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Abstract—Visualizingmassive scale humanmovement in cities plays an important role in solvingmany of the problems that modern

cities face (e.g., traffic optimization, business site configuration). In this article, we study a bigmobile location dataset that coversmillions

of city residents, but is temporally sparse on the trajectory of individual user. Mapping sparse trajectories to illustrate population

movement poses several challenges from both analysis and visualization perspectives. In the literature, there are a few techniques

designed for sparse trajectory visualization; yet they do not consider trajectories collected frommobile apps that possess long-tailed

sparsity with record intervals as long as hours. This article introduces UrbanMotion, a visual analytics system that extends the original

windmap design by supportingmap-matched local movements, multi-directional population flows, and population distributions. Effective

methods are proposed to extract and aggregate populationmovements from dense parts of the trajectories leveraging their long-tailed

sparsity. Both characteristic and anomalous patterns are discovered and visualized.We conducted three case studies, one comparative

experiment, and collected expert feedback in the application domains of commuting analysis, event detection, and business site

configuration. The study result demonstrates the significance and effectiveness of our system in helping to complete key analytics

tasks for urban users.

Index Terms—Movement visualization, sparse trajectory, wind map

Ç

1 INTRODUCTION

MAPPING themovement of people has long been a research
topic in GIS and visualization communities [1], [2], [3],

[4]. In modern cities, human movements are measured via
advanced sensing technology, e.g., GPS [5], road-side sensors
[6], and participatory crowdsourcing [7]. Visualizations of
massive scale movement data, as an important method for
urban analytics, pave the way for the success of many real-
world applications [8], e.g., traffic optimization [9], urban
planning [10], [11], and business site configuration [11].

The human movement data in cities is often sparse in
both space and time. Spatially, each type of measurements
or sensors could capture the movement of only one group
of people or under a particular circumstance. For example,
road-side sensors record the movement of people in cars,
predominately close to intersections [6]; tourism mobile
apps mostly track the tourist’s movement around places of

interests [12]. Temporally, the trajectory of individual peo-
ple is seldom measured in real time because of the con-
straint on communication cost. The intra-trajectory record
intervals are often seconds or minutes [13], [14], [15].

This paper studies a movement dataset containing trajec-
tories of millions of mobile users, which are synthesized
from location records of hundreds of thousands of mobile
apps (refer to Section 3.1 for details). Our dataset covers a
majority of population groups and spatial locations in a city,
thus avoiding the spatial sparsity issue. The dataset allows
us to construct a population-level movement visualization to
reveal the overall human movement pattern in cities. Never-
theless, as a trade-off of the comprehensive spatial coverage,
the reporting frequency of each individual people’s locations
in our dataset becomes much lower, on average 0.4 records
per hour, due to energy and privacy concerns of mobile
apps. Therefore, our dataset is called (temporally) sparse tra-
jectories, which are also observed in many other scenarios
(e.g., geo-tagged social media data [16]).

Mapping sparse trajectories raises several questions from
both analysis and visualization perspectives. On the analy-
sis side, can we extract human movements from sparse tra-
jectories when the average record interval (�2.5 hours) is
longer than the elapsed time of a single trip in cities (< 2
hours)? How to aggregate extracted individual movements
for population-level visualization? Existing literature have
proposed many aggregation methods [17], e.g., Origin-Des-
tination (OD) based [18], [19], route based [20], [21], and
spatiotemporal (ST) aggregations [22], [23]. These methods
either demand the trajectory information and characteristics
that are not available in sparse data (OD and route), or are
not designed to illustrate global movement patterns (ST
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aggregation). On the visualization side, a number of designs
have been proposed to represent ODs [19], [24], [25], [26], tra-
jectories [6], [27], and routes [20]. Most of them can not reveal
global and local movements simultaneously, as well as their
multivariate patterns (direction, volume, speed, etc.). Mean-
while, few existing methods are designed to visualize huge
amount of temporally sparse trajectories in a city.

This work discovers a long-tailed sparsity pattern in the
trajectories collected from mobile apps. This pattern
allows us to effectively extract dense trips from trajectory
data and aggregate them into stochastic vector field on the
spatiotemporal grids of the city. On visualization, we
apply the wind map design [28] because of the analogy
between the movement of wind and the movement of peo-
ple: 1) they all flow continuously in space and time; 2)
both of them can be abstracted as vector fields from the
underlying data. In summary, we make following contri-
butions in this work.

� We propose a framework to compute and analyze the
vector field of urban population movements from
dense parts of sparse trajectories. (Section 4).

� We improve the wind map visualization design in
recognition of the differences between wind and
population in their movements. (Section 5).

� Qualitative evaluation, case studies and expert inter-
views are conducted on a system implementation
called UrbanMotion in the mobile trajectory dataset
of Chinese cities. (Section 6).

2 RELATED WORK

2.1 Aggregation of Movement Data for Visualization

Visualization of movement data has been classified into two
types of views according to the exploratory analysis task
they support [17]: the situation-oriented view and the trajec-
tory-oriented view. As aggregation methods are generally
introduced to deal with huge amount of movement data for
effective visualization, they must be tailored to the specific
type of view and exploratory task their visualizations target
to serve. Hence, separate aggregation methods are applied
in situation-oriented and trajectory-oriented views respec-
tively, though some methods work for both views.

In situation-oriented views, spatial, temporal, and spatio-
temporal aggregation methods [20], [22], [23], [29] are often
employed. These methods treat each position of an entity as
an independent discrete event and aggregate all these posi-
tions according to time intervals, spatial compartments
(e.g., cells), or both. For example, Dykes and Mountain
developed several basic ST aggregation methods for move-
ment data and introduced corresponding visual representa-
tions [29]. Andrienko et al. improved these methods by
aggregating movement trips according to their directions
and distances [30]. Clustering is used to form time intervals
according to the similarity of flow situations. Willems et al.
developed a kernel density estimation method [31] to aggre-
gate vessel movements based on their attributes (e.g., speed
and acceleration) in addition to space and time information.
Scheepens et al. further proposed to combine several density
fields into a density map to visually explore multiple move-
ment attributes [32], [33].

ST aggregation methods, though effective in abstracting
spatial and temporal dimensions of movement data, are not
sufficient in our analysis scenario. Apart from serving the
overview task for population distribution, our techniques
are mainly designed to illustrate global population move-
ments, which are not considered or processed locally in ST
aggregations.

In trajectory-oriented views, movements of individual
entities are considered. In addition to ST aggregations,
aggregation by origin-destinations [18], [19] and detailed
trajectory routes [20], [21] are also introduced. Guo et al. [19]
conducted an OD aggregation to compose a matrix repre-
sentation for migration of US companies. Wood et al. con-
structed OD maps over aggregations to study bicycle hire
scheme and commuting behavior in cities [18], [25]. Mobili-
tyGraphs applied graph visualizations over aggregated OD
flows to reveal the movement pattern of massive scale pop-
ulation [34]. On route aggregations, Rinzivillo et al. [21]
implemented four kinds of distance functions between tra-
jectories. They proposed a progressive clustering method
which applies each distance function in tandem to produce
easily interpretable trajectory clusters. Andrienko et al. [20]
generalized spatial locations into a few areas by Voronoi
tessellation. Routes of massive movements are then aggre-
gated into flows among these areas.

Compared with ST aggregations, it is also hard to apply
OD or route aggregations in our scenario. Because of the spar-
sity of our trajectory data, either accurate origins/destinations
or detailed routes are not available in trajectory data for aggre-
gation. In this work, we proposed a hybrid aggregation
approach over existing methods to serve two major visual
analysis tasks. First, to reveal the overview ofmovement pop-
ulation, a S�T�D (direction) aggregation method similar to
the work by Andrienko et al. [17], [30] is introduced. To deal
with huge data volume, our method applies ordinary gridd-
ings on space and time instead of elaborate abstractions. The
focus is on movement directions where clustering or map-
matching based aggregations are employed. Second, to dis-
cover global population flows, a flow tracing algorithm over
locally aggregatedmovements is proposed.

2.2 Visual Representation of Movement

The movement of objects (e.g., people, vehicle) is generally
visualized as trajectories on a geospatial map [1], [3]. When
a huge amount of diversified trajectories are displayed
together, the visualization quickly becomes cluttered. This
is the main problem faced by most trajectory visualization
techniques.

The first kind of techniques solve the problem by visual-
izing the output of aggregation methods in Section 2.1.
Based on aggregation methods used, these visualizations
can be classified into density-based, OD-based, and trajec-
tory-cluster-based techniques. Andrienko et al. applied a
density-based aggregation to display thematic city patterns
in space and time from Twitter data [35]. Guo et al. pro-
posed VIS-STAMP which applies a map of matrix represen-
tation to display OD interaction data in migrations [19].
Flowstrates allowed users to visually query OD flows by
regions of interests and analyze their temporal changes
through the heatmap-based flow ordering, filtering, and
aggregation [24]. Wood et al. studied bicycle hire patterns
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usingODmaps and flowmaps [25]. Yang et al. presented and
evaluatedMapTrix, an OD data visualization technique con-
necting the matrix metaphor with origin and destination
maps [36]. When time information is considered, the concept
of temporal OD flows can be aggregated from individual OD
trips [37], [38]. Based on temporal OD flows, Ferreira et al.
modeled a wide range of spatiotemporal queries to explore
taxi trajectories in cities [26]. Kohonen map applied a Self-
Organizing Map (SOM) based analysis on trajectory data,
which combines automatic trajectory clustering with human
interactionmethods [27].

