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Abstract—Visually analyzing citation networks poses challenges to many fields of the data mining research. How can we summarize a
large citation graph according to the user’s interest? In particular, how can we illustrate the impact of a highly influential paper through
the summarization? Can we maintain the sensory node-link graph structure while revealing the flow-based influence patterns and
preserving a fine readability? The state-of-the-art influence maximization algorithms can detect the most influential node in a citation
network, but fail to summarize a graph structure to account for its influence. On the other hand, existing graph summarization methods
fold large graphs into clustered views, but can not reveal the hidden influence patterns underneath the citation network. In this paper,
we first formally define the Influence Graph Summarization problem on citation networks. Second, we propose a matrix decomposition
based algorithm pipeline to solve the IGS problem. Our method can not only highlight the flow-based influence patterns, but also easily
extend to support the rich attribute information. A prototype system called VEGAS implementing this pipeline is also developed. Third,
we present a theoretical analysis on our main algorithm, which is equivalent to the kernel k-mean clustering. It can be proved that the
matrix decomposition based algorithm can approximate the objective of the proposed IGS problem. Last, we conduct comprehensive
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VEGAS: Visual influEnce GrAph Summarization

experiments with real-world citation networks to compare the proposed algorithm with classical graph summarization methods.
Evaluation results demonstrate that our method significantly outperforms the previous ones in optimizing both the quantitative

IGS objective and the quality of the visual summarizations.

Index Terms—Influence summarization, visualization, citation network

1 INTRODUCTION

ITATION networks are indispensable in understanding

modern research activities and have become a funda-
mental resource for the data mining (DM) field to analyze
the interplay of researchers, venues and publications
(e.g., their communities, research topics and trends, etc.).
How to make sense of an individual’s influence in the
context of the citation network? Specially, how to summa-
rize the underlying citation graph to represent this
influence? This is referred to as the Influence Graph Sum-
marization (IGS) problem we aim to address in this
paper. Here an individual in the citation network can be
a scientific paper, an author or a venue (conference, jour-
nal, etc.), also known as the source node in the citation
graph. The term of citation graph is used interchangeably
with the citation network, both represent a set of individ-
uals (nodes) connected by directed citation links (edges).
The influence graph is defined by all the individuals in
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the citation graph and their reversed citation links, in that
if A cites B, we have B influences A.

While there have been quite a few measures to quantify
an individual’s influence in research communities, notably
the total number of citations and the H-index [1], the graph-
based summarization can deliver new insights to better
understand the scientific advancements and evolutions. For
example, how does a highly-cited paper impact the research
community to raise several topic threads; and consequen-
tially, how do these topics interact with each other and lead
to a new multi-disciplinary research direction? How does a
senior researcher contribute to multiple research areas by
influencing others? All these questions point to the visual
graph summarization in a similar form to Fig. 1 which can
characterize the influence flows from the source node over
the entire graph.

Although closely related, the IGS problem on citation
networks bears some subtle differences from the existing
work in graph mining and visualization. We briefly review
three most relevant topics. First (graph summarization), many
interesting work has been done in the context of graph clus-
tering and aggregation. These works typically look for
coherent regions in the graph by optimizing a pre-defined
loss function (e.g., minimizing the inter-cluster connections
[2], maximizing the intra-cluster attribute homogeneity [3],
minimizing the total description cost [4], etc.). Despite their
own success, most, if not all, of these graph summarization
algorithms tend to group the graph nodes with a direct link-
age together, but fail to reveal the influence flows important
for the IGS problem. Second (social graph simplification),

in the scenario of the information diffusion over social
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Fig. 1. The visual influence graph summarization on [Faloutsos SIGCOMM’1999] (#Cluster = 20). Paper citation relationship and venue information
are integrated. Node label gives the cluster size and summary on paper title+abstract. Link thickness indicates the flow rate by equation (1).

networks such as Twitter and Facebook, researchers have
studied the problem of extracting the most important social
paths based on information propagation logs to optimize
applications such as viral marketing [5]. This is significantly
different from the IGS problem considered here. On citation
networks, there is hardly an underlying social network (at
least difficult to acquire or predict), over which the influ-
ence propagates. A new researcher can cite seminal papers
in his field without connecting to the authors in person. In
this sense, IGS is more an “unsupervised” summarization
problem. Third (influence maximization), in the past decades,
many elegant algorithms have been proposed for the so-
called influence maximization problem [6]. While effective
in identifying who are the most influential in the network,
the question of what makes them influential largely remains
open. We outline three design objectives that differentiate
the IGS problem from existing works.

e D1I. Flow rate maximization. The primary goal of IGS is
to summarize the influence flows from a source node
in the reversed citation graph. For the effective visu-
alization, it is defined as the objective of maximizing
the overall flow rate given the number of flows to
display. The consistency within the generated node
cluster is not defined by the dense internal connec-
tion any more, but rather by the high node topologi-
cal similarity in the same cluster. In this objective,
more edges will be cut across clusters than tradi-
tional methods, so as to highlight the inter-cluster
flows that outline the influence patterns.

e D2. Localized summarization. While a full citation
graph can span millions of nodes and prohibit any
readable visual summarization, in the IGS objective,
we switch to summarize the influence of a single
source node. This localized summarization problem
is at least as important as the global summarization.
Consider a user navigating the influence graph of

computer science papers, after an overview of the
entire field, most likely she will drill down to a few
key papers and examine their influences separately.

e D3. Rich information. The citation graphs have rich

node attributes (e.g., the venue, research topic of a
paper) and often evolve over time (e.g., the publica-
tion date). Incorporating these information to opti-
mize the summarization result poses additional
challenges to our work.

We should note that the definition of flows here is quite
different from the flow network in graph theory [7], which
physically mimics a source-to-destination transportation
network. Our flow denotes the primitive form of connec-
tions from one group of nodes to another group. On citation
graphs, the influence flows are reversed citation link
groups. Fig. 1 gives a visual summarization over the influ-
ence graph of the famous power-law paper presented at
SIGCOMM’99. With this summarization, we can track the
evolution of research topics, beyond simply detecting the
hot topics through traditional graph clusterings.

