) of 0.3.
For each model except the basic lasso, we vary the group-wise sparsity parameter α from 0 to 1 to
cover a full parameter space. The baseline method is set to the prediction with all edge features,
i.e., without feature selection. The underlying prediction algorithm adopts the debiased logistic
regression model over the selected edge features.
Two measures are considered in the experiment according to the design objectives defined in

Section 4: (1) the prediction accuracy of the binary brain network label using the model-selected
features (D1); (2) the visibility of difference in all selected features (D2). Note that the prediction
accuracy is calculated in a 10-fold cross-validation by a random partition of the data. The visibil-
ity of difference is computed by comparing the difference on each selected feature with the JND
value determined by the experiment in Section 6.1, i.e., 10.9% of the maximal feature value in the
comparison view. The number of selected features (#feature) is also recorded in each experiment
setting.

Result. We collect and report experiment results under three different parameter settings. In
the first setting, we vary the sparsity parameter α in each model to achieve its best prediction
performance. The result is listed in Table 2. It is shown that, without the feature selection, the
prediction accuracy holds at 0.433, evenworse than the null model (60/113 = 0.531).With the basic
feature selectionmodel of lasso, the accuracy rises to 0.855 using 83 selected features. Applying the
Elastic Net and SGL can increase the number of selected features (165 and 118), but the prediction
accuracy drops a little to 0.788 and 0.847. The proposed p-SGL model enjoys the best prediction
accuracy of 0.942 because it tends to select the features with large visibility from the SGL model,
which helps to reduce the overfitting effect. The visibility measure is also the highest applying the
p-SGL model.
In the second parameter setting, we navigate through each model space to maximize the visi-

bility measure. The results on the baseline model (no feature selection) and the lasso model do not
change from the first setting because there is no flexibility to tune these models (Table 3). Both
Elastic Net and SGL models increase the visibility measures to 0.251 and 0.375, while sacrificing a
bit in the prediction accuracy. However, it is the proposed p-SGL model that achieves the best visi-
bility of 0.528 by finding an extreme case of only nine features with large comparative differences.
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Table 3. The Performance of Feature Selection Models in

Maximizing the Ratio of Visible Differences (Visibility)

Model

Measure
Accuracy Visibility #Features

No Feature Selection 0.433 0.189 1,354

Lasso 0.855 0.232 83

Elastic Net 0.732 0.251 203

SGL 0.75 0.375 61

p-SGL 0.683 0.528 9

Table 4. The Performance of Feature Selection Models on the

Tradeoff of Maximizing the Prediction Accuracy While Ensuring

a Large Visibility (>0.3)

Model

Measure
Accuracy Visibility #Features

No Feature Selection 0.433 0.189 1,354

Lasso 0.855 0.232 83

Elastic Net 0.732 0.251 203

SGL 0.783 0.322 60

p-SGL 0.863 0.314 71

This result validates the design objective of p-SGL to explicitly consider the visibility of feature
differences.
In the real usage, we favor the feature selection model that balances between the predictive

power and the interpretability (i.e., the visibility of difference in this scenario). The third param-
eter setting fulfills this requirement by tuning each model to its best prediction accuracy while
ensuring a large visibility of difference. In this case, we apply the constraint of ξ = 0.3, i.e., expect-
ing a visibility measure larger than 0.3. As shown in Table 4, only SGL and p-SGL can meet this
constraint. In comparing the prediction accuracy, p-SGL is preferred (0.863 > 0.783). This demon-
strates that p-SGL can achieve a better tradeoff in terms of the prediction accuracy and the visibility
of feature differences.
In summary, the computational feature selection method in complement to the visual com-

