
APPENDIX A
THE VALIDATION OF MOBILITY COMPUTATION FROM

TRAJECTORY DATA

The mobility metrics defined in Sec. 4.1 is theoretic in that
the whole trajectory of each urban user should be observed in
order to compute the exact value of each metric. This assump-
tion is infeasible as the real-world trajectory measurement
reports user’s locations in discrete time intervals. Nevertheless,
we show empirically that due to the characteristic of trajectory
data set in this work, the mobility computation method in Sec.
4.2 can approximate the exact value of mobility metrics with
statistically bounded errors. In details, these errors can happen
in the computation of people/segment entropy of user trajec-
tories (Part A) or in the aggregation of individual trajectory’s
entropy on each grid cell of the city (Part B). In addition, we
demonstrate the semantics of the Vibrancy and Commutation
metrics by correlating them with side information using real-
world data capture (Part C).

A. Analysis on the Computation of Mobility Metrics

On each trajectory, the people entropy and segment entropy
are defined in the paper as below.
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With the urban trajectory data set, these metrics are com-
puted by
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In theoretic and empirical computations, the semantic dis-
tribution on each stay segment, i.e., Qi =< qi1, · · · ,qiM >, are
both estimated by feature extraction on each grid cell (stay
location). The error on qi j can then be omitted by qi j = q̃i j on
the same cell. Hence, we mainly consider the error induced
on estimating p j.

Examine the equation to compute p̃ j in Eq. (3). We assume
the record distribution within each stay segment is uniform
(see Appendix B for details). Let the ith stay segment have a
consecutive record interval of ti. The number of records in the
ith stay segment can be computed by ni = bTi

ti
c or bTi
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The measurement error of p j can be decomposed into two
parts by
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where the two error terms are bounded by
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By a third-order Taylor expansion of the expectation of 1
ti

:
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where γ(ti) and ρ(ti) are skewness and coefficient of variance
(COV) of ti. Consider the expectation of n · ti:
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∈ (∑N
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Because ti has an independent identical distribution for any
1≤ i≤ N, then E( ti

tk
) = 1 for any k 6= i, Eq. (10) becomes

E(n · ti) ∈ (T −N ·E(ti),T +N ·E(ti)) (11)

Then we have 1
E(ti)
∈ ( n−N

T , n+N
T ). Substituting it into Eq. (8),

the expectation of the second error term is bounded by:
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In our data set measured at Beijing (∼30M trajectories) ,
the average length of stay segments is 5183 seconds and the
average record interval within a stay segment is 157 seconds,
N
n ∼

157
5183 = 0.03. Also, we have ψ(ti) = 0.11 by computing

the skewness and COV of ti. Finally, the error expectation on
p j is bounded by E(|ε1|)+E(|ε2|) < p j · 0.173. Empirically,
the computation error for each average semantic distribution
p j is bounded by 17.3%.

From the error on the semantic distribution p j, we further
derive error rates in computing the final people (segment)
entropy through numerical experiments. For Eq. (1) or Eq. (2),
we randomly generate a distribution P =< p1, · · · , pM > or
Qi =< qi1, · · · ,qiM > that sums to one. On each probability
of the distribution (p j or qi j), a random noise with rates
of +17.3% or -17.3% of the original probability is added.
We compute the actual entropy using the original distribution
and the erroneous entropy using the distribution with noise.
The error rate of the entropy can be calculated. The same
process is repeated 106 times and we obtain the expectation
and 95% confidence interval (upper bound) of the error rate in
computing entropies. As shown in Figure 1, the expectation of
the error rate is below 3% consistently and the 95% CI drops
as we have more semantic categories (a larger M). In our
scenario with 10 POI types, the 95% CI of error rate is about
7% (M = 10). Consider that the entropy of many trajectories
will be aggregated on a cell. Under an i.i.d assumption of the
entropy distribution, the variance of error rates in computing
the average entropy in each cell further drops by the square



Fig. 1: The expectation and standard deviation of error rates
in the entropy computation.

root of the number of records in that cell. In our data at
Beijing, there are 53k cells occupying 99.5% of location
records in total. The minimal number of records in each of
these cells are 3000. The error rate in computing the average
entropy of each cell will be bounded by 2.4%+ 4.6%√

3000
= 2.5%

(M = 10), which is sufficiently small for actual usage.

B. Analysis on the Aggregation of Mobility Metrics in Grid
Cells

In this paper, the basic aggregation method of entropy
values on individual grid cells adopts the average operation. In
theory, the aggregated entropy value on each cell should be the
entropy value of individual records on this cell weighted by
the length of the corresponding stay segments. We show that
the simplified computation can approximate the actual entropy
value with statistically bounded errors, according to the law
of large numbers.

Consider a cell in the city grid with N records located on
the cell in the entire data set. Without loss of generality, we
assume that there are no two records belonging to the same
stay segment of a trajectory, otherwise we will have removed
one of them in the pre-processing for aggregation computation.
Denote the entropy value of the ith record to be hi and the
length of the corresponding stay segment to be Ti. The exact
aggregated entropy value of the cell is computed by
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In comparison, the actual computation is conducted by
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It is shown that the expectation of the exact aggregated value
in Eq. (13) equals our computation result in Eq. (14).
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The variance of the exact aggregated value in Eq. (13) can
be estimated by
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The standard deviation is then bounded by
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In our data set measured at Beijing, we estimate the
above measures as ρ(Ti) = 1.414, ρ(hi) = 1.95 (vibrancy),
ρ(hi) = 1.18 (commutation). For more than 99.5% location
records in our data, the underlying grid cell has a minimal
number of records larger than 3000 (N ≥ 3000). Finally, we
have σ (HC)< 0.057 ·E(HC). The 95% confidence interval of
the error rate of H̃C is 11.4% (2 · 0.057).

C. Semantics of Vibrancy and Commutation metrics

Vibrancy: We compute the average vibrancy of location
records in each administrative division (DIV) in Beijing and
Tianjin using our urban trajectory data set. We also obtain the
GDP, population, and area size information of these divisions
from national survey data. It is hypothesized that the vibrancy
metric can indicate people’s living quality. The region with
more high vibrancy people can have stronger economy in
general. As shown in Figure 2, in both the city of Beijing and
Tianjin, the vibrancy metric in all DIVs shows a correlation
with GDP per capita and GDP per area in the same DIV. The
Pearson correlation coefficients between vibrancy and these
two GDP metrics are 0.77 and 0.66 in Beijing, and 0.37 and
0.79 in Tianjin. The observation on urban data supports our
hypothesis.

Commutation: Similarly, we compute the commutation
metric for each trajectory in our urban data set. We also
compute the displacement (travel distance) of each trajectory
for comparison. Because of the sparse nature of the data set,
we can not detect most of travel segments in the whole trajec-
tory. Instead, we sum together the displacement between any
two consecutive stay segments, for which the detection rate is
much higher. The Pearson correlation coefficient between the
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Fig. 2: The correlation among the vibrancy metric and GDP per capita/per area in the city of Beijing and Tianjin.

displacement per record and the commutation metric reaches
0.34, indicating a moderate correlation that supports the usage
of the commutation metric. Note that we use displacement
per record because the total travel distance measured in a
trajectory is correlated with the number of location records
on that trajectory data.

For diversity and fluidity, the semantics of metrics can be
derived directly from their mathematical definitions.