To solve the IGS problem, we propose an algorithm
pipeline, and over which, build a prototype system called
VEGAS, to generate flow-based, localized Visual influEnce
GrAph Summarization over large-scale citation networks.
The algorithm pipeline is flexible and admits many exist-
ing graph mining algorithms for each of its building
blocks. Meanwhile, the theoretical analysis shows that
our main algorithm, which is equivalent to the kernel k-
mean clustering (KM), can approximate the IGS objective
on the flow rate maximization with a carefully designed
kernel matrix. Finally, we conduct comprehensive empiri-
cal evaluations to validate the effectiveness of the pro-
posed algorithm. The main contributions of this paper
can be summarized as:

e  Problem Definition, to fulfill the design objectives for
the IGS problem (Section 2);



SHI ET AL.: VEGAS: VISUAL INFLUENCE GRAPH SUMMARIZATION ON CITATION NETWORKS

TABLE 1
Notations
SYMBOL DESCRIPTION
I citation influence graph as input
f source node selected by user or algorithm
G maximal influence graph of fin I
v, N(i), n nodes, neighbor set and # of nodes in G
A, a; topology adjacency matrix of G and its entries
AP, ap) node attribute adjacency matrix of G and its
entries
S graph summarization of G
e, 7|, k clusters, cluster size and # of clusters in S
&, (&), 1 flows, flow rate and # of flows in .S
Te(s)r TT(s) the source and target cluster of flow &,

e An Algorithm Pipeline, to solve the IGS problem
(Section 3), and the prototype VEGAS system imple-
menting this pipeline (Section 5, Section 7);

o  Theoretical Analysis, to reveal the intrinsic relation-
ship between the IGS problem and the matrix
decomposition based main algorithm (Section 4);

o Comprehensive Evaluation, to demonstrate the
effectiveness/efficiency of the proposed algorithm
(Section 6).

2 PROBLEM DEFINITION

Table 1 lists the notations used throughout the problem def-
inition. There are two input data in our problem: the influ-
ence graph I, which is defined by the underlying citation
graph after reversing all the citation links; and the source
node f, which can be the paper/author/venue selected by
the user or detected by existing influence maximization
algorithms. To summarize the influence of f on I, it is
enough to consider a maximal influence graph G, which is
the induced subgraph of I containing all the nodes reach-
able from f in I (including f). The maximality here states
that G includes all the nodes directly or indirectly influ-
enced by the source node f. Let G have n nodes, denoted by
{vi}";. G can be represented by its topology adjacency
matrix A = {a;;};;_, in which a;; denotes the link weight,

a;; > 0 indicates there is a nontrivial link from v; to v;.

2.1 Flow Rate Maximization
Before defining the IGS problem, we first introduce two
important terminologies.

Definition 1. The graph summarization of G, denoted by S, is
a super node-link graph of G. The node set of S contains k dis-
joint and exhaustive node clusters of G, denoted by {m.}*_,
where || indicates the number of nodes in the cluster .. The
link set of S contains [ flows between the nodes in S (i.e., clus-
ters in G), denoted by {¢,}._,. Each flow &, represents the col-
lection of all the links in G from nodes in cluster m) to nodes
in cluster my), where c(s) and d(s) denote the source and
destination cluster index of the flow €.

Note that S can be a partial summarization of G, with
fewer flows (I < k?) than a complete summarization (I = k%).
This is desirable in generating readable influence graph

Graph
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Fig. 2. The difference between the IGS objective and the traditional
graph clustering objective. Each dash box in the original graph G
becomes a square node (i.e., cluster) in the summarization S. (a) The
graph clustering leading to large intra-cluster flows. (b) The influence
graph summarization exposing both large intra- and inter-cluster flows.
In S, the flow rate is labeled above each link and is mapped to the link
thickness visually. We assume a uniform link weight of one in graph G.

Influence Graph
Summarization

0.66

visualizations where a huge number of flows can cause
unpleasant visual clutters due to the edge crossing.

Definition 2. The flow rate of &, is defined by

ZL S8 o(s)> ’LJENd( ) ai.j

(&) = M

‘nr‘ (s) ||7Td |

Problem 1. The primitive IGS problem is defined as finding a
graph summarization S of the maximal influence graph G,
with k clusters and [ flows, to maximize a objective function
equaling the sum of flow rates:

l
> (&) )
s=1

Note that the flow rate defined in equation (1) can not be
unnormalized, otherwise the IGS objective in equation (2) will
be constant in a complete summarization. The rationale of the
equation (2) can be explained in comparison to the objective
function of the traditional ratio association graph clustering
method, as shown below

Z Z Aij Zr &) 3)

c= 111671,‘ C|

Without loss of generality, &, denotes the intra-cluster flow
from 7. to itself, among the first k flows by index.

It is clear that the IGS objective in equation (2) is to maxi-
mize the sum of flow rates in [ largest intra- or inter-cluster
flows, corresponding to [ densest blocks in the adjacency
matrix. On the other hand, the ratio association objective max-
imizes the sum of flow rates in all the % intra-cluster flows,
referring to k diagonal matrix blocks. In other words, the IGS
objective is designed to detect a node clustering that maxi-
mizes the rate of all the [ flows in the summarization, which
fits well the goal to reveal the flow-based influence patterns
on the citation graph. In contrast, the traditional graph cluster-
ing is designed to detect a clustering with the densest internal
connections. An illustrative example is given in Fig. 2.
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Fig. 3. The influence graph leading to fragmented flows near the source
node in the summarization (k = 5, [ = 4): (a) By the primitive IGS objec-
tive, the summarization has two identically-positioned clusters (s, 73),
the flow rate by equation (1) is labeled in red, favoring the primitive IGS
summarization by a sum of 3.89 > 3.70. (b) Applying the squared IGS
objective, the two identical clusters will be merged and a finer-grained
structure of the influence graph is revealed. The squared flow rate by
equation (4) is labeled in blue parentheses, favoring the squared IGS
summarization by a sum of 3.83 > 3.80. (best viewed in color)

Through experiments on the primitive IGS objective, we
find that in most cases, it can achieve the desired flow pat-
terns through the summarization. However, in quite a few
cases, there appears a redundant graph structure near the
source node in the summarization, which is called the frag-
mented flows. As shown in Fig. 3a on a small citation graph,
two single-node clusters 75 and 73 have the same topological
position in the graph, but they are not grouped together in
the summarization. This effect can be exaggerated in larger
graphs where most of the clusters by the primitive IGS are
these single-node clusters in one-hop to the source node. We
propose a simple yet effective improvement to the primitive
IGS objective by applying a square function on each flow rate.

Problem 2. The squared 1GS problem is defined as finding a
graph summarization S of the maximal influence graph G,
with k clusters and [ flows, to maximize the objective function:

l

max Zr(ﬁs)Q. (4)

s=1

From the perspective of highlighting influence flows, the
squared IGS objective is consistent with the primitive IGS.
Importantly, no extra gain in the objective function is obtained
by fragmenting these one-hop nodes apart, as illustrated in
Fig. 3. Moreover, the squared IGS objective favors large flows
more than the primitive IGS objective. In this sense, it is better
for the influence graph visualization scenario which has a
tightly bounded flow number.