Despite the versatility of aggregation-based trajectory
visualizations, our analysis scenario in this work makes it
impossible to apply existing methods. For example, den-
sity-based visualizations (e.g., [35]) are good for showing
the spatiotemporal distribution, but fail to reveal population
movement patterns. OD-based visualizations, notably
through matrix [19], [36] and heatmap [24] representations,
work best for a high-level abstraction of global movements,
but are not designed to illustrate and discover local move-
ment patterns. We propose a trajectory-cluster-based visual-
ization similar to Jankowski et al.’s design [37]. Compared
with the original design, we introduce multivariate visual
encodings to display movement direction, volume, and
speed simultaneously. A wind-map like visual metaphor is
proposed to augment these movement patterns.

The second kind of techniques explore the 3D design
space to encode spatiotemporal movements. Kraak [39] sum-
marized the classical space-time cube visualization designed
by Hedley [40] and Kwan [41]. The main idea is to stretch a
z-axis to represent time while keeping geospatial semantics
in the x-y plane intact. A product called GeoTime [42] was
developed with the same idea, which focuses on complex
event analyses in the spatiotemporal context. Tominski et al.
extended the space-time cube by introducing a display wall
metaphor which stacks trajectory bands on the z-axis [43].
Attribute information on trajectories can be shown by the
display wall. 3D visualizations, though appealing to end
users, may introduce occlusions in the simultaneous display
of population distribution and their movements.

Third, there are a few techniques designed for sparse tra-
jectory visualization [6], [16], [44]. The work by Wang et al.
[44] and Guo et al. [6] studied spatially sparse traffic trajecto-
ries collected at a number of transportation cells in a city.
Specially, TripVista [6] is designed to explore microscopic
vehicle trajectories at a given cell (e.g., road intersections),
but can not be applied to visualize population movements of
the whole city. In the meanwhile, Chen et al. proposed a
visual analytics system to discover movement patterns from
temporally sparse trajectories collected from geo-tagged
social media [16]. Because time intervals between geo-tagged
records are uniformly long (e.g., days), only inter-city move-
ments of travelers are visualized. In summary, there is cur-
rently few existing movement visualization method that
considers huge amount of temporally sparse trajectory data
within a city.

Finally, the proposal by Poco et al. [45] on the visualization
of NYC taxi trips comes closest to our work. They also con-
sidered temporally sparse trajectory data and applied vector
field visualizations in their design. In comparison, the techni-
ques in this paper have three key differences on input data

and visualization goal. First, NYC data are all taxi trips and
there is no need for travel detection as in our data with
> 50 percent stays. There are only start and stop locations in
each trip of NYC data, an additional closest path computation
is necessary to recover full travel trips from partial trajecto-
ries. Second, on trajectory aggregations, Poco et al. grouped
taxi trips on each road segment together, similar to the map-
matching approach. As discussed in Section 7, map-matching
and local clustering methods optimize different visualization
goals. Third, on movement visualizations, Poco et al. focused
more on speed-related traffic patterns, e.g., slowest or fastest
flows, while our work put more emphasis on directional fea-
tures using a pattern-based flow seeding algorithm.

3 SYSTEM OVERVIEW

3.1 Urban Trajectory Data and Its Long-Tailed
Sparsity

Our data is provided by a mobile analytics company which
keeps track of billions of smart devices in China, including
mobile phones, tablets, wearable devices, etc. The dataset is
collected by registering third-party APIs inside more than
100,000 kinds of mobile apps. When a registered mobile app
is activated on a device, an API will report the location of
that device to the company server. The metadata of each
location record is shown in Table 1. There are five fields in
each record: timestamp, location (longitude and latitude),
unique device ID (anonymized), and localization method
(GPS or Wi-Fi). The location records in the dataset have a
spatial resolution finer than 100 meters due to the use of
GPS and Wi-Fi for localization.

To conduct this work, we extracted sample datasets at
Beijing, Tianjin, and Tangshan separately (three major cities
of China), from July to September, 2016 (90 days). Take the
Beijing dataset as an example, it is composed of trajectories
from 31.85 million devices. Each device is included if it has at
least one location record within the administrative boundary
of Beijing during the 90-day period. The Beijing dataset has
8.41 billion records and reaches a size of 738.1G byte. The raw
trajectory of each device has been pre-processed to remove
conflicting and duplicate records reported bymultiple apps.

Our trajectory data has two distinctive features which
make this work feasible: a high volume/coverage and a
long-tailed sparsity. First, the number of devices measured
exceeds a half of population in Beijing. The data is synthe-
sized from trajectories collected frommobile apps in various
domains, including entertainment, education, and informa-
tion. In comparison, the taxi trajectory/pick-up data widely
used in previous researches [9], [46] only represents a small
share and a single type of populationmovement. Second, tra-
jectories in our data are sparse over time, i.e., 0.4 records per

TABLE 1
The Metadata of Each Location Record

Field Description Sample

Time Timestamp of record 2016-07-12 18:02:41
Lon. Longitude of location 116.523625
Lat. Latitude of location 39.792935
Mid Unique device ID 1370021020431
Src Localization method GPS
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device�hour. This may prohibit us from extracting move-
ment information. A normal urban trip with an elapsed time
shorter than two hours can bemeasured only once, due to the
long average between-record interval in each trajectory (�2.5
hours). In our data, instead of having uniformly sampled
location records, the temporal distribution of trajectory
records is highly unbalanced.We call it a long-tailed sparsity.

Fig. 1a depicts the distribution of between-record time
intervals in our datasets. All three distributions follow long-
tailed power-law like decays, which are indicated by the
straight lines in a log-log scale. For Beijing dataset, there are
89.0 percent intervals shorter than 30 minutes, and in the
meantime, 1.93 percent intervals longer than 24 hours. In
other words, long-tailed sparse trajectories are mostly com-
posed of several densely measured trips with short intra-
trip intervals (e.g., minutes). An example trajectory is
shown in Fig. 1b. Such a long-tailed sparsity allows us to
effectively detect movements of people from their trajectory
data (Section 4.1).

3.2 Task Characterization

The trajectory data described above allows better under-
standing of urban mobility due to its high volume and city
coverage. The visual analytics of such urban data could sug-
gest solutions to urban problems such as traffic optimiza-
tion, urban planning, etc. To identify key user tasks
associated with the analysis of our urban data, we set up
pilot interviews with three domain experts in related urban
sectors, i.e., urban planners (UP), public safety officers (SO),
and business analysts (BA). The objective of the interview
was to understand their everyday job responsibilities that
are related to population movements in the city, and the
current technical practice in handling their jobs. The
detailed interview records are given in Appendix B, hich
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TVCG.2020.2992200. From the feedback of these interviews,
we summarize four user tasks that are important to the job
performance of these targeted urban users. The task charac-
terizations and key examples from experts are listed below.

� T1. Overview of global population movements in a city:
How do population movements distribute over the city in
a given time period? What are the characteristics of these
movement flows, including volume, speed, and direction?
How do these movements interact with city infrastruc-
ture, e.g., road networks and POIs? Urban planners
study the overall movement pattern in a city to

understand busy regions in daily commutes of city
residents (UP). Public safety officers increase their
situation awareness of the city through visualization
of the overall population movement in the city (SO).

� T2. Examination of local movements and pattern discov-
ery: How many people (and how fast) are there moving on
the roads of a local city region during a given time period?
Are there local hotspots, including population movement
hubs and channels? In commute analyses, urban plan-
ners understand the detailed spatiotemporal utiliza-
tion of a local road and compare the detected hubs/
channels with the designed function in a city region
to optimize urban planning. Business analysts help
customers to make decisions on new commercial
sites by understanding local population movements
around the candidate and existing sites. Locations
close to a hub region might be preferred (BA).

� T3. Correlation analysis with population distributions:
How do population movements correlate with the distribu-
tion of population and their statistics, e.g., the number of
residents, the ratio of incoming/outgoing people, and the
average moving speed? Public safety officers identify
the regions having a high number of incoming peo-
ple but a low number of outgoing people, together
with movement patterns of these regions, to alert a
potential event (SO). Business analysts predict
potential buyers of a real estate project by synthesiz-
ing movement data around the project and the meta-
data of these movements if available, e.g., gender,
profession, purchasing power (BA).

� T4. Detection of temporal movement dynamics and anoma-
lies: Where and when do certain city regions have a larger
volume of movement flows than their long-term average?
How anomalous are these incidents? How to reason these
anomalies?Urban planners study the temporal dynam-
ics of net incoming/outgoing movements to identify
working and living regions in a city. The movement
flows among these regions are further analyzed to
evaluate the degree of work-home balance in certain
city districts (UP). Identifying movement anomalies
can help public safety officials maintain awareness of
low-risk events, e.g., traffic jams; early intervene on
high-risk developing events, e.g., floods, blizzards;
and evaluate the impact of planned future events on
the city, e.g., citymarathons (SO).

3.3 Technical Challenge and System Pipeline

Fulfilling the above user tasks in this work faces several chal-
lenges due to the characteristics of the urban trajectory data.
First, different from existing data sets with dense or uni-
formly sparse location records over time, our data processes
a unique long-tailed temporal sparsity. How to extract and
process such sparse trajectory data for movement visualiza-
tion remains unknown. Second, in the movement visualiza-
tion literature (Section 2.2), most existing techniques for big
trajectory data apply spatiotemporal aggregations, which
focus on revealing high-level movement distributions. They
are not designed to illustrate global and local movement
flows simultaneously (T1 & T2). Meanwhile, they do not
natively support temporally sparse trajectory data. Finally,
as our trajectory data measures bothmovements and stays of

Fig. 1. The long-tailed sparsity pattern in our dataset: (a) distributions of
between-record time intervals; (b) an example trajectory (X�record
index, Y� record timestamp).
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urban population, customized visualizations should be
designed to correlate population movements with their
static, dynamic, and anomalous distributions.