parison design is demonstrated to be effective in both the predictive performance and the user
performance in completing the comparison task. By applying a basic Lasso model, the prediction
accuracy on the CCI label of the OpenConnectome dataset increases to two times of that without
the feature selection method. This is because of the significant overfitting effect when the number
of raw edge features is much larger than the number of brain network samples. In the user experi-
ment, we are not able to directly compare the performance with and without the feature selection
method. With the original brain network visualization, users can not adequately perform the point
selection of edge features due to the huge density of brain connectivities. Preliminary implications
can be made by comparing the model that selects more edges (Elastic Net, 165 features, 78.8% pre-
diction accuracy) with the model that selects much less edges (p-SGL, 54 features, 94.2% prediction
accuracy): with the feature selection model (or the model selecting less but informative edges), a
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larger percentage of selected edges will be considered as useful by users, and the user’s effort in
terms of the task completion time is generally smaller. Among the feature selection models, the
proposed p-SGL achieves the best tradeoff in the prediction accuracy, user utility, and time cost on
the comparison task. This validates the design rationale of our feature selection model to balance
the prediction performance and the significance of visual differences. The purely predictive model,
such as Lasso, suffers from the weak user performance; while the statistical hypothesis testing only
considering the (visual) significance of individual features leads to a poor prediction performance.

6.4 Case Study on the ADNI Dataset

Following the quantitative experiments, we applied the proposed visualization and computational
method in two real-world cases and studied their qualitative user performance, including the find-
ings on the comparison task, the discoveries in the explorative analysis and the user experience
and feedback.
The first case focuses on the ADNI dataset relating to AD. In total, the brain network of 202

subjects were measured and visualized—50 healthy controls, 72 with eMCI, 38 with lMCI, and 42
AD patients, see Section 3.2 for more details. We invited one neuroimaging scientist to analyze this
brain network dataset using our visualization tool. The primary goal was to verify the previous
neuroscience findings on AD patients. For example, it was reported that the network asymmetries
between the left and the right brain hemispheres of the AD patients were higher than that of the
healthy control (Thompson et al. 2001; Daianu et al. 2013).

The scientist initiated the analysis with our tool from the default aggregation view showing the
average brain network of 202 subjects (Figure 7(a)). The visualization applied the color+thickness
redundant coding design. In this aggregation view, it is noticeable that the left side of the brain net-
work (i.e., the right hemisphere) and the right side (i.e., the left hemisphere) are clearly asymmetric.
The right hemisphere has thicker connections than the left hemisphere, which corresponds well
to the findings in Thompson et al. (2001). In a more recent work (Daianu et al. 2013), researchers
have followed up to study the differences in network connectivity patterns between AD patients
and the MCI subtypes. Similarly in our tool, the scientist repeated the analysis by splitting all brain
networks by the AD diagnostic group (Figure 7(b)). The most significant findings were revealed
when the edge features were filtered by the connection strength to retain the top 250 most inter-
connected edges. The control group has, on average, thicker edges (i.e., stronger connections) in
the left hemisphere than AD and MCI patients. To further understand the distribution of this bilat-
eral asymmetry, the scientist rolled back to the SMD view showing a list of thumbnail displays for
AD patients and controls, after filtering out the intermediateMCI patients. As shown in Figure 7(c),
the brain networks are sorted first by diagnosis (i.e., AD or control) and then by the overall con-
nectivity strength. It can be found that more brain networks are asymmetrical among AD patients
(the upper group) than normal controls (the lower group). We asked a human observer to annotate
all the networks in Figure 7(c) that can be visually distinguished as asymmetrical, with a “L” when
the left side of the brain has significantly stronger connection than the right side in some part, a
“R” for the opposite case, and a “LR” when both sides have stronger connections in some part than
the other side. Clearly, the “L” asymmetry dominates both AD and control groups, indicating the
destruction of the left hemisphere connectivity. The AD group has two times the “L” asymmetry
(16) compared with the control group (8). Moreover, the “L” asymmetry happens relatively irrele-
vant of the overall connectivity among AD patients, while for the control group, it happens more
on the low overall connectivity people, possibly linked to other connectome deficiencies than AD.
To drill down to the specific brain regions and connectivities leading to the asymmetry, the

scientist applied the edge feature selection method in our tool. There were many possible models
from the drop-down list of the feature selection tab. The scientist tried with several models and
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Fig. 7. The asymmetry on AD-related brain networks shown by: (a) the aggregation view of all 202 subjects

and (b) the comparison view by diagnostic groups. Only the top connectivity edges are shown: (c) the SMD

view listing the brain network of AD patients and normal controls.