2.2 Incorporating Node Attributes

In the citation network, the network node often carries some
additional information, such as the venue and publication
date of a scientific paper, the research topic of an author.
This information, beyond the network topology, can be criti-
cal in many scenarios. For example, the flow of information
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among papers in the same venue or in the adjacent years
can be seen as more consistent when we summarize the
internal evolution of certain research field. In contrast, to
summarize the interdisciplinary advancement, we can pri-
oritize the flows among papers/authors on different
research topics. To serve this need, we propose a variant of
the IGS problem by extending the flow rate definition with
node attributes

. aD
ZviEn(:(s),vjezd(S) a’LJa‘ij

&) = 7 Y
7"( ) ‘”(:(s)l‘”d<s)|

where a/] € [0,1] is the entry in the node attribute adjacency
matrix of G, denoted by AP. AP defines the pairwise simi-
larity between the nodes in G according to their attributes.

The other part of the problem definition holds unchanged
from Section 2.1.

3 ALGORITHM

3.1 End-to-End Pipeline

To solve the IGS problem, we propose an end-to-end algo-
rithm pipeline, which decomposes the problem into several
building blocks, as illustrated in Fig. 4. Initially, the maxi-
mal influence graph G is computed from the input graph I
by a breadth-first or depth-first search starting from the
source node f. Over the maximal influence graph G, a few
processing components work in parallel to generate several
matrices from the graph: the topology similarity matrix M¢,
the optional node attribute adjacency matrix A” and the
generalized similarity matrix M. The core of the algorithm
pipeline is the decomposition of the similarity matrices to
generate k node clusters for the summarization. We care-
fully design the topology similarity matrix to ensure that
the graph summarization approximates the flow rate maxi-
mization objective. The optional node attribute adjacency
matrices can be incorporated to ensure coherence on node
attributes while still optimizing the proposed objective. The
requirement of the [ flows in the summarization is handled
by the link pruning using either the ranking-based filtering
algorithm or the maximum spanning tree (MST) algorithm.

3.2 Node Summarization by Topology Matrices
Node summarization is the core building block of the algo-
rithm pipeline. First, we compute the topology similarity
matrix M of the maximal influence graph G by:

CAAT 4 ATA

MG
2 )

(6)
where A is the adjacency matrix of G. In the context of the
citation network, the entry in the M¢ for the similarity of
two nodes indicates their number of commonly cited and
commonly citing nodes (i.e., neighboring nodes in the cita-
tion graph). Therefore, we name the main algorithm for the
node summarization as the bidirectional CommonNeigh-
bor. Meanwhile, two variants of the algorithm are sup-
ported, the forward CommonNeighbor algorithm by
M% = AAT which only considers the outgoing edges of
each node, and the backward CommonNeighbor algorithm
by M“ = AT A which only considers the incoming edges of
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Influence

Graph 1

1. Pick source node f°
2. Rooted search on I from f

Fig. 4. The algorithm pipeline to solve the IGS problem.

each node. The bidirectional CommonNeighbor is also
referred to as the forward+backword CommonNeighbor.

In the second stage, we propose a matrix decomposition
based solution to generate k node clusters from the similar-
ity matrix M¢. The decomposition employs a Symmetric
version of the Nonnegative Matrix Factorization (SymNMF
[8]) which optimizes:

min [|M¢ — HH |3, (M
H>0
where || - || denotes the Frobenius norm of the matrix.

H = {h;} is a n by k matrix indicating the cluster member-
ship assignment of nodes in G: v; will be clustered into n, if
hic is the largest entry in the ith row of H.

The rationality of our algorithm in optimizing the IGS
objective and the details of the matrix decomposition will
be discussed in Sections 4 and 5, respectively.

3.3 Generalizations
Our algorithm can incorporate node attributes in generating
the summarization. To optimize the IGS objective under the
attributed definition of equation (5), we first compose the
node attribute adjacency matrix A”. Then the generalized
similarity matrix M” which considers the node attribute
information is computed by
(A0 AP) (A0 APY + (A0 AP) (A ® AP)
9 )

MP = ®)
where © indicates the Hadamard (by element) product of
matrices. The corresponding SymNMEF objective becomes
min ||MP — HH"|>. (9)
H>0
The construction of the node attribute adjacency matrix A”
can be customized by users. Here we give typical settings
for two common scenarios. In the first scenario, denote the
node attribute selected for consistency as D, each node v;
has a nominal value D(v;) on this attribute. For example,
each scientific paper has a venue tag indicating the confer-
ence/journal in which the paper publishes. The entry of the
node attribute adjacency matrix A” is computed by

1, D(’UL) = D(’Uj),

dij = {)\, D(v;) # D(vj), (10)

Maxlmal \ Slmllarlty\
§> ( Influence E ( Matrix
Graph G / MG (MD ) /

1. Compute topology similarity matrix M

2. Node attribute adjacency matrix 4”

3. Generalized similarity matrix M”
considering node attributes
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—

l. Specify k,I (# of clusters/flows)

2. Compute node summarization by matrix
decomposition

3. Post-process (link pruning, etc.)

where X € [0,1) controls the degree of penalty for inconsis-
tent node attribute values.

In the second scenario, we consider the node attribute D
that has an interval value D(v;) on each node. For example,
each paper has a publication year. The node attribute adja-
cency matrix is defined by the difference of attribute values:

oD = prIPe-De;)| (11)

where 8 > 1 controls the rate of the similarity decay.

4 EQUIVALENCE ANALYSIS

In this section, we present a theoretical analysis, to explain
the rationality behind our matrix decomposition based algo-
rithm. We start by deriving an approximate objective func-
tion of the IGS problem. Then we show that such an
objective is equivalent to the kernel k-mean clustering by
choosing an appropriate kernel matrix. Finally, the kernel k-
mean clustering can be solved by SymNMF.

4.1 Approximation of IGS Problem

Consider the objective function in equation (4), the optimi-
zation requires maximizing over two types of variables:
{r.}F_,, the node cluster membership assignment; and

{&.}._,, the selected large flows. The simultaneous optimi-
zation of these two classes of variables is hard due to the
non-linear and combinatorial nature of the problem. Here
we consider a two-step approximation that first maximizes
the sum of all the flows over the node cluster assignment,
then maximizes the sum of the top [ flows given the cluster
assignment. This is feasible with an appropriate [ (e.g.,
l = 2Fk), because the top [ flows contribute the most part of
the overall flow rate after applying the square function, as
shown in Section 6. Formally, the approximate objective
function becomes:

2 5 (Y iemjeny @)

max 7“(59)2: USSP Y 7 (12)
26 = 0
!

max Zr(fs)2 given {m. )" (13)
s=1

The second part of the optimization can be solved by select-
ing [ top flows with the largest flow rate.
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4.2 Kernel K-Mean Clustering

According to [9], the kernel k-mean clustering is defined as
follows. Given n data vectors {z;};_; with a kernel function
¢(z;), the KM method groups the data vectors into k£ non-

overlapping clusters {z.}"_| based on the objective:

k '
min Z Z H(b(xl) - Tnc”2 where me = ZLEI;;T(Z‘J
c=1 iem. c
Expand ||¢(;) — me||? into

2 leeﬂp B(x;) - p(x;) n Zj,zeﬂ(, B(x;) - (1) '

() - ;) — ‘
7| |7TC|2
Because
]Err, ] ZEn( ¢(‘El)
y e sy e

The objective function of KM clustering can be written as

- j Zi Zj
min Zz[q)(xi)_ d’(“)‘zﬁﬂ“(ﬂ; c|) o >].

c=1 ien.