In this work, we propose a suite of visual analytics techni-
ques to tackle these challenges, which are implemented in a
system called UrbanMotion. Fig. 2 illustrates the pipeline of
the UrbanMotion system. It takes a set of sparse trajectories in
a time period as input. In the first stage, movement trips are
extracted from dense parts of each individual trajectory by an
inference algorithm. A trip is further decomposed into move-
ment vectors in spatiotemporal cells, which are stored in
movement repositories. In the second stage, movement vec-
tors are clustered to form localmovement flows, after smooth-
ing by a kernel-basedmethod. Alternatively, a map-matching
algorithm is used to adapt movement vectors onto road net-
works, which are further grouped into local movement flows.
To this end, a stochastic movement vector field is constructed
in the selected time period. Both characteristic and anomalous
patterns are discovered from this vector field. In the third
stage, a flow tracing algorithm is applied to the vector field to
compute global movement flows using a pattern-based seed
generation algorithm. Global flows are displayed by a urban
wind map visualization, which is improved from the original
design with adaptations to population movements. Users
workwith this visualization through customized interactions.

4 URBAN TRAJECTORY ANALYSIS

In this section, we describe the trajectory analysis methods to
support the user tasks of UrbanMotion. They include move-
ment extraction to separate travel trips from all the mobile
data (Section 4.1), movement clustering and map-matching
to generate global and local movements (Sections 4.2, 4.3),
and movement pattern discovery to identify temporal and
anomalousmovement patterns (Section 4.4).

4.1 Movement Extraction

We first consider a continuously measured trajectory G of a
mobile user during a time period T . G is defined by the set
of spatiotemporal records in T : G ¼ S

t2T < t; ‘ðtÞ >
where ‘ðtÞ denotes the location of the user at time t. Any
continuous sub-trajectories of G are defined as the trips of G.
For example, the trip g during the time period t � T is
defined as g ¼ S

t2t < t; ‘ðtÞ > .

Definition 1. STAY/TRAVEL TRIP

For any trip g of a trajectory G during the time period t:
(a) g is a stay trip if: jtj � DT and jj‘ðt1Þ � ‘ðt2Þjj < DS

(8t1; t2 2 t);

(b) g is a travel trip if: g does not overlap with any stay
trip satisfying (a).

where j � j denotes the length of a time period, jj � jj is the
L2 norm that represents the spatial distance between two
locations. DT and DS are the temporal and spatial thresh-
olds in the definition.

In essence, Definition 1(a) models the stay trip as a suffi-
ciently long time period (� DT ) when the trajectory is kept
within a circular region of diameter DS. This definition is
consistent among all the previous literature on the stay point
detection [47], [48]. Note that the stay trips of a trajectory by
definition can overlap with each other in space and time.
Their enclosure is called the maximal stay trip. On the other
hand, based on the ground truth that a user can either stay or
travel in any time point, the trip not overlapped with any
stay trip is determined as a travel trip (Definition 1(b)).

The real-world human trajectory is hardly measured con-
tinuously, but consists of a list of discretely sampled records
on certain time points (t1 < � � � < tL): G ¼

S
t2ft1;...;tLg < t;

‘ðtÞ > , where L is the number of records in trajectory G. It
has been shown in our concurrent work [49] that if the sam-
pling process is dense, i.e., 8i 2 ½1; LÞ; jjti � tiþ1jj < < DT=2,
any travel trip extracted from the discretely sampled trajec-
tory by Definition 1(b) is very close to the travel trip detected
on the underlying continuous trajectory. The extraction of
travel trips from dense trajectories can be computed by an
iteration-based algorithm (see Appendix A), available in the
online supplementalmaterial.

Nevertheless, in this workwe are given temporally sparse
trajectories with an average record interval of 2.5 hours
(compared with a default parameter of DT ¼ 30 min). The
extraction of travel trips on sparse trajectories is challenging.
Take a uniformly sampled trajectory as an example whose
record intervals are constantly longer than DT . No travel trip
can be confidently inferred. Before or after a given record,
there is an unobserved time period longer than DT . Obtain-
ing continuously measured records in this time period could
infer the given record as stay if Definition 1(a) is met.

Fortunately, we have found that the trajectories in our
dataset have a long-tailed sparsity. This allows us to apply a
new inference algorithm called Slice & Doubly Sliding
(SDS) [49] to detect stay and travel trips from long-tailed
sparse trajectories. The algorithm first slices each trajectory
into multiple dense segments at all the intervals larger than
DT . Because of the long-tailed sparsity, only 2.3 percent
records are in length-one segments and dropped under the
default parameter of DT ¼ 30 min. On each remaining
dense segment, the travel trips are detected following Theo-
rem 1 in Appendix A, available in the online supplemental

Fig. 2. The visual analytics pipeline of UrbanMotion.
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material. The pseudocode of the algorithm is also given in
Appendix A, available in the online supplemental material.
More details can be found in the work by the same group of
authors [49].

We apply the SDS algorithm to the dataset of Beijing. The
percentage of records detected as in the stay and travel trips
are 50.2 and 0.83 percent respectively, with the other records
undecided by the algorithm due to the sparsity of data. The
spatial/temporal thresholds are set to DT ¼ 30 min and
DS ¼ 800 m. We studied the impact of these thresholds. It is
shown in Appendix A, available in the online supplemental
material, that the extraction of stay trips is less affected by
the thresholds and the percentages of detected travel trips
vary a lot in different thresholds. The threshold setting
objective is to detect more travels while keeping Definition
1 reasonable. Finally, we pick DT ¼ 30 min because the
detected ratio of travels does not increase much when
switching to DT ¼ 45 min and it does not impose a strict
stay definition. Similarly, DS ¼ 800m is picked which maxi-
mizes the recall of travels and allows a mild stay definition
compared with DS ¼ 400m. The thresholds of DT ¼ 30 min
and DS ¼ 800m are also consistent with empirical settings
in recent literature [47], [48].

A potential issue in movement extraction is that only a
small amount of records are kept for visualization (0.83 per-
cent overall). This is reasonable as the trajectory data is col-
lected from many kinds of mobile apps. Most often these
apps are used in a stay mode except a few such as mobile
navigation apps. In Fig. 1(a)(c) of Appendix A, available in
the online supplemental material, it can be found that at
most 98 percent records are detected as stays in the trajecto-
ries with certain global sparsity. This indicates the domi-
nance of stays in our data assuming small correlation
between the sampling rate of trajectories and its stay/travel
ratio. To increase the percentage of travel records in use, the
subset of trajectory with a global sparsity of 5�10 minutes
can be selected, where up to 2.8 percent records can be
extracted as travels. Another method is to apply more
advanced mobility inference algorithms (e.g., those in Ref.
[49]), but comes at the cost of reduced accuracy. The SDS
algorithm guarantees a 100 percent accuracy of detected
travel trips. Because of the scale of our data (up to 7 million
extracted travel records in Beijing), we do not adopt these
improvements. We caution that in case the data size is
small, the result of UrbanMotion may not faithfully repre-
sent the overall movement in a city. A longer time period
should be selected to ensure there are enough travel records
for movement visualization.

4.2 Movement Clustering

On the travel trips detected from each trajectory, we connect
pairs of adjacent records to form multiple movement vec-
tors, as shown by the blue arrow lines in Fig. 3a. From our
dataset, there are billions of movement vectors extracted. It
is impossible to visualize all of them on the same map. In
the first method, we propose to cluster these vectors into
significant local movement flows according to directional
affinity and space/time context. The detailed steps of our
method are illustrated in Fig. 3b, 3c, and 3d.

The first step is to sort movement vectors in space and
time dimensions. We partition the land of a city into square

cells of 500 meters wide and time into hourly slots. Note
that different space/time granularity settings are possible.
They can be specified according to user’s analysis require-
ment. For example, if the user would like to visualize more
accurate movement flows geographically, s/he can switch
to a smaller grid setting. When s/he would like to track
movement flows in a shorter time period, a smaller time
slot than one hour could be set. For longer time periods, our
system supports automatic merging of movement vectors in
consecutive hours. After the spatiotemporal partitioning, all
the movement vectors are categorized and stored in multi-
ple spatiotemporal movement repositories. Each repository
holds all the movement vectors starting or ending in a par-
ticular cell during a given time slot, as shown in Fig. 3b.

In the second step, we introduce an optional smoothing
process to emphasize major movement directions. The goal
is to alleviate the potential error of localization records and
movement vectors. Our method is a variant of the Kernel
Density Estimation (KDE) over movement vectors, which is
called the vector KDE. As shown in Fig. 3c, each vector in a
cell is duplicated into surrounding cells, with the weight of
duplicated vectors decayed by the distance to the original
vector according to a Gaussian kernel function. Formally,
the movement vectors in each cell can be computed by

V ðxiÞ  
[

v0ðxjÞ2V0ðxjÞ;jxi�xjj	R
v0ðxjÞ; 1ffiffiffiffiffiffi

2p
p

h
e
�ðxj�xiÞ

2

2h2

� �
;

(1)

where v0ðxjÞ 2 V0ðxjÞ is a vector in the initial set of move-
ments in cell j centered at xj. fv0ðxjÞ; wg is the weighted vec-
tor. V ðxiÞ is the vector set in cell i after applying KDE. The
cell i will be influenced by surrounding cells within a range
of R. h > 0 is the KDE bandwidth that controls the degree
of smoothing.