compared them on the model performance, which is displayed as curves on the feature selection
tab. Finally, the model of SGL-ClusterByLineJNDMulti was selected, with an alpha sparsity of 0.8
in the highest prediction accuracy setting (60.9%). The resulting visualization in Figure 3(c) demon-
strated several key regions in the left hemisphere where the AD-afflicted groups have connection
breakdown compared with the healthy control group. Notably, R10 (inferior temporal) and R28
(rostral middle frontal) were detected, which fits well the report in Loewenstein et al. (1989) on
the left hemisphere hypometabolism in the frontal, temporal, parietal lobes of AD patients. These
findings were more salient in the sagittal view of Figure 8, where relevant lobes were annotated.

6.5 Case Study on the OpenConnectom Dataset

In the second case study, we worked on the 113-subject dataset from the OpenConnectome project,
as described in Section 3.2. The brain network data model was similar to that of the ADNI dataset,
which consisted of 70 ROIs as nodes, and fiber connections between ROIs as edges. Due to the
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Fig. 8. The sagittal view displaying the same edge features selected by our p-SGL model. Key brain regions

relevant to the outcome of AD pathology are annotated.

different measurement methods, the distribution of edge strengths can vary greatly from that of
the ADNI dataset. We deployed our visualization tool to compare the brain network of the group
of 60 high-CCI subjects with that of 53 low-CCI subjects.
In this experiment, we interviewed a senior doctor in the neurology department of a prestigious

hospital, who had decades of experience in the field of neuromedicine. Because the doctor was not
familiar with the visualization interface, we operated the tool ourselves during the study while
receiving verbal feedbacks from the doctor. We started from the SMD view listing the brain net-
work of all 113 subjects as thumbnails, sorted by the CCI class (i.e., high and low) and the overall
connectivity strength, as shown in Figure 9(a). The doctor derived a rough pattern that the brain
networks of low-CCI subjects tend to have weaker overall brain connectivity than high-CCI sub-
jects. To confirm this finding, we proceeded to the comparison view by the CCI class (Figure 9(b));
however, the doctor found it hard to visually identify differences from the side-by-side comparison.
By integrating computational feature selection models, we drilled down to the fine-grained edge

feature comparison view. After navigating among models by comparing their prediction perfor-
mance, we found that almost all models achieved a better prediction accuracy with fewer edge
features selected. The basic lasso model obtained a good prediction accuracy (0.855) with only 83
features, but their selected edge features were scattered out in the graph and there was no inter-
pretable pattern to discover. We then switched to the proposed model optimized with the percep-
tion theory (p-SGL), and picked the model parameter to strike a balance between the prediction
accuracy and the ratio of visible features (the percentage of features with the visual difference
larger than the JND profile). Using this model, noticeable comparative patterns were found, as
shown in Figure 9(c). It was inferred that the connections at region #64 (rh-superior frontal) and
#39 (rh-caudal middle frontal) were important for the CCI difference among populations. In fact,
there is a strong tie between our result and the findings from the neuroscience literature. The
superior frontal region is involved in self-awareness (Goldberg et al. 2006), while it has been hy-
pothesized that self-awareness strongly influences human creativity (Silvia and Phillips 2004). At a
higher level, both regions #64 and #39 are in the right hemisphere, and in Figure 9(c), the high CCI
group have stronger connections than the low CCI group between #64, #39, and several regions in
the left hemisphere. It is well known that the right hemisphere of the brain is in charge of creativ-
ity and the left brain focuses on logic, among other functions. This showed that the coordination
between the left and right brain can also be important to people’s creativity level.
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Fig. 9. The visual comparison on the OpenConnectome dataset: (a) the SMD view listing all brain networks

by the CCI class and the overall connectivity; (b) comparing between the average brain network of two CCI

groups; (c) after applying the p-SGL feature selection model, interesting patterns are located which are in

line with findings in the neuroscience literature; and (d) on weak edge features—the high CCI group has

stronger connections than the low CCI group.
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In another analysis scenario, we applied the edge aggregation filters to only display weak edges
that have smaller average connection strengths (<1,000). The resulting comparison view for dif-
ferent CCI groups revealed a clear pattern, as shown in Figure 9(d). For weak edges, the high CCI
group had, on average, stronger connections than those in the low CCI group. On the other hand,
we did not detect similar patterns when selecting only strong edge features.