AsSh > ien, ®(2i) - #(2;) is constant, it is equivalent to

Y Y A o)

c=1 i,jem.

(14)

Introduce the heuristics of the number of bidirectional
common neighbors as the similarity measure, we can
compute a topology similarity matrix by

AAT + ATA " aipa + agay;
K =—5 where ki = Zit el B Gty

t=1

If we use K as the kernel matrix in the KM clustering and
substitute k;; for ¢(z;) - ¢(x;), equation (14) becomes

k
Lta’_[t + atLatJ
3o 3y

LJET[( =1
72 :2 : 2 : a?ta]f +a17at]
c=1 t=1 ijen. 2‘” |

2
i icm, @ (Zier(. afri)

2|”c‘

(Zz’eyru aij)2 + (Zie:—ru aji)2

(15)
t

:H

Q S
=~ | E| e
— —

pot 2|7
2 2
Yy (Pien, @if)” + (Xien, @ii)
2|7 '

c,d=1jemy

4.3 Equivalence

Let us compare the objective functions in equation (12) and
equation (15). They are in similar forms if we re-formulate
equation (12) into
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n n ~
(a) (b)

Fig. 5. The weighting schema comparison in two objective functions:
(a) Influence graph summarization using the entire block. (b) Kernel
k-mean using the block’s column and row.
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a
where w,i[jGS = W (i € e, j € 1a),
T ||TTq

(16)

and re-formulate equation (15) into

S e ) ()

JET €T, PpET, JET €T VS

I( M
- Z
qund Qiq

2|4l

Z S j
PET. (Lp]
where wKAI PETe

C 2|

(i €me,j€mq). (A7)
Both IGS and KM objectives aim to maximize the weighted
sum of the graph adjacency matrix entries. In IGS, the
weight of each entry is defined by the density of the belong-
ing matrix block (or flow). In KM, the weight is defined by
the average density of the column and row of the belonging
matrix block. This is illustrated in Fig. 5. Note that the heu-
ristics of the CommonNeighbor-based k-mean clustering is
to put the graph nodes with similar in- and out-neighbors
together. The resulting matrix blocks after the clustering
tend to have uniform density distributions inside each
block. Therefore, the density of the cross-shape area in
Fig. 5b is a good approximation of the density of the shaded
block area in Fig. 5a, which explains the rationality of using
the KM clustering for the IGS problem.

Furthermore, the kernel k-mean clustering is equivalent
to solving the trace maximization problem:

max  Tr(HT MY H).

HTH=I,H>0
The trace maximization problem can then be solved by
SymNMEF under spectral relaxations [8].

5 IMPLEMENTATION DETAILS

We have built a prototype system called VEGAS based on the
proposed algorithm pipeline. As shown in Fig. 4, the pipeline
involves four kinds of algorithm-driven building blocks. The
rooted graph search follows the standard BFS/DFS imple-
mentation. Below we describe details on the similarity
matrix computation, node summarization by SymNMF and
the link pruning for post-processing of the summarization.
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Algorithm 1. Link Pruning Algorithm

Input: Initial summarization Sy~ {V,E}, # of flows |,

V= {m},, E= {6}, flow rate (&)
Output: Final summarization S
RankFilter Sy:
begin

S — So;
sort £ by r(E) in decreasing order;
fors «— [+ 1to k? do
remove E(s) from S;
fori — ltokdo // link recovery
E; — subset of E having m; as destination;
sort E; by r(E;) in decreasing order;
if £;(0) ¢ S then
add E;(0) to S;

// pruning

end

Similarity matrix computation. In Section 4, we have shown
that using the heuristics of common neighbors to construct
the similarity matrix can approximate the objective function
of the IGS problem. This algorithm runs fast even for very
large graphs due to a complexity of O(md?*) where m is the
number of links in G and d is the average node degree. We
have implemented all the three variants of the algorithm
and it is shown by the experiment result in Section 6 that
the bidirectional CommonNeighbor algorithm is generally
better than the one-directional forward or backward Com-
monNeighbor algorithm.

Node summarization by SymNMF. The node summariza-
tion is done by applying SymNMEF on the similarity matrix
M@ (MP), and using the factorized matrix H for the cluster
membership assignment. In our implementation, we apply
the iterative SymNMEF solver with the multiplicative updat-
ing rule in [8] which guarantees convergence.

(MGH)U'
hij < hij 1—ﬂ+ﬂm ;
ij

(18)
where h;; denotes the entry of H in (i, j)'s cell, f is set to 0.5.
The iteration stops when ||[M¢ — HHT||, < ¢||[M¢||, where
¢ = 1077. The maximal number of iteration is 500.

With this iterative solver, the initialization of H is criti-
cal to the final result. We introduce nonnegative eigenvalue
decomposition similar to the method in [10] to compute a
good initial factorization. Over this initialization, we com-
pute the cluster assignment of the source node f by its
largest entry in H, denoted by 7(f). The other entries of H
that are related to the source node f and the cluster n(f)
are cleared to zero. Due to the nature of multiplicative
updating, the cluster assignment of the source node is
guaranteed to be isolated from the other nodes during the
iteration.

Link pruning. The graph summarization by SymNMF
needs further post-processings to select [ largest flows for
the final summarization S. According to equation (13),
these flows can be extracted after ranking by the flow
rate. The other flows are then filtered out. This is illus-
trated in Algorithm 1. Notice that in the link recovery sec-
tion of the algorithm, we introduce a constraint to keep a
connected graph in the summarization. It is achieved by
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adding back the largest flow going to each node cluster.
An alternative choice is to construct the maximum span-
ning tree [11].

We implement the initial VEGAS system backend in
Java. The main computation routines are built on the Paral-
lelColt package [12] to optimize for multi-threading and
sparse matrix operations. The speed of some core matrix
decompositions (e.g., Eigenvalue) are further improved by
invoking ARPACK (for sparse matrix) and LAPACK (for
dense matrix) implementation [13] through JNI invocations.