In a final step, the set of movement vectors in each cell-
time pair are clustered to generate significant local move-
ment flows. A baseline method is to apply the density-based
spatial clustering over intersection points between vectors

Fig. 3. The analysis of long-tailed sparse trajectories to generate local
movement flows (clustering approach): (a) detecting local movement vec-
tors from travel trips; (b) sorting vectors in the spatiotemporal movement
repository; (c) applying vector KDE to smooth the spatial distribution of
local movements; (d) clustering local movement vectors into flows.
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and their surrounding circle (black dots in the upper part of
Fig. 3d). Such a algorithm, e.g., DBSCAN [50], has a worst-
case complexity of Oðn2Þ due to the computation of distance
matrix, where n is the number of points. As we will execute
clustering on millions of cell-time pairs, an Oðn2Þ complex-
ity is almost infeasible. Noticing that movement vectors in
our case only have one degree of freedom, i.e., their direc-
tions, we introduce an 1-D DBSCAN algorithm, which has
an OðnÞ computational complexity.

As shown in the lower part of Fig. 3d, each movement
vector is depicted as a point in the linear axis of [0
, 360
).
To allow a movement cluster crossing 0
 (360
), all these
points are duplicated in an extended axis of [360
, 720
), as
indicated by the hollow points. The 1-D DBSCAN algorithm
starts with an initial window of [180
, 181
). The window
expands on the axis in both directions if the point density in
the current window exceeds a minimal threshold, i.e., the
density condition of DBSCAN. When the window can not
expand any more, all the points in the window become a
cluster if the number of points exceeds the minimal thresh-
old, i.e., the support condition of DBSCAN. The clustered
points, as well as their duplications, are then removed from
the axis. The next window starts from the right border of
the previous window and detects remaining clusters until
no cluster can be found any more. Each detected cluster cor-
responds to a local movement flow, denoted as f ¼ fv; wg.
The flow direction (v 2 ½0; 360Þ) is set as the weighted circu-
lar mean of vector directions in the cluster. The volume (w)
is set as the sum of all the vector weights.

After aggregating local movements, a vector field is con-
structed in a given time period (e.g., an hour), which can be
visualized to meet user task T1 in Section 3.2. Unlike classi-
cal vector fields, there can be multiple local movement flows
in a cell. Thus, it is called a stochastic vector field.

4.3 Map-Matching

The clustering approach aggregates multiple movement
directions into a single flow which may not be on the under-
lying roads of urban map any more. The visualization result
can obscure the detailed movement pattern on road net-
works. In an alternative approach to clustering, we propose
to apply map-matching [51], a well-studied technique in
intelligent transport system (ITS) and GIS research fields, to
calibrate each movement vector onto urban roads. Local
movement flows are naturally grouped at each urban road
bidirectionally. Note that from the result in Section 5, both
clustering and map-matching methods have pros and cons,
and can be favored in different application scenarios. The
comparison and usage of the two methods are further dis-
cussed in Section 7.

As shown in Fig. 4a, the initial inputs of map-matching
are movement vectors detected in each cell and the city’s
road network. In our implementation, OpenStreetMap data
is used due to its openness and the popularity of the data
interface, while other map data is also compatible with our
framework. From the OpenStreetMap data, any type of
“ways” representing a kind of road is extracted and dupli-
cated in both directions. The geometry of each road is further
partitioned into several segments that are close to straight
lines in each segment, as shown by orange lines in Fig. 4b.
Next, each movement vector is matched to a road segment

by themap-matching algorithm. In the literature, many algo-
rithms have been proposed for map-matching, e.g., geomet-
ric [52], topological [53], probabilistic [54], and model-based
algorithms [55], [56], [57], [58], [59]. We applied a weighted
topological algorithm proposed by Velaga et al. [60], which is
scalable and has been successfully used for sparse data [14].

In Velaga et al.’s algorithm to match each movement vec-
tor, a candidate set of road segments is first computed,
which consists of all the segments overlapping with spatial
cells close to the movement vector. By default, 9 cells includ-
ing the vector’s cell and 8 adjacent cells are considered, as
shown in Fig. 4b. Between the vector (v) and each candidate
road segment (r), a matching score (MS) is calculated which
is summed from two weighted components: the proximity
(D ) and the heading difference (H ).

MSðv; rÞ ¼Wd � D þWh � H ; D ¼ 1� d

h
; H ¼ cosðDuÞ;

(2)

where d denotes the distance from the starting point of the
vector to its projection on the road segment, h is the maxi-
mally allowable position error in the matching (100 meters
by default according to Sanaullah et al. [14]), Du denotes the
angle difference between the movement vector and the road
segment.Wd andWh denote weights for proximity/heading
differences and are set to 0.5 respectively.

Among all candidate segments, the segment having the
highest positive matching score with the vector is selected.
The movement vector is then calibrated onto the segment,
using the projected point on the segment as the new start
point and the segment’s direction as the new movement
direction. If no positive matching score is found in all candi-
dates, the vector is classified as an outlier and dropped in the
analysis. After applying map-matching to all movement vec-
tors in a cell, local movement flows are grouped naturally on
the direction of road segments (Fig. 4c). Note that in the map-
matching approach, we do not introduce KDE or clustering
before/after the matching process in order to ensure that the
aggregated local flows are still moving on road networks.

We note that the map-matching algorithm applied here is
a simplistic one mainly for the demonstration of our visual
analytics approach. In real world cases, each trajectory from
the mobile dataset could contain multiple sparsely sampled
records that actually locate on separate road segments. Loca-
tion records can also be biased by data noise due to the limi-
tation of measurement methods. The current point-by-point
nearest road mapping algorithm [60] does not consider the

Fig. 4. Movement aggregation through the map-matching approach: (a)
movement vectors and road networks as input; (b) map-matching pro-
cess; (c) movement flows grouped on road networks.
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feasibility of matched paths for trajectories and is not opti-
mized for noisy input data. In a real application, we highly
recommend to apply advanced map-matching algorithms,
though the computation cost could be larger. For example,
the Hidden Markov Model (HMM) based algorithm by
Newson and Krumm [57] leverages the context in trajectory
routes and the connectivity/constraint of underlying road
networks. HMM approaches are shown to be robust to data
noise and sparseness according to the result of existing
researches [57], [58], [59].

4.4 Pattern Discovery

From stochastic vector fields generated by the trajectory
data, we discover both spatial and temporal patterns, which
will be displayed in the visualization to meet the user tasks
in T2 and T4.

For spatial patterns, we identify two types of spatial cells
that are characteristic in the population movement: hub
cells and channel cells. A hub cell indicates the place where
people move in multiple directions. A channel cell indicates
major roads where population move primarily in two direc-
tions. We adopt the metric of Bimodality Coefficient (BC)
recently suggested by Freeman and Dale [61] to detect chan-
nel cells that have bimodal movement direction distribu-
tions. The BC metric also reveals a cell’s similarity to the
uniform movement direction distribution which helps to
detect hub cells simultaneously. Formally, consider a spatial
cell where k local movement vectors are extracted, denoted
as V ¼ S

i¼1;...;kfvig where vi 2 ½0; 360Þ is the angular direc-
tion of the ith vector, the BC metric is computed by

BCðV Þ ¼ gðV Þ2 þ 1

kðV Þ � 3þ 3 � ðk�1Þ2
ðk�2Þðk�3Þ

; (3)

kðV Þ ¼ 1
k

P
i¼1;...;k ðjjvi�mðV ÞjjasðV Þ Þ4, gðV Þ ¼ 1

k

P
i¼1;...;k ðjjvi�mðV ÞjjasðV Þ Þ3,

sðV Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

P
i¼1;...;k jjvi � mðV Þjj2a

q
are the kurtosis, skewness,

and standard deviation of the distribution of V . jjxjja ¼ ðxþ
180Þ%360� 180 is the angular distance.

Note that the average of vector directions is computed by
the mean of circular quantities [62]

mðV Þ¼ atan2

P
i¼1;...;k sin ðviÞ

k
;

P
i¼1;...;k cos ðviÞ

k

� �
þ 360

� �
%360:

(4)

The BC metric of a standard bimodal distribution is 1.0
whereas that of a uniform distribution is 5

9. We compute the
BC metrics of all the cells in a given time period. The cells
with their metrics closest to 1.0 are detected as the channel
cells and the cells with their metrics closest to 5

9 are detected
as the hub cells. The number of detected cells can be config-
ured in the visualization. Note that all these cells need to
have a considerably large total flow volume.

For temporal patterns, we apply the anomaly detection
method on the time series of the movement statistics in a
given cell (e.g., the summed flow volume, the stay/travel
record number). Three types of anomalies are detected for
each cell-hour pair: the hourly, the daily, and the weekly
anomalies. The hourly anomaly compares the statistics in
the current cell-hour pair with those of the other 23 hours in

the same day and cell. The daily anomaly compares the cur-
rent hour with the same hour in all the other days. The
weekly anomaly compares the current hour with the same
hour in the same weekday/weekend (e.g., Monday). Take
the hourly anomaly as an example, for each day and cell,
there are 24 values in each statistic, denoted as m ¼ 24,
which is assumed to follow a normal distribution with an
average of m and a variance of s. Consider the ith hour,
whose statistic is denoted as xi, its anomaly score is com-
puted by the Extreme Value Theory (EVT) [63].

