APPENDIX A
MOVEMENT EXTRACTION ALGORITHMS AND EVALUATION

A. Problem Definition

We first consider a continuously measured trajectory I" of a
mobile user during a time period T. I" is defined by the set of
spatiotemporal records in 7T: I' = J;c7 < 1,£(t) > where £(¢)
denotes the location of the user at time ¢. Any continuous sub-
trajectories of I" are defined as the trips of I'. For example, the
trip ¥ during the time period T C T is defined as ¥ = {J,c; <
1,0(1) >.

Definition 1: STAY/TRAVEL TRIP — for any trip y of a
trajectory I' during the time period 7:

(a) v is a stay trip if: |7| > AT and ||£(¢;) — U(r2)]| < AS
(Vt 1,2 € 7);

(b) 7 is a travel trip if: all the sub-trajectories of ¥y do not
satisfy (a);

(c) The state of the urban trajectory I' at any time ¢ within
the trip ¥ (¢ € 7), denoted by Ig/7(t), is Stay (Travel) if v is
the stay (travel) trip.

Here |- | denotes the length of a time period, ||-|| is the
L, norm that represents the spatial distance between two
locations. AT and AS are the temporal and spatial thresholds
in the definition.

In essence, Definition 1(a) models the stay trip as a suffi-
ciently long time period (> AT) when the trajectory is kept
within a circular region of diameter AS. This definition is
consistent among all the previous literature on the stay point
detection [2] [3]. On the other hand, based on the ground truth
that a user can either stay or travel in any time point, the trip
not overlapped with any stay trip is determined as a travel trip
(Definition 1(b)).

The real-world human trajectory is hardly measured contin-
uously, but consists of a list of discretely sampled records on
certain time points (t; <+ <11): I'=Uegyy gy <1, L(1) >.
It has been shown in Ref. [6] that if the sampling process
is dense, i.e., Vi € [1,L), ||t —tiy1|| << AT /2, any travel trip
extracted from the discretely sampled trajectory by Definition
1(b) is very close to the travel trip detected on the underlying
continuous trajectory. The extraction of travel trips from
dense trajectories can be computed through an iteration-based
algorithm by Definition 1 (Section A-B).

Nevertheless, in this work we are given temporally sparse
trajectories with an average record interval of 2.5 hours
(compared with a default parameter of AT = 15min). This
research problem is formulated as:

PROBLEM: TRIP EXTRACTION ON SPARSE TRAJECTORY
Given: (1) a set of users; (2) each user’s sparse trajectory
I'=Uicng <t 0(t:) >;

Detect: the stay/travel trips in each sparse trajectory by
inferring the state of each record Is/y(t;),Vi € [1,L].

The problem of the trip extraction on the sparse trajectory is
difficult. Take a uniformly sampled trajectory with the average
consecutive record interval larger than the time threshold
AT as an example. No state information can be inferred
confidently on any of the records. Before or after each record,

Algorithm 1: The exact algorithm on dense trajectories.
Input : I'= U1 < 1, 0(t;) >,11 < --- <1 (dense
trajectory), AT, AS (stay/travel trip threshold)
Output: Ig/7(1;),Vi € [1,L] (state of each record)
1 begin

2 for head < [1,L—1] do
3 for cursor < [head +1,L] do
/* iterate candidate stay trips */

4 if tcursor — theaa = AT then
5 for i < [head,cursor — 1] do
6 for j < [i+1,cursor] do
7 L if [|0(t;) —£(t;)|| > AS then
8 | Stay < False, Break
9 if Stay! =False then
10 for i < [head,cursor] do
11 L IS/T(ti) ~S

/* the remaining records are travel trips i
12 for i < [1,L] do
13 if Iy/7(t;)! = S then
14 | Iyr(t) < T
s | return Ig/r(t;),i=[1,L]

there is an unobserved time period with a length of at least
AT. Observing this time period will probably classify the
state of the record as stay if Definition 1(a) is met. The
path inference algorithms [5] [4] can potentially recover the
unobserved trajectory, but these algorithms generally work for
an average time interval of seconds or a few minutes, and fails
in our case with a typical time threshold of AT = 30 minutes.
Meanwhile, having a large average time interval would not
necessarily lead to an unsolvable state inference problem. As
shown in the empirical study, our urban trajectory dataset has
a long-tailed sparsity, which is positive in inferring the state
of the trips inside a trajectory. There are many cases that the
trajectory is densely measured in its sub-trajectories despite
of its overall sparsity. In these sub-trajectories, the stay/travel
trips can be confidently inferred, e.g., when the record intervals
are as small as a few seconds. Below we define the metric that
captures the sparsity of the trajectory, subject to the feasibility
for the trip inference.