6 EVALUATION

In this section, we evaluate the main algorithm on the node
summarization by comparing with alternative graph sum-
marization methods. Nine algorithms are considered: the
first three are ours, using CommonNeighbor algorithms to
compute the similarity matrix (i.e. forward+backward, for-
ward, and backward settings) and then apply SymNMEF for
the summarization; the fourth uses the SimRank algorithm
[14] to compute the similarity matrix for SymNMEF; the next
four are classical graph clustering algorithms with Ratio
Association, Normalized Cut objectives [15], the agglomerative
Modularity-based graph clustering [16], and the Metis K-way
graph partition [17]; the last is minimal description length
(MDL) based graph summarization [4]. Note that Ratio Asso-
ciation and Normalized Cut are implemented using their
equivalent similarity matrix computation for SymNMEF [18].
Metis partition is implemented by the official open source
software package [19]. Modularity clustering is executed
agglomeratively until all clusters stop merging at the top
level or the number of clusters reaches k, the desired number
of clusters. For MDL, we implement the greedy algorithm in
[4]. The MDL algorithm can not specify the number of clus-
ters, in fact, it generates 4,937 clusters on a medium-sized
influence graph as shown in Fig. 9g. It is known that increas-
ing the number of clusters will raise the overall flow rate, to
ensure a fair comparison, we exclude MDL from quantitative
comparisons, but still present its visual summarization
results. Note that all the approaches in comparison only dif-
fer in the graph summarization algorithm, the pre-process-
ing (i.e. generation of the maximal influence graph) and the
post-processing (e.g. link pruning) steps are the same.

In the experiment, the parameters for the summarization,
namely the number of clusters (k) and the number of flows
(), are configured within a feasible range from the user’s
perspective. During the study with real users, we find that
most of them consider a graph view with less than ten clus-
ters to be less informative, while a graph with more than 20
clusters to be too complex to interpret. This corresponds
well with the previous study result [20] that the node-link
graph like our design with larger than 20 nodes will start to
fall behind another representation by the adjacency matrix,
in most graph analysis tasks. On the choice of the flow num-
ber, we set the lower bound to the number of clusters (I = k).
Below this number, the summarization graph will be discon-
nected. Even with the link recovery mechanism, the impor-
tant flow patterns can be distorted. Meanwhile, the upper
bound of the number of flows is set to [ = 2k, because it is
shown in our result that the largest 2k flows account for
more than 99 percent flow rates in average. From user’s
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TABLE 2
The Initial Four Citation Graphs Used in the Experiment
Source paper title Venue/Year Node Link
Manifold-ranking based image retrieval ACM Multimedia 2004 598 895
Stochastic High-Level Petri Nets and Applications IEEE TC 1988 2,509 5,256
Mining Frequent Patterns without Candidate Generation SIGMOD 2000 10,892 22,301
On Power-law Relationships of the Internet Topology SIGCOMM 1999 33,494 86,398
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Fig. 6. The IGS objective on four sample graphs. The flow rate is summed from all the flows in the (%, ) summarization.

feedbacks, the extra number of flows also introduces addi-
tional overhead to understand the influence graph structure.

All the experiments are conducted on the same Linux
server with two eight-core 2.9 GHz Intel Xeon E5-2690 CPU
and 384 GB of memory. All the LAPACK and ARPACK libs
are compiled locally to provide machine-optimized perfor-
mance. The raw experiment data are paper citation graphs
collected from ArnetMiner [21].

6.1 Flow Rate Maximization

We evaluate the performance of these summarization algo-
rithms in optimizing the numeric objectives defined in
Section 2. Initially, four papers from the ArnetMiner data
set are selected as the source node to generate maximal
influence graphs, as listed in Table 2. These maximal influ-
ence graphs are summarized by each of the above algo-
rithms. The sum of the squared flow rate on each
summarization, which is the IGS objective defined in equa-
tion (4), is computed for comparison. Figs. 6a, 6b, 6¢, and 6d
present the result of eight summarization algorithms
(excluding MDL) under four carefully selected (k, ) settings.

The first group of results in Fig. 6a compare on a minimal
graph summarization (k = 10, [ = 10). These results indicate
that among three CommonNeighbor algorithms, the bidi-
rectional setting almost always achieves the best perfor-
mance in maximizing the IGS objective (at least > 100
percent gain'), except on the largest graph (#Node=33,494),
the backward CommonNeighbor obtains a tiny advantage
(1 percent). Further, comparing the bidirectional Common-
Neighbor to traditional graph summarization methods,
CommonNeighbor achieves much better performance than
Ratio Association, Normalized Cut and Metis (at least > 20
percent, in average > 100 percent). In some cases, the per-
formance of CommonNeighbor is matched by SimRank
(< 10 percent gain) or outperformed by Modularity.

After we double the number of flows (k = 10, = 20), the
sum of flow rates in Fig. 6b does not increase much on all
algorithms (in average < 15 percent) and the overall com-
parative patterns stay unchanged. We also increase the

1. Percentage of
new_number—original _number
original_number x 100

performance
%, the same below.

gain (drop) by




SHI ET AL.: VEGAS: VISUAL INFLUENCE GRAPH SUMMARIZATION ON CITATION NETWORKS

3425

1204 Cluster Type

@ - - - - 1-forward+backward_CommonNeighbor_all_flows —&— 4-SimRank_k_flows
“&,’ = — - 1-forward+backward_CommonNeighbor_2k_flows —¥— 5-Ratio_Association_k_flows
= 1004 —=— 1-forward+backward_CommonNeighbor_k_flows —<¢— 6-Normalized_Cut_k_flows
(% ’S - —=o— 2-forward_CommonNeighbor_k_flows —— 7-Modularity_Top_k_flows
= O ly +«. % 3-backward_CommonNeighbor_k_flows —— 8-Metis_K_Way_k_flows
33 80 :
o9
5®
5 o
3G 60
= @©
© O

u—
2 g 40+
4
S o
28 20
58
g C T T T T T T T T
(7)) 1-1000 1001-20002001-3000 3001-40004001-5000 5001-6000 6001-7000 7001-10000

(149) (33) (27)

(16) @) ®) ®) ®)

Graph Size Category (#Graph Count)

Fig. 7. The IGS objective on 250 citation graphs with the number of nodes ranging from 100 to 10,000. The cluster number is set to k& = 20.