First, the normalized Mahalanobis distance between xi

and the average m is computed by

ym ¼
jxi�mj

s
� mm

sm
where (5)

mm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnm
p

� ln lnmþ ln 2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnm
p ; sm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2 lnm
p ; m ¼ 24:

Second, the probability for the statistic to deviate from the
normal distribution, denoted as p, is computed. The proba-
bility is finally translated to an anomaly score, denoted as
aðxiÞ.

p ¼ e�e
�ym

; aðxiÞ ¼ min
� lnð1� pÞ

F
; 1

� �
; (6)

where F is the expected highest anomaly score for
normalization.

4.5 Implementation

For efficiency consideration, all trajectory analyses are pre-
processed in the backend by Python. Most algorithms are
natively parallel: movement extraction in the trajectory level,
movement clustering,map-matching, and BC/anomalymet-
ric computation in the cell level. These parallelisms are
exploited to speed up the trajectory analysis process. In this
process, trajectory data and results are stored in files which
are demultiplexed by groups of trajectories or time intervals
for the ease of analysis. For example, raw location records
are partitioned into �3000 chucks, with each chunk com-
posed of 10K trajectories. In each stage of analysis, input
data is directly loaded from relevant file chunks and proc-
essed in parallel, without the need of querying from data-
base. This boosts the processing speed by eliminating
the cost of DBMS. The analysis results are provisioned to the
front-end through a Koa middleware framework of the
Node.js server [64].

Table 2 lists the running time of analytics carried out in
the back-end, which are measured in a Linux server with
two 14-core 2.8 GHz Intel Xeon 5117 CPU and 128 GB of
memory. By default, 20 threads are used for parallel proc-
essing. Note that the movement extraction time is for proc-
essing all the 31.85M trajectories (8.4 billion records) in the
90-day dataset of Beijing, thus the long running time (only
once) should not be concerned. Vector KDE, movement
clustering, map-matching, pattern discovery, and flow trac-
ing times are for processing the dataset of a typical hour
(0.35M local movement vectors) using default algorithm
parameters. Besides the optional KDE and map-matching
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process, the standard back-end analytics pipeline can be
pre-computed very fast for interactive online visualization.

5 VISUALIZATION

5.1 Rationale

We reviewed related work on movement visualizations
(Section 2.2). Most existing designs focus on the display of
trajectories, routes, OD flows, and trajectory clusters, but can
not reveal global and local movement patterns simulta-
neously (T1 and T2). Because of its temporally sparse nature,
our data does not have full semantics in each trajectory (e.g.,
origins/destinations, routes). Instead, the trajectory analysis
method in our system leverages the long-tailed sparsity pat-
tern to extract local movements and then abstracts them into
a stochastic vector field for visualization (Section 4).

A direct visualization of vector field fails to illustrate the
continuous nature of human movements in the population
scale. We consider the design of wind map [28], which is an
implementation of state-of-the-art integration-based flow
visualization [65]. In general, wind map is composed of two
types of techniques: a visual representation of wind flows
using animated streamlines, and the generation of these
streamlines from the underlying wind field through flow
seeding and tracing.

We apply the wind map design because of the similarity
between movements of wind and movements of population
in their visual representation. Both wind and population
move in groups of particles and form continuous trajecto-
ries. The animated streamlines can well illustrate global
population movements (the overview task of T1). Multiple
visual channels available in streamlines (shape, fill color,
etc.) can faithfully represent the multivariate nature of both
wind and population movements (direction, volume, speed,
etc., see Section 5.3 for details). Both wind and movement
data are processed into vector field for visualization.

On the other hand, the generation process of wind and
human movements in cities vary a lot due to their different
formation mechanism, demanding new analysis methods
for wind map visualization of population movements. First,
people move in cities along road networks while wind can
take any directions by nature. In recognizing this difference,
an alternative map-matching stage is applied for the visuali-
zation of local movement patterns (Section 4.3 for the local
pattern examination task of T2). Second, population move-
ments can be multi-directional in places such as road inter-
sections, while wind is single directional in any place.
Instead of the original random flow seeding in wind map,

we introduce a pattern-based flow seeding and tracing algo-
rithm that adapts to the multi-directional nature of popula-
tion movements and better reveal their temporal and
anomalous patterns (Section 5.4 for task T4). Third, because
the underlying population is highly related to their move-
ments, we propose a multi-layer map design that overlays
the distribution of population with the movement visualiza-
tion to unveil their correlation (Section 5.5 for task T3).

5.2 Overall Interface Design

An overview of the UrbanMotion interface is shown in Fig. 5.
The widget in the middle presents the main visualization for
urbanmovements (Fig. 5a). It is composed ofmultiple layers.
In the top layer, all the movement flows are visualized in an
animated urban wind map (Section 5.3), which is computed
by flow generation algorithm (Section 5.4). Beneath, popula-
tion heatmaps can be turned on to correlate movements with
the statistics of underlying population, including theirmove-
ment source, destination, speed, and temporal anomalies
(Section 5.5). In the background, multiple types of base maps
can be used as location references, including road network
map, terrainmap, and satellite imagingmap.

Besides the main widget, UrbanMotion designs several
supplemental widgets to help user interact with the move-
ment visualization to complete analysis tasks. As shown in
Fig. 5b, two time/date selection panels on the bottom-left of
the interface draw the distribution of movement data over
time. The lower part shows the number of raw travel trips
per day by a bar chart. The upper part details the number of
trips on each hour of a particular day by a clock-shaped
heat map. Users can click on the bar chart to select one day
and then click on the hour wedges of the heat map to spec-
ify a time window of one or more hours on that day. The
population movement during the selected time window
will be visualized in the main view of UrbanMotion. Several
functional time/date windows, e.g., morning (7AM�10AM)
and weekend (Saturday and Sunday), can be directly
selected by one-click buttons on the left part of the panels.
Two play buttons are also available on the panels, which
can be used to trigger animations on the main movement
visualization. These animations will show the dynamics of
urban movements over days (for the selected hours) or over
hours of a day.

On top of the main widget, an algorithm configuration
panel is designed to let user set the parameters of the flow
generation algorithm (Fig. 5c). Users can adjust these
parameters and get realtime feedback on the main visualiza-
tion to better understand the urban movements.

On the right of the main widget, there is a control panel to
set up movement visualizations, including the urban wind
map and the population heat map (Fig. 5d). On top of the
control panel, a clock-shaped movement legend is intro-
duced. The legend is composed of 24 sectors, each corre-
sponding to an angular range of 15 degrees. The color
lightness of each sector indicates the total volume of local
movement flows within the corresponding angular range.
Users can select one or more sectors on the legend to high-
light the global movement flows starting from the corre-
sponding angular ranges. The unselected flows will fade out
in the background. This interaction helps users to interac-
tively demultiplex population movements in the overview

TABLE 2
The Running Time of UrbanMotion Trajectory Analysis and

Visualization Algorithms

Analysis Stage Input Data Time (s)

Trajectory

Analysis

Extraction 8.4B records (90 days) 21201.2

Vector KDE 0.35M local movement

vectors in 29.2K cells

(1 hour)

312.6

Clustering 11.1

Map-Matching 554.5

Pattern discovery 1.5

Visualization Flow Tracing 40.1K clusters

in 10K cells (1 hour)

1.6
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visualization. At the center of themovement legend, there is a
play/pause button, which can be clicked to stop the anima-
tion of movement flows in the main view for analysis and
then restore their animation. The volume and speed of move-
ment flows is better perceived in the pause-mode visualiza-
tion. Beneath the movement legend, there are several
sections to control the flowvisualization, the population heat-
map, and the anomaly heatmap. These sections are generally
used to switch between different visualization patterns,
e.g.,hub/channel/large-volume flows, source/destination/
speed heatmaps, and hourly/daily/weekly anomalies. More
details of these panels are introduced in the following subsec-
tions together with the visualization to be controlled.

The UrbanMotion interface in the frontend is imple-
mented using Vue.js framework [66] for rendering, view
composition, and interactions. Leaflet JavaScript package
[67] is used for mapping functions and the display of map
layers. Visualization algorithms (flow seeding and tracing)
are implemented by Python in the back-end for efficiency
consideration. Data requests for flow visualization are gen-
erated in the user interface, computed on the fly in the back-
end, and feed to the front-end for interactive visualization.

5.3 Urban Wind Map

Fig. 5a gives an example of urban wind map, the key layer
for movement visualization in UrbanMotion. The map is
composed of multiple global movement flows. Each flow is
drawn by a cubic spline using the monotone cubic interpo-
lation [68]. In a default white-background style, all the flows
are visualized in red colors; in another dark-background
style, the flows are visualized in white colors (Fig. 8). The
saturation of red colors in white-background and the light-
ness of white colors in dark-background represent the speed
of movement, with redder/lighter flows indicating faster

movements. The flow thickness represents the volume of
movement, with thicker flows indicating larger population.
This multivariate visual encoding is consistent with the
evaluation result obtained by Perin et al. [69] which suggests
using color to represent speed. The remaining visual chan-
nel of flow size is used to represent volume. Note that users
can switch between the two color themes based on their
preference.

On the map view, the display of the movement flows are
animated to represent their directions. The drawing is done
in a tick by tick manner. The default time span of a tick is 20
milliseconds and it can be adjusted to control the animation
speed. In each tick, all the flowsmove ahead a variable length
along the flow direction from its current location. This is
called the head of the flow. The length of the head is com-
puted by the flow speed multiplying one tick’s time span. To
enable the animation, we use a semi-transparent mask to
cover all the older parts of the flow except the head drawn in
the current tick. The drawing of the head and the masking of
the older flow continues until the head reaches the end of the
flow. The same flowwill start again after the animation cycle
of the flow. The animation cycle of a flow can be shorter than
the time to draw the entire flow, so that there can bemultiple
headsmoving on a flow at the same time.