Definition 2: SPARSITY OF THE TRAJECTORY — for any
trajectory I' observed at ¢ € {r1,--- 1. }:

(a) the global sparsity of I' is proportional to the average
time interval between the consecutive records observed on the
trajectory: Eg(I) = E(ti1 —1;),Vie [1,L—1];

Here E(-) denote the mean function of a set. Note that the
global sparsity is irrelevant to the time threshold AT.

B. Algorithm

We start from the trip extraction problem on the densely
sampled trajectory. The problem can be exactly solved by



an iteration-based algorithm (Algorithm 1). The algorithm
first detects all the stay trips by Definition 1(a) and then
checks the remaining sub-trajectories to detect the travel trips
by Definition 1(b). The iteration-based algorithm needs to
scan all the possible sub-trajectories, thus leading to a O(L*)
computational complexity where L is the number of records in
a trajectory. This is costly given that there are a huge number
of trajectories with an average length of several hundred
records.

According to the long-tailed sparsity pattern discovered in
this work, we design a new algorithm to infer stay/travel trips
from a single long-tailed sparse trajectory, called Slice & Dou-
bly Sliding (SDS). As shown in Algorithm 2, the algorithm
first slices the trajectory into multiple dense segments at all
the intervals larger than AT (L2). On each dense segment
7. the stay/travel segments are detected respectively (L3~10,
L11~19). In particular, to avoid the worst-case O(L*) com-
plexity in stay trip extractions, we introduce a doubly sliding
window data structure which keeps track of the currently
checked segment. The key of the algorithm lies in that, when
one pair of records no closer than AS/3 are found (L6), all
the segments containing this pair of records will be pruned
early in the detection and the sliding window will advance
aggressively (L10). The travel detection follows Theorem 3
which is detailed and proved in Ref. [6]. The average-case
complexity of SDS is O(L-W) where W is the average number
of records in a maximal stay trip.

Theorem 3: CONTINUOUS MOBILITY OF TRAVEL
RECORDS — Consider a discrete trajectory I' defined in
the time series @ = {#,--- 1.}

(a) any record at time #; (1 <i < L) is in the travel trip by
the continuous model of Definition 1(b) under the parameters
of AS and AT if only there exist 1 < p <i < g <L that: 1)
16(1) — €1y || > AS: 2) [|E(t) — £tg)]| > AS: 3) 1, — 1, < AT

(b) any record at time #; can be inferred as in the travel
segment by Definition 1(b) under the parameters of AS and AT
only if there exist 1 < p <i< g <L that: 1) ||{(t;) —£(1p)|| >
AS/2; 2) ||6(t;) — £(1g)|| > AS/2; 3) 1, —1t, < AT.

The SDS algorithm guarantees a 100% precision in
the detection of both stay and travel trips. By Theorem
3(b), the lower bound of recall in detecting travel trips is
%, where SDS(I',T,AS,AT) is the number of
travel records detected by the SDS algorithm from I' under
the parameters of AS and AT. Note that the recall is defined
on all the stay and travel records that can be detected given
the single sparse trajectory, not on the continuous stay/travel
records given the full trajectory information.

C. Experiment

We apply the SDS algorithm to the dataset of Beijing. Figure
1 summarizes the percentage of records inferred as in the stay
and travel trips respectively. All the curves are bell-shaped
with only one peak: the highest ratio of stay is found at the
global sparsity around 1.6 min (97.3%~98.5%, Figure 1(a));
the highest ratio of travel is found at the global sparsity from

Algorithm 2: SDS algorithm on long-tailed sparse trajec-
tories.
Input : I'= ;e g <ti,£(t:) >,t1 <--- <1 (sparse
trajectory), AT, AS (stay/travel trip threshold)
Output: Ig/7(1;),Vi € [1,L] (state of each record)
1 begin
/% slice T" into M segments (7;) at every interval larger than AT */
2 {v; ={<