number of clusters (k = 20,1 = 20; k = 40,! = 40, beyond the
recommended parameter range for performance test
only), and the results in Figs. 6c and 6d show that the
objective function increases much as the number of clus-
ters increases (at least > 30 percent, in average > 90 per-
cent, comparing Fig. 6¢c with Fig. 6b). The Modularity
algorithm is an exception, whose objective function
remains unchanged because the number of clusters is
already larger than £, so that the flow rates are kept sta-
ble. For example, a sample influence graph with 33,494
nodes stops at 71 clusters by the Modularity algorithm.
Meanwhile, with the larger number of clusters (Figs. 6¢
and 6d), the bidirectional CommonNeighbor regains a
performance advantage over SimRank and Modularity.
During the experiment, we have executed each algorithm
three times and report their best performance. However, the
results in Fig. 6 still show some randomness due to the
nature of the iterative NMF solver. To obtain more accurate
results, we sample 250 most-cited papers published in KDD
and ICDM from the ArnetMiner data set as the source nodes.
The size of their maximal influence graphs are within the
range of 100~10,000 nodes (we have to remove a few largest
graphs with more than 10,000 nodes due to performance con-
sideration). On each graph, the same experiment is con-
ducted under a fixed setting of k£ = 20. Finally in Fig. 7, we
categorize the summarization result on 250 graphs into eight
bins according to their original sizes. The average IGS objec-
tive function in each bin is reported for comparison. The
results on this larger data set demonstrate the same patterns
with those on four sample graphs. In the comparison under
the setting of [ = k = 20 (solid lines), the bidirectional Com-
monNeighbor in most cases are the best. The Modularity
algorithm raises some exception, which performs better as
the number of nodes increases beyond 5,000. As mentioned,
this is because the Modularity algorithm generates much
more clusters than the setting of k£ = 20 in all the other algo-
rithms. As indicated by the labels above the Modularity per-
formance (the blue line and text), the number of clusters by
Modularity increases from 24.8 in the first category to 65
among the largest citation graphs. Meanwhile, we also plot
in Fig. 7 the performance of the CommonNeighbor algorithm
in summarizing more flows (I = 2k, the dashed line; [ = K2,
the dotted line). These results confirm that increasing the

number of flows in CommonNeighbor does not optimize the
objective function much. In average, the top 2k flows occupy
more than 99 percent flow rates in the summarization.

We also evaluate the performance of CommonNeighbor
algorithms under the generalized flow rate definition when
the node attribute information is incorporated, as defined in
equation (5). Here we assume a typical setting of penalizing
the inconsistent node attribute according to equation (10).
We test two CommonNeighor algorithms: one uses the bidi-
rectional setting without the node attribute (the topology
similarity matrix is computed by equation (6)), the other
uses the generalized bidirectional CommonNeighbor that
incorporates the extra node attribute information (the gener-
alized similarity matrix is computed by equation (8)). All
the other algorithms do not consider the node attribute by
their default settings. The citation graph is that of the pattern
mining paper in SIGMOD 2000 (Table 2). The cluster number
is set to k = 20. The result on the IGS objective function is
illustrated in Fig. 8. While the CommonNeighbor algorithm
still dominates the other algorithms under all degrees of
penalty for the inconsistent node attribute, the generalized
version of CommonNeighbor achieves even better perfor-
mance. The gain is the largest under the medium degree of
penalty (~20 percent when A =0.5) and small when we
apply a huge (A = 0.1) or tiny penalty (A = 0.9). This can be
ascribed to the overestimate and underestimate of the attri-
bute homogeneity in flow-based node clusters, though we
admit that the honey spot of A in our approach may change
according to the choice of the citation graph.

6.2 Visualization

We evaluate the effectiveness of summarization algorithms
also by comparing their visualization results: whether they
produce a clean influence graph summarization with little
visual clutter and whether the result is meaningful for
domain users. Note that all the methods use the same link-
pruning algorithm as in Algorithm 1 (I = 2k). We first pick
the famous pattern mining paper in SIGMOD 2000 as the
source node to generate the maximal influence graph. Then
we execute seven typical summarization algorithms and
depict their results in Figs. 9a, 9b, 9¢c, 9d, 9e, 9f, and 9g.
At the first glance, the proposed bidirectional
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Fig. 8. The IGS objective after incorporating node attributes in the flow
rate definition. The node attribute adjacency matrix is set according to
equation (10). The cluster number is set to & = 20.

CommonNeighor method generates a connected tree-like
influence graph summarization without edge crossing
(Fig. 9a). SimRank produces a similar visual form
(Fig. 9b), but the generated graph is disconnected. The
Metis result is also clean (Fig. 9f), however all the clusters
have a similar number of nodes, making the graph sum-
marization almost impossible to deliver the true message.
Ratio Association and Normalized Cut look inferior due
to the poor graph connectivity (Fig. 9c) and the flat influ-
ence hierarchy (Fig. 9d). Modularity and MDL are the
worst because of the visual clutter by the large number of
clusters in the summarization (Figs. 9e and 9g).

Taking a closer look at these visual summarizations,
we find that by CommonNeighbor, most flows in the sum-
marization represent at least 300 citation links. While by
SimRank, the critical flows directly from the source node
are fragmented, two of which only include 52 and 83
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citations. The same deficiency is found in the result by
Metis, where two of the highlighted flows only include 11
and 12 citations. We invite a senior researcher from the
database and data mining community to evaluate these
summarization results. She mainly compares the visual
summarization by CommonNeighbor and SimRank. In this
case, she prefers the result by CommonNeighbor in Fig. 9a
because the influence evolutions make more sense. The ini-
tial paper quickly raises much attention on the pattern min-
ing research topics such as the itemset and association rule
mining, then this thread splits into four streams: the general
data management research (such as web and skyline analy-
sis), trajectory analysis, subgraph analysis, and applications
in the software engineering (e.g. bug analysis). The thread of
web data analysis gradually moves to the topic of web
retrieval and finally leads to the tag analysis and the research
on the anomaly behavior detection. Compared with Com-
monNeighbor, SimRank creates some false links, e.g. the
direct flow from the source-node paper on frequent pattern
mining to skyline analysis (the cluster of 3,413 nodes).

Furthermore, we invite another relevant researcher to
study the influence of the well-known Internet power-law
paper in SIGCOMM’1999. The maximal influence graph is
summarized by the bidirectional CommonNeighbor algo-
rithm into Fig. 1 (in the second page). Note that in this case
the influence graph topology is augmented by the “venue”
field of each paper to group the papers with similar research
topics together. From this visual summarization, the subject
learns that the SIGCOMM paper directly influences the
research on Internet topology and simulation. Next, over
the Internet topology related topics, the P2P research
becomes popular and after that the web-related research
and XML. The most recent hot topic in this thread appears
to be sensor networks which corresponds well to his
domain knowledge.
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Fig. 9. Influence graph summarization results on [Han SIGMOD’2000] by different algorithms (k = 10, [ = 20). The node label gives the number of
papers in each cluster and their content summary by either title+abstract keywords in (a), (b), or the top 3 research fields in (c)~(f). The link thickness
indicates the flow rate. Some part of the graph is highlighted to show the number of citations as edge labels. Note that the Modularity algorithm stops
at 62 clusters and can not merge any further. MDL produces 4,937 clusters, almost a half of the visual complexity in the input graph.
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Fig. 10. The summarization of Prof. Jiawei Han’s influence graph by the
bidirectional CommonNeighbor algorithm (k = 10).