To drill-down to the underlying trajectory data, interac-
tions are introduced on the urban wind map. When users
click on a cell on the main map view, the number of move-
ment devices extracted from the raw data on this cell is dis-
played in a statistical chart (Fig. 11d). The chart depicts the
dynamics of the number of devices in the currently selected
time interval and several adjacent intervals before and after.
When the anomaly heat map is activated, the chart will
show the time series of movement statistics used for anom-
aly detection (Fig. 10).

Fig. 5. UrbanMotion user interface: (a) movement visualization showing five major regions in Beijing during commute time; (b) time/date selection
panel, the morning (7AM-10AM) of July 12th is selected; (c) algorithm configuration menu for flow generation; (d) visualization control panel.
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5.4 Global Flow Generation

To obtain the global movement flows from the stochastic
vector field, we propose a pattern-based flow tracing algo-
rithm that works in two steps. In the first step, a list of local
movement flows are selected from the vector field of move-
ments and sorted as seed flows. Unlike the original wind
map approach that randomly selects seed locations, we
extract local flows as seeds which form the spatial patterns
discovered in Section 4.4. In the second step, seed flows are
traced in the sorted order to generate global movement
flows. For each seed flow, the flow tracing algorithm is
applied using the seed as the starting direction.

The seed flow selection and sorting considers three spa-
tial patterns of the movement: hub, channel, and large flow.
These patterns can be revealed on the map by setting the
“Flow Generation” section of the control panel (Fig. 5d). For
hub/channel patterns, the top cells having these patterns
are detected by the method in Section 4.4 and all the local
flows in these cells are added to the selected flow list, sorted
by the order of cells. Among flows in the same cell, they are
sorted by their flow volume. For the large flow pattern, local
flows detected in all the cells are sorted in a same list by
their flow volume. Users are allowed to specify a percentage
threshold for the top cells/flows displayed as seeds.

From each seed flow direction, we apply a deterministic
flow tracing algorithm [70] to detect global movement flows
traversing the cells. As shown in Fig. 6b, the algorithm starts
from the seed flow and stretches along the flow direction to
connect to a few cells ahead, which are called the search
space (the angular range indicated by black dashed lines
which includes cells in red dotted outlines). The number of
such cells is called the search depth (3 by default). All the
local movement flows in the cells within the search space are
extracted and compared. By default, the flowwith the largest
volume and satisfying several flow tracing conditions is
selected. The selected flowwill be connected back to the seed
flow at the intersection point on the outline of the selected
cell (cells with solid red outlines). The search restarts with
the selected flow as the seed and is repeated until no flow sat-
isfying all the flow tracing conditions can be found. The algo-
rithm produces accurate flows as it traverses through the
exact intersection points with each cell the flow passes
(Fig. 6b). In comparison, the baseline algorithm will go
through the centers of cells it passes (Fig. 6a), which is less
accurate. In the implementation, four flow tracing conditions
are applied: 1) the angle between the seed flow and the next
flow should be less than a threshold (60 degrees by default);

2) the volume of the next flow should be larger than a ratio of
the seed flow (0.1 by default); 3) the accumulative curvature
on all the selected flows should be upper bounded (120
degrees by default); 4) the maximal length of the flow could
be upper bounded (no limit by default). These conditions
and the search depth can be adjusted by the user in the algo-
rithm configuration panel (Fig. 5c). In addition, we support
tree-based flow tracing in that more than one large flows can
be traced from each single seed. In the “Flow Tracing”
section of the control panel (Fig. 5d), users can switch to a
mild (3 flows to trace) or a high (5 flows to trace) degree of
branching. We caution that the modification of flow tracing
parameters from the default setting will lead to different
abstraction of global movement flows. For example, specify-
ing a larger angular range, a deeper search depth, and a
smaller volume ratio will assemble less yet longer movement
flows,which could reduce the visual clutter in the abstraction,
but also introduce more errors in the overall visual summari-
zation. Tuning these parameters in the opposite direction will
generate more accurate flow abstractions, though the overall
coverage rate on movement data could drop as less local
movement flows are connected.User should be aware of these
effects in interacting with UrbanMotion visualization.

Note that when the map-matching process is applied, the
flow tracing algorithm should allow relaxed conditions to
detect possible turns at the intersection of road networks.
By default, the angle threshold is set to 90 degrees and the
curvature threshold is set to 180 degrees. An example of
flow tracing over the map-matched vector field is given in
Fig. 6c. In Fig. 7, the flow tracing results over local clustering

Fig. 6. Flow tracing algorithms: (a) a baseline flow tracing algorithm start-
ing from cell centers, black dashed lines indicate an angular range of
search space for the next local flow; (b) a deterministic flow tracing with
larger than one search depth (cells in red dotted outlines) and through
exact intersection points (blue points on cells in red solid outlines); (c)
flow tracing over a map-matched vector field.

Fig. 7. Visualization of flow tracing result over differentmovement aggrega-
tion methods: (a) local clustering, which better illustrates global movement
patterns than (b) map-matching, as shown by three visually detectedmajor
channels connecting to themetro of Beijing (red dashed circles in (a)).
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and map-matching approaches are presented and com-
pared. Because the map-matching process adapts local
movements in each cell into separate road segments, the
volume of local flows becomes smaller than those out of the
clustering approach. The flow tracing over map-matched
vector fields tends to detect shorter movement flows on
local roads and reveal more detailed movement patterns
(Fig. 7b). In comparison, the flow tracing result over local
clustering better illustrates global movement patterns in an
abstract manner, which can slightly deviate from the actual
local movements. As shown in Fig. 7a, by the local cluster-
ing approach, it is easier to detect three major transportation
channels connecting to the city metro from northwest,
northeast, and southeast (red dashed circles).

5.5 Population Heatmap

By the multi-layer map design of UrbanMotion, beneath the
urban wind map there is a population heatmap correlating
movements with the underlying population. The heatmap
visualizes the distribution of the statistics of the population
related to the movement. As shown in the “Population
Heatmap” section of the control panel, three statistics can be
visualized. The movement category (Mov.) is selected to
show the distribution of net incoming/outgoing population,
i.e., source and destination regions (Figs. 8b and 8c), which
are computed for each cell by analyzing the trajectory data

[49]. The red color indicates the net incoming cell and the blue
color indicates the net outgoing cell. The color darkness indi-
cates the size of the net incoming/outgoing population. The
record category is selected to show the distribution of the raw
location records (Fig. 8a). In the speed category, the heat map
shows the distribution of the movement speed in each cell.
The more saturated red color indicates a higher speed
(Figs. 9a and 9b).

The anomalous temporal patterns detected by themethod
in Section 4.4 are also drawn as an optional map layer. In the
“Anomaly Heatmap” section of the control panel, users can
switch among hourly, daily, and weekly anomalies. The
anomalous cells are depicted in red, with color saturation
indicating the anomaly score (Fig. 10). Only positive anoma-
lies havingmoremovements than usual are displayed.

We caution that when population/anomalous heatmaps
are applied, the dark background may be selected. The flow
visualization in red under the white background can inter-
fere with heatmaps in the same color and downgrade the
display effect.

6 EVALUATION

6.1 Methodology and Experiment

We mainly evaluate UrbanMotion through three case stud-
ies, together with experts from three application domains

Fig. 8. Commuting analysis of Xierqi&Huilonguan regions on July 12th, 2016: (a) movement visualization on top of speed distributions in the morning
(7AM-10AM); (b) using movement distributions in the morning as background heatmap, red indicates destination regions, blue indicates source
regions; (c) movement visualizations in 12AM-1PM (noon); (d) switch to the map-matching approach for movement visualization in the morning
(7AM-10AM); (e) the map-matching approach in 12AM-1PM (noon).
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(i.e., urban planners, public safety officers, and business
analysts). These domain experts were invited to use our sys-
tem in a trial to support their everyday job responsibility.
During the study, we stood by these experts to further
explain the functionality of UrbanMotion and sometimes
offered suggestions on its usage. In a sense, the case studies
were carried out jointly by both experts and us (system
designer). After experts completed their trial with Urban-
Motion, a discussion session was held in which experts
gave verbal feedback on positive and negative aspects of
the system regarding their factual requirements in the
everyday job. Experts also advised on possible extensions of
the system to better meet their requirements.

In addition to case studies, experiments comparing Urban-
Motion with possible alternatives might provide valuable
result on system performance. However, these quantitative
comparison could be unfair as UrbanMotion is customized
for the trajectory data with a long-tailed temporal sparsity. To
this end, a qualitative lab experiment was conducted, in
which UrbanMotion is compared with another well-known
aggregation-based movement visualization technique. This
technique was proposed by Andrienko and Andrienko [20]
and generally called the cartographic flow map visualization
(FlowMap in short). To enable the comparison, the FlowMap
visualizationwas implemented according to Ref. [20] and dis-
played on top of the UrbanMotion interface. Certain adapta-
tions were made to allow FlowMap to take the new trajectory

data. For example, travel trips are detected by the same
method in UrbanMotion (Section 4.1), processed by an
optional map-matching stage (Section 4.3), and then used as
the input trajectory data of FlowMap. A default setting of
MaxRadius ¼ 3 km is applied according to the recommenda-
tion in Ref. [20].