6.6 Expert Feedback

Besides controlled experiments, we also deployed the brain network visual analytics tool in the
same hospital wherewe conducted the second case study. Three neurology doctorsworking closely
with MRI/DTI scans and neurological patients were invited to a pilot trial of our tool. After the
training and usage sessions, they were asked to give feedbacks on: (1) the functionality/task of
aggregating brain networks by subject’s labels and the resulting comparison among groups; (2) the
functionality/task of machine-learning based feature selection for an improved visual comparison;
(3) any other brain network related tasks that can be supported by the tool in future.
On the first task, all of them were positive to the value of the aggregation view because of its

simplicity and intuitiveness in the interaction and visualization. Some representative comments
and suggestions include: “Most tools I have used present comparison views between the patient
group and the control group. This new tool is novel in that it can not only support such standard
comparison, but also allows to compare the networks by any other attributes in the data. This
can be helpful for both the neurological disease study and the brain network study of community
population,” “Beyond the current comparison on categorical attributes, it will be more helpful if
the ordinal attributes can also be supported (e.g., aging), such that the trend in the brain network
changes can be detected.”
On the second task, they found the feature selection to be helpful in revealing the significant

difference on brain network structure, but they also suggested several improvements. First, after
the visualization of network differences, users may prefer to export quantitative findings or anal-
ysis reports with the tool. These quantitative indicators (e.g., p-value) can also be displayed in the
comparison view. Second, from the clinical point of view, not all ROIs are “hotspot” for specific dis-
eases. These domain knowledge on “hotspot” can be incorporated to improve the feature selection
method in the clinical setting.
Finally, the doctors mentioned many other network-related tasks that can be supported by the

visual analytics method, mostly from a clinical viewpoint. First, the current subject labels, such as
the diagnosis class of AD and control, are identified in a coarse-grained manner. In fact, there are
many fine-grained clinical symptoms and investigation results (e.g., cognitive and motor function
evaluation) that are linked to the change in brain images. The correlation analysis and visualiza-
tion of these fine-grained evidences can be more valuable in the clinical study. Second, beyond
the group-level comparison, it may also be helpful to visually compare the individual patient’s
network with the historical patient/control group, especially during their recovery process from
neurological diseases.

7 CONCLUSION

This article proposes an integrated framework to visually analyze huge amount of in vivo human
brain networks. In our framework, brain networks can be aggregated, filtered, split, and com-
pared by their subject-level labels (e.g., demographics, diagnostic groups), and statistical measures
on cortical regions and fiber connections (e.g., the average fiber strength). To optimize the per-
formance of these visual analytics tasks, we have introduced both elaborate visual comparison
designs and the sparse regression models for the discriminative feature selection. Controlled user
experiments were conducted to calibrate the visual design and the computational model according
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to the established perception theory for visual comparison. In the evaluation, we have studied the
usefulness of our framework and methods through quantitative experiments and two real-world
cases comparing between brain networks of healthy population and the patients affected by the
AD; and between ordinary people with different creativity levels. The findings discovered with
our tool implementing the proposed methods correspond well with the validated results on the
neuroscience literature, which demonstrates the success of our approach.
Finally, the current work still has several limitations which we plan to improve in future. First,

our comparison design follows the standard side-by-side visualization, while the single view com-
parison method has not been studied in this scenario, such as the overlaid visualization and the
explicit visual coding. Second, we have stayed with the node-link representation of brain net-
works in this work, while it has been shown in the previous study that the matrix representation
can enjoy more advantages in comparing brain networks (Alper et al. 2013). It will be interesting to
further compare these two visual designs under the real-world brain network analysis scenario and
dataset. Third, most of this work has focused on the coarse-grained region-level brain connectiv-
ity. When we drill down to the fine-grained brain networks, e.g., voxel-level or even neuron-level,
how to deal with the scalability issue in both the visualization and the computational model design
remains an open challenge.
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