Our algorithm pipeline can also summarize the author’s
influence on the author citation graph. This is generated
by adding one citation link between two authors for each
citation between their papers. The maximal author influ-
ence graph is then computed from a source author node
by traversing the reversed author citation graph. As an
example, we select Prof. Jiawei Han as the source author,
and collect all the authors influenced by him within two
hops. To limit the size of the influence graph, we only
keep productive authors (i.e. > 30 paper publications in
the data set) which gives a graph of 26,349 author nodes.
The summarization result applying the bidirectional Com-
monNeighbor algorithm (k = 10) is shown in Fig. 10. Our
invited researcher acknowledges the validity of the result:
Prof. Han has influenced multiple fields with his research,
mainly data mining, database (DB), Al and networking
(Net). On his contribution to DB and DM fields, the influ-
ence is bidirectional, i.e., he is also heavily influenced by
the researchers there, as shown in the right column of
Fig. 10, a list of 109 authors (e.g. Raghu Ramakrishnan).
The most directly influenced field by the number of
authors are DM and Al, as indicated by the group of 6,575
authors. The most indirectly influenced field are Net and
DM, as indicated by the group of 11,013 authors. Through
the bridging of a group of 21 authors (e.g. Rakesh
Agrawal), he also impacts the Theory (The) research, rep-
resented by the group of 2,774 authors.

During the case studies with experts from the research
community, most of them recognized this kind of visual
summarization on citation networks to be quite helpful. The
frequent terms they talked about were “clear views”, “new
insights”, etc. From these aspects, they found the visualiza-
tion to greatly outperform previous methods. On the other
hand, they did provide a lot of suggestions to improve the
current design, primarily from the user experience of
an interactive system. First, the users are given static, pre-
configured views for the analysis and comparison, only a
few interactions are provided. For example, they can not
switch between the different size of summarizations (chang-
ing k and /). This feature is among the top requests during
the study. Second, on the quality of the summarization,
quite a lot users would like to have some kind of visual
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Fig. 11. The computation time of different summarization algorithms, k£ =
20: (a) Total time; (b)~(d) Split time of four CommonNeighbor algorithms
in our pipeline. The similarity matrix computation and SymNMF iteration
dominate the cost.

annotation on the flows between paper clusters. What they
want to know is why and how some papers influence the
other papers. This corresponds to the detailed analysis on
the context of each citation. It will be very helpful to also
visualize when the influence of one paper goes beyond its
original topic and leads to the multidisciplinary research.
Part of the expert feedbacks is addressed in the online ver-
sion of VEGAS, which is explained in Section 7; most other
features are under discussion for the future work.

6.3 Scalability

The overall computation time for different summarization
algorithms is illustrated in Fig. 1la. Our proposed
CommonNeighbor algorithms are more costly than the effi-
cient modularity-based clustering algorithm (O(nlog(n))
with small constant) and the Metis k-way graph partition
(O(n 4+ m)). However, the best of our methods can summa-
rize a 10,000-node maximal influence graph in 100 seconds,
and the overall time complexity is only moderately above
linear. Note that n denotes the size of the maximal influence
graph, which is much smaller than the size of the original
graph. Most citation-based influence graphs from a single
paper are no larger than a magnitude of 10,000 nodes, while
the entire data set can have millions of papers.

In the experiment, the SimRank algorithm requires the
longest computation time. To explain this, we have looked
at the split time at three key steps of the algorithm pipeline,
as shown in Fig. 11. The eigenvalue decomposition
(Fig. 11c, only top k eigenvectors are computed) are quite
fast due to the sparsity of the influence graph matrix
(Table 2). On the similarity matrix computation (Fig. 11b),
SimRank is the slowest because in worst case it needs to
compute an all-to-all similarity matrix (O(n’d?)), though we
have optimized it to only compute within a four-hop range.
In contrast, CommonNeighbor is much faster on similarity
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Fig. 12. The online VEGAS system interface on the “LANDMARC” paper.

computation, through the multi-threaded routine on sparse
matrix multiplication. Finally, SymNMF computation
(Fig. 11d) is the most costly step. In each iteration, there are
a few sparse matrix-matrix multiplication computations.

Compared with the time complexity, the space require-
ment of our algorithm pipeline is less stringent. The simi-
larity matrix computation and the iterative SymNMF need
to store one dense matrix at most, giving a space com-
plexity of O(n?) with small constant. The eigenvalue
decomposition by dsyevx routine in LAPACK only needs
O(n) space with a relatively large constant. Recall that n
is the number of nodes in the maximal influence graph
and can be hundreds of times smaller than the original
citation graph.

6.4 Summary

The experiment results demonstrate that most graph sum-
marization algorithms specifying the number of clusters
provide compact influence graph summarizations on cita-
tion networks. In contrast, typical graph compression and
summarization methods such as MDL and Modularity can
lead to huge visual clutters that make it hard for people to
interpret. Within the k-cluster methods, applying bidirec-
tional CommonNeighbor algorithm is shown to be the best
in maximizing the IGS objective, constantly superior than
traditional graph partition and clustering algorithms, such
as Ratio Association, Normalized Cut and Metis. In a few
cases, plugging SimRank into our algorithm pipeline can
achieve a comparable performance. In fact, SimRank has
very close tie to our proposed algorithms. CommonNeigh-
bor considers the topological similarity of two nodes within
one hop, while SimRank computes their similarity in an infi-
nite hop (pruned to four hops in this work for the perfor-
mance consideration). Our results show that, though close
to, SimRank is no better than CommonNeighbor in maxi-
mizing the IGS objective, also it suffers from a much
higher computational complexity at O(n%d?). Overall, we

recommend the bidirectional CommonNeighbor algorithm
in practice for its good balance among the visualization
result, optimization quality and computational efficiency.

7 ONLINE SYSTEM PROTOTYPE AND DISCUSSION

The initial implementation of VEGAS is based on Java and
operated as the desktop software in offline (Section 5). To
meet the user’s expectation of an open interactive system,
we are building an online VEGAS prototype in JavaScript at
the frontend. In this prototype, the user could start from a
search interface on papers and authors, and then directs to
the homepage of one paper/author in the search result. An
example with the “LANDMARC” paper from the wireless
networks journal is illustrated in Fig. 12. The influence
graph summarization is shown in the central panel with the
default setting. These settings can be configured by users
and updated online in the display. For example, they can
switch the node label to the paper title+abstract summary,
or the research field summary, to get more context on the
graph. They can set the granularity of the summarization by
changing the number of clusters. Due to the computational
cost, only a few choices are provided now. On the visual
summarization, most standard graph interactions are sup-
ported, including the zoomé&pan, node dragé&drop to fine-
tune the graph layout, the node hovering for adjacency anal-
ysis, and the click-selection to access details on each cluster
of papers. An instruction of the system usage is available
as the video demo on the first author’s website.