The full details of the comparative experiment can be
found in Appendix C, available in the online supplemental
material. Here we only report key findings from the experi-
ment. On the positive side for UrbanMotion, there are two
main reasons to apply UrbanMotion on the long-tailed
sparse trajectory data. First, though FlowMap could lead to a
higher level of abstraction for urban movements, it only rep-
resents a small share of raw data due to the long-tailed data
sparsity. For each trajectory in the data, multiple travel trips
are extracted, most of which are extremely short in time and
lie within the boundary of a single Voronoi cell. Under the
default parameter of MaxRadius ¼ 3 km, only 5.42 percent
of the raw travel trips extracted are between different cells
and visualized in the FlowMap display. In comparison,
UrbanMotion applies a default cell size of 500m (approxi-
mately MaxRadius ¼ 250m), which ensures a much higher
ratio of cross-cell travel trips. The direction of within-cell
movements are also considered in the trajectory analysis.
Using a finer granularity in the FlowMapmethod leads to an
increased visual complexity that disrupts the overview dis-
play. From the visualization result, the output of UrbanMo-
tion better corresponds to the actual road network with
respect to the output of FlowMap. The second advantage, by
integration with the map-matching technique, UrbanMotion
can be enhanced to examine local movement patterns in
focused areas of a city, e.g., the utilization of major roads.
The FlowMap method can also take map-matched move-
ment vectors as input, but the updated visualization has a
similar overall movement pattern. This is because the mea-
surement error of location records are generally much
smaller than the parameter of MaxRadius in FlowMap (e.g.,
3 km). The movement aggregation is only slightly affected
after the map-matching, except the Voronoi tessellation. By
the aggregation-based design, FlowMapwithmap-matching
still connects the generating point of Voronoi cells and
remains a global movement visualization.

Through the experiment, we also identify two major limi-
tations of UrbanMotion in comparison to FlowMap. First,

Fig. 9. Events detected during the heavy rainstorm in Beijing, July 19th, 2016: (a) movement visualization on top of a speed heatmap, 8AM-9AM in
the morning; (b) on the same hour one week ago.

Fig. 10. The movement hotspot on a daily anomaly heatmap, 6-7PM,
Aug. 27th, 2016. Movement hubs/statistics are displayed.
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UrbanMotion adopts a fix-sized gridding of the city map
with relatively small cells. In areas with few movements, the
technique is less efficient as the same number of cells need to
be processed. FlowMap resolves this issue by introducing
Voronoi tessellation. The spatial data aggregation is more
efficient under uneven movement distribution. Second,
FlowMap ismore suitable for onlinemovement visualization
over streaming data. The Voronoi tessellation can be com-
puted offline using historical data. The online processing
only needs to map each characteristic point into a corre-
sponding Voronoi cell. In comparison, UrbanMotion com-
putes movement clustering on each cell or map-matching on
each location record. Because of the limitation in computa-
tional complexity, UrbanMotion is mainly used for the
replay of existing trajectory data.

6.2 Commuting Analysis

Two urban planning experts applied UrbanMotion to study
of the commuting pattern in Beijing. The experts pointed out
that long commuting times, caused by traffic jams and a high
real estate price, are among the most critical urban problems
in Beijing. They first picked the day of July 12th in our sys-
tem, a typical weekday. They chose a time period in the
morning (7AM-10AM) to retrieve the population movement
of commuting to work. The corresponding movement map
is shown in Fig. 5a. In the visualization, a mild KDE smooth-
ing with a bandwidth of h ¼ 0:5 is applied to accentuate the
overview of movement. The experts found that the result is
consistent with their domain knowledge on the road net-
work of Beijing. The city is divided into a northern part and a
southern part by the Chang’an avenue, as shown by the blue
dashed line in Fig. 5a. This avenue correlates with a bundle
of movement flows on the map. By examining movement
flows with high volume, the experts discovered five busiest
regions during the commuting time: CBD, Financial Street,
Zhongguancun, Xierqi&Huilongguan, and Wangjing. These
five regions correspond to financial, industrial, high-tech,
and IT centers of Beijing. From the animated visualization,
the experts noticed that most north-south commutes are
from north/south to the center of the city. For east-west
movements, both directions to/from the city center are sig-
nificant. This suggests that the work area of Beijing is close to
a rectangle in the city center, with a larger width than height.

Among the busiest city regions, Xierqi&Huilongguan
outside the city center appears to be different in commuting
patterns. The experts switched to the dark background and
activated the population heatmap layer to show the speed
distribution. As shown in Fig. 8a, the Xierqi&Huilongguan
region suffers from low commuting speed indicated by
dimmer flows and a darker underlying heat map, compared
with the other regions such as Zhongguancun and CBD.
The experts commented that it is known for a while that
traffic jams in Xierqi&Huilongguan happen more frequently
than the other regions in Beijing. The experts zoomed into
this region to analyze local movement patterns. They
switched the population heatmap to show the movement
source/destination distribution. As depicted in Fig. 8b, dur-
ing the commute hours of 7AM-10AM, the Xierqi region in
the west has a salient red area in the center, i.e., a destina-
tion of population. This area is headquarter for major IT
companies in Beijing (e.g., Baidu). The Huilongguan region
lies to the east of Xierqi and is home to many IT people. The
region is mostly in a blue color, which indicates a source of
population. The experts pointed out that a key concept in
the commute analysis is the work-home balance. From the
visualization result, the Xierqi&Huilongguan region has a
poor work-home balance because the working center and
the living center locate in separate areas.

The experts then selected the hour of 12AM-1PM in the
noon as a contrast to the commuting pattern. In Fig. 8c, it is
shown that the source and destination of population now
distribute more evenly. This pattern again indicates the
commute issue in the Xierqi&Huilongguan region. The
experts followed up to identify the root cause of the com-
mute issue in this region. They noticed that there are less
commuting flows connecting between Xierqi and Huilong-
guan regions than the commuting flows inside each of the

Fig. 11. Commercial site configuration using movement visualization of
the Binhai New Area in Tianjin.
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two regions (Fig. 8b). As they switched the base layer to the
road network, it can be observed that Xierqi andHuilongguan
regions are cut by G6 (the dashed line in Figs. 8b and 8c), a
major incoming road from northern suburbs to the metro of
Beijing. The experts told us, currently there are only a few
streets crossing G6 and connecting Xierqi & Huilongguan
regions. The visual analysis has demonstrated that these
streets are the key bottleneck for the local transportation.

In a more detailed study, the experts applied the map-
matching approach to understand the actual road network
utilization in the Xierqi&Huilongguan region. As given in
Fig. 8d, the overall movement patterns shown by map-
matching are quite similar to those by the clustering
approach (Fig. 8a), which validates the correctness of both
approaches for high-level movement visualization. Mean-
while, the map-matched population movements mostly fol-
low the direction of underlying roads, while the clustering
of movements do not guarantee a good matching. By
map-matched movement visualization, there are five high-
utilization west-to-east roads at the Huilongguan region in
the morning (annotated from A to E outside the 5th ring
road of Beijing, Fig. 8d). After the commute time, only one
west-to-east road in the center has a high utilization (road C
in Fig. 8e). The population movements during 7AM-10AM
and 12AM-1PM also share some common pattern in that
there is a same busy intersection as annotated by the yellow
circle in Figs. 8d and 8e. This pattern suggests that the same
intersection could be the center of transportation in the Hui-
longguan region for both commute and other trips. By simi-
lar analysis, the experts discovered more patterns in this
region. For example, the movements on the G6 road, the
major incoming channel from the region to the city center,
are much faster after the commute time, which validates the
severity of traffic jam in this region.

6.3 Event Detection

In another study, we worked with a public safety expert
responsible for developing the emergency management sys-
tem for the city government. The daily task of his job is to
detect the events occurred in the city range that could have
security concerns, e.g., large fires, floods, and severe traffic
jams.

On 8AM-9AM, July 19th 2016, some anomalous patterns
were observed in our system, as shown in Fig. 9a. The color
of most movement flows seemed to be much brighter than
they were previously. This indicates a higher commuting
speed. The expert quickly retrieved the movement map on
the same hour one week ago and turned on the heatmap of
population speed for comparison. As shown by the dimmer
heat map in Fig. 9b, his finding is confirmed that the move-
ment speed on July 19th is much higher than usual. He also
noticed that, in the suburbs of Beijing (e.g., Xierqi & Hui-
longguan, Shijingshan, Tongzhou, as annotated in Figs. 9a
and 9b), there are fewer local movements except high-speed
commutes to the center of the city (Fig. 9a). The expert
quickly linked this observation to the rainstorm started ear-
lier on that day, which was later known as the longest for
Beijing during the recent decade. After contacting the trans-
portation office, he was told that the subway system of the
city was having a record-high number of passengers on July
19th, the first day during the rainstorm. It is inferred that,

most citizens previously commuting by bus, bike or other
ground vehicles, had switched to commute with the subway
system. This explains the pattern of a higher commuting
speed and less local movement.

In a second trial, the official activated the anomaly heat-
map layer in UrbanMotion to better analyze noteworthy
events during a long period of time. On 6PM-7PM, Aug.
27th 2016, he observed a hotspot at the Olympic park of Bei-
jing under the daily anomaly setting, as shown in Fig. 10.
This indicates an overhigh concentration of movements on
6PM-7PM that day compared with the same hour in the
other weekdays. Switching to flow generation by hub cells,
several hub areas close to the Olympic park are detected
and people are moving to these areas. The official pro-
ceeded to click on the anomaly to check details. The statisti-
cal chart on top of the area reveals that the number of
movement devices in this hotspot is at least four times that
of the same hour in normal weekdays. In communication
with the management of the Olympic park, the official was
told that a concert by a famous band (“May Days”) was
scheduled to begin on 8:30PM in the Beijing National Sta-
dium (Bird’s Nest).