On the future work, first we plan to analyze the content
on citations to discover their importance, sentiment and the
topic drift. This will help to create more accurate visual
influence summarizations. Second, we plan to improve on
the interactive exploration of the influence graph visualiza-
tion, from one seminal paper to certain milestones on the
same topic. Last, we plan to transfer the existing technique
on the citation networks to study the more sophisticated
information diffusion patterns on the social media.
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8 RELATED WORK

We review related work from three aspects: graph summa-
rization, graph simplification, influence maximization.

First, constructing smaller summarizations to represent a
large graph has been a traditional research topic, notably
using graph clustering and community detection [22] algo-
rithms. These algorithms typically optimize certain associa-
tion or cut measures, e.g., ratio association, ratio cut [2],
normalized cut [15], and the modularity [23]. Most of these
methods target at maximizing intra-cluster connections
while minimizing inter-cluster connections. This is fairly
different from the IGS problem, which is defined as maxi-
mizing the overall flow rate. Similarly, the graph summari-
zation methods based on node attributes, such as SNAP [3],
[24], ensure the content coherence on clusters, but again
they are not tailored for the flow rate maximization objec-
tive in the IGS problem.

Meanwhile, there are many works on graph compression
for the efficient graph storage and representation. In [4],
MDL-based compression was proposed to present the
graph with an aggregated structure and an error correction
list. It is proved to be the best summary from the informa-
tion-theoretic perspective. While MDL can successfully
compress web graphs, on influence graphs that are sparser,
it suffers from low compression rate and leads to huge
visual clutters.

Graph visualization methods, especially those on large
graphs, are often combined with graph summarization algo-
rithms. The most relevant works to ours are egocentric net-
work visualizations which only consider the subgraph of
nodes having direct connection to a pre-defined ego [25].
While the IGS problem is also a localized summarization
of the source node, the subgraph considered, which is called
the maximal influence graph, is induced from all the nodes
that have either direct or indirect connection (path) to the
source node. In this sense, the IGS problem has a much
larger scope than the egocentric network visualization. In
constructing user-friendly information maps, Shahaf et al.
[26], [27], [28] studied the similar problem of summarizing
large amount of information. They developed intriguing
methods to detect hidden linkage and document clusters
from the keyword frequency statistics. On a quite different
focus, our work builts on graphs with explicit linkage data
while the content of each node can be absent or incomplete.

Second, graph simplification methods are another kind of
techniques to generate the clearer view of large graphs.
These methods identify important edges in the graph and
prune the others to produce the summarization. In [7], the
authors proposed two algorithms on directed and undi-
rected flow networks. Through the construction of bicon-
nected components and the dominance trees, the useless
edges subject to either the source node or the sink node are
located and removed. Though inspiring, these algorithms
on flow networks can not be directly applied to the IGS prob-
lem which considers the overall flow rate, instead of the
flows in the source-sink path. Another work on weighted
graphs defined the connectivity measure of a graph by the
average connectivity between all pairs of nodes [29]. They
proposed algorithms to find edges for removal in the objec-
tive of minimizing the loss in the connectivity measure. A
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brute-force approach was shown to achieve the best quality
though it is costly in the computation complexity. The other
two algorithms were designed to balance the simplification
quality and the computation time.

The similar problem of sparsifying networks exists in
the social influence scenario, which involves two types of
data, the underlying social graph and the log of informa-
tion propagation on this graph (e.g., memes and subscrip-
tions). In [5], the authors characterized the information
propagation by the independent cascade model [6] and
inferred the model parameters by the propagation logs.
Given the number of edges, a sparsified subnetwork can
be extracted which best describes the observed propaga-
tion logs in theory. Though such a problem is shown to
be NP-hard to approximate, the authors proposed a
greedy algorithm that is both practical in complexity and
performs closely to the optimal solution in quality. In
another work [30], the scope of the network sparsification
problem is extended by assuming no underlying informa-
tion propagation model. The optimal simplified network
are computed by maximizing the coverage of network
links on the propagation logs. In contrast to the simplifi-
cation approaches that try to preserve the overall network
structure, another class of literature on the social influ-
ence analysis focuses on identifying frequent propagation
patterns in either the coherent subnetwork structure [31]
or the content-centric information flow [32].

The IGS problem differs from the graph simplification in
that we target at building an overview of the large influence
graph. Graph simplifications can reduce the number of
edges, but can not construct a readable overview because
they do not group the graph nodes together. Recently,
Mehmood et al. proposed CSI [33], a model that generalizes
the independent cascade model to the community level. CSI
can produce similar group-level visual summaries to our
result. However, the CSI model depends on both the under-
lying social graph and the information propagation log. In
comparison, our method is unsupervised and we do not
leverage the information propagation model or the associ-
ated log data in their scenario.

Last, considerable work has been conducted for study-
ing the effects of social influence. For example, Bakshy
et al. [34] conducted randomized controlled trials to iden-
tify the effect of social influence on consumer responses to
advertising. Bond et al. [35] used a randomized controlled
trial to verify the social influence on political voting
behavior. Anagnostopoulos et al. [36] proposed a shuffle
test to examine the existence of social influence. However,
most of the methods focus on qualitatively study the exis-
tence of social influence in different networks. Tang
et al. [37] presented a Topical Affinity Propagation (TAP)
approach to quantify the topic-level social influence in
large networks. Domingos and Richardson [38], [39] for-
mally defined influence maximization as an algorithmic
problem and prove its NP-hardness. Kempe et al. [6]
proposed to use a submodular function to formalize the
influence maximization problem and develop a greedy
algorithm to solve the problem with provable approxima-
tion guarantee. Most of these works focus on finding the
most influential nodes in a network and do not target the
summarization problem studied here.
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9 CONCLUSIONS

In this paper, we consider the problem of summarizing influ-
ences in large citation networks under a flow-based and
localized context. We formally define this as an optimization
problem, study its linkage to the existing clustering methods,
and present an algorithm pipeline as well as the prototype
system VEGAS to solve it. VEGAS achieves all the three
design objectives, including: (1) flow rate maximization that
highlights the flow of influence; (2) a localized visual sum-
marization from the source node; and (3) easy to incorporate
rich information on graphs such as the node attribute and
the time. We describe both the matrix decomposition based
main algorithm and the implementation details of VEGAS.
Through comprehensive evaluations with real-world cita-
tion networks, we demonstrate that the proposed algorithm
constantly outperforms classical methods, such as the graph
clustering and compression algorithms, in both quantitative
performance and qualitative visual effects.
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