6.4 Commercial Site Configuration

We also worked with a business analyst from our data pro-
vider. The analyst’s key responsibility is to solve customer’s
problems using the mobile data collection. He mentioned
that one frequent customer problem is commercial site con-
figuration, in which customers would like to select an opti-
mal location in the city for their next branch of business or
advertisement (e.g., real estates, malls). The analyst applied
UrbanMotion to his assigned city of Tianjin. Fig. 11a gives
an overview of population movement on a typical weekday
of July 5th 2016. It is shown in the visualization that the city
can be divided into two parts by urban movements: the
main city in the west and the Binhai New Area in the east
(harbor of the Bohai Sea). The analyst is especially interested
in the Binhai New Area as the district has a rapidly growing
economy and accounts for more than a half of the city’s
GDP. Customer inquiries about site configuration in the
new area are increasing.

The analyst first selected the hour of 8AM-9AM. He acti-
vated the population heatmap to trace major source and
destination regions of the new area during the commuting
time. It is found in Fig. 11b that a top destination in the
morning is the industrial park of the new area (red hotspot
in Fig. 11b), which is probably workplaces for many people.
Meanwhile, a lot of citizens travel from southern and west-
ern regions of the industrial park, which appear to be resi-
dential regions. This pattern provides valuable insights for
real estate customers. More apartments can be built in the
northern region of the park where there is smaller outgoing
commute volume now, considering that the eastern region
has already been occupied as the harbor of the new area.

Switching to 12AM-1PM on the same day, as shown in
Fig. 11c, top movement destinations change to the areas
besides the Hai River where many commercial centers
locate. The Binhai New Area is a famous site of tourism, so
that not only company employees from the industrial park
but also visitors from other cities, move to these commercial
centers in the noon. Deploying business or commercial
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branches along the Hai River can be advantageous based on
the trajectory data and the time for sale can be scheduled to
noon for an optimized revenue.

The analyst then switched to 6PM-7PM, a typical hour
for commuting to home. As a lot of his customers are com-
mercial brands, he wanted to know where the billboard for
brands should be placed to maximize influence. He config-
ured the movement visualization to show top hubs in Bin-
hai New Area. It can be found in Fig. 11d that three of
movement hubs co-locate with key transportation stations,
including Binhai Railway Station, Binhai Bus Station, and
Taida Bus Station. There are multi-directional movement
flows from each of these hubs, in which billboard place-
ments can draw the attention of diversified population. As
he clicked one of these hubs, the statistical chart in the left
shows that the number of moving devices in the hub cell
(red curve) is more than four times that of a nearby cell
(green curve) in the evening. He activated the population
heatmap to show their sources and destinations. The only
destination hotspot in the evening lies close to Binhai
Wanda Plaza, a major commercial center of the district. Pop-
ulation are moving from the stations to the plaza.

6.5 Expert Feedback

Qualitative feedback were collected from experts in both
functional and technical perspectives. First, a lot of experts
commented that they had rarely looked at an urban move-
ment visualization built over such a large amount of fine-
grained data. Local government could benefit from com-
muting patterns discovered in their districts. Based on these
patterns, governments can optimize their public transporta-
tion system to attract incoming residents and investments
to promote their economic performance. An expert noted
that: “The work-home balance is a subtle concept in urban
planning that the community have not yet reached a con-
sensus on how to define it. This is probably the tool that can
help us in the process to finally solve the problem”. Yet,
UrbanMotion was initially designed as a generic movement
visualization tool for long-tailed sparse trajectory data. Cus-
tomizations are necessary to upgrade the system for work-
home balance analysis. In the analysis side, methods must
be introduced to discover work and home locations from
each user’s sparse trajectory. In the visualization side,
beyond a preliminary display of source/destination distri-
butions, land usage information could be combined with
discovered work/home locations to construct an integrated
work/home map layer. Meanwhile, visualization of move-
ment flows in UrbanMotion by default favors large-volume
flows. To better reveal commuting patterns between work
and home, new flow seeding algorithms and visual meta-
phors could be designed to visualize asymmetric movement
flows salient during the commute time.

Second, on visualization techniques, most experts found
UrbanMotion to be quite different from previous OD-based
visualizations (for which domain experts called the “jump
wire”). They pointed out, movement flows go through road
networks so that it is possible to analyze the detailed route
taken by a specific population group. Governments could
refer to this information in designing subway blueprints.
Real estate agents could take this map to a presentation to
demonstrate the convenience of commuting around their

housing projects. A large trunk of business site selection
tasks could also benefit from UrbanMotion visualization.

Third, some experts stated that they need more statistical
charts and map layers presented together with the urban
wind map. Demographics of population can be shown to
complement commuting analysis. For example, the gender
of each trajectory could be quite helpful if displayed, though
it seems hard to acquire such information due to the privacy
concern. In future, UrbanMotion could be enhanced by add-
ing typical features of a base map [71] and an abstracted
view of movements, e.g., POI distributions, histogram of
movement speeds, and node-link diagram of movement
networks.

7 DISCUSSION

UrbanMotion supports two types of aggregations to abstract
huge amount of trajectory data: movement clustering and
map-matching. While the result in Fig. 7 and our case study
have demonstrated that clustering and map-matching
approaches are more suitable for global and local move-
ment visualizations respectively, a more detailed discussion
on the trade-off of each approach could be helpful. First,
comparing visualizations in Fig. 7a and 7b, the overall
movement patterns are quite similar, which validates the
correctness of both approaches for high-level movement
visualization. The clustering approach groups multiple local
movements into the same aggregated movement flow, trad-
ing off some accuracy in local movement visualization for a
better abstraction of overall movements. On the other hand,
the map-matching approach calibrates each local direction
for a more accurate representation of movements, while the
overall visualization tends to be more cluttered with a larger
number of shorter movement flows. Second, from the per-
spective of performance and cost, both methods have a
computational complexity of OðnÞ (n is the number of local
movement vectors), which is scalable to support a huge
amount of trajectory data. The clustering approach has a
much lower cost in that it only needs to update two window
statistics in clustering each vector, while the map-matching
approach needs to compute matching scores from each vec-
tor to k nearby road segments, and then compare these k
scores. In our implementation, the running time of map-
matching is about 50 times longer than that of the move-
ment clustering (Section 4.5). Last, it is impossible to com-
bine the two approaches to enjoy the best of both worlds.
Clustering on map-matched movement vectors again makes
aggregated flows deviate from road networks and are not
accurate for local movement visualization. Map-matching
clustered local flows, on the other hand, introduces more
errors to the abstract visualization.

On visualization, the urban wind map applies anima-
tions to illustrate movement directions of global flows on
the map, in addition to multivariate visual encodings to rep-
resent flow volume, speed, etc. Previous literature by Rob-
ertson et al. [72] has concluded that animation is not as
effective as static displays, such as small multiples, regard-
ing analytics. In UrbanMotion, a pause mode is introduced
in which users could stop the animation and access the
static visualization for analysis. Most case studies and
screenshots in this paper are obtained in the pause mode.
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Animations may only be used as a supplementary option
for presentation. We also note that the animated presenta-
tion can be cluttered because of the bidirectional or closely
intersected movements. Users could use the flow demulti-
plex interaction to only show the movements in certain
ranges of directions. The resulting visualization becomes a
less cluttered overview of selected movement flows.

The source code of this work is available at: https://
github.com/visdata/UrbanMotion/.

8 CONCLUSION AND FUTURE WORK

In this work, we study the visual analytics of population
movements from billions of mobile location records in mod-
ern cities. Motivated by the long-tailed sparsity of underly-
ing trajectory, we proposed an integrated technique called
UrbanMotion. The technique is composed of movement
extraction, aggregation, and pattern discovery algorithms in
the analysis side. In the visualization side, a flow generation
algorithm, an improved wind map metaphor, and a multi-
layer visualization interface are designed and implemented.
The interface supports multiple customized interactions
and is complemented by several control and information
panels for flexible usage. We evaluate UrbanMotion in three
real-world case studies on commuting analysis, event detec-
tion, and commercial site configuration, as well as a qualita-
tive lab experiment comparing with classical aggregation-
based movement visualization methods. Both case study
result and expert feedback demonstrate the effectiveness of
our system in visually analyzing population movements in
modern cities.

We plan to extend this work in three dimensions. First,
on visualizing local movement patterns, we want to explore
the possibility to incorporate trajectory context. In the map-
matching approach, a series of local movement vectors
belonging to the same trajectory can be map-matched
together in a new path-matching paradigm. Additional con-
straints such as turn restrictions can be considered in this
trajectory-aware flow generation. Second, while this work
supports movement visualization in an initial scenario over
historical trajectory data, a more realistic scenario of online
visualization over live trajectory streams poses multifaceted
challenges. Incremental flow computation mechanisms
should be developed in the back-end to support the stream-
ing of trajectory data. In the visualization side, appropriate
animated transitions could be designed to deliver changes
of population movement in a smooth and effective manner.
For online visualization of live trajectory streams, another
useful addition is to automatically detect emerging popula-
tion movement patterns. This involves collecting relevant
movement patterns from application domains (e.g., traffic
jams, road constructions), developing fast online pattern
detection algorithms, and designing feature visualization
methods. Third, on visualizing global movement patterns,
UrbanMotion allows us to derive many findings as indi-
cated in case studies. Yet, the visual complexity is still con-
siderably high due to the use of small cells in aggregation.
Applying much bigger grid settings could reduce the visual
complexity, but will also introduce distortions to the actual
global movement pattern. In the next step, we will study
the possibility of deriving an adaptive, hierarchical gridding

approach to cope with uneven movement distribution and
different geographic scales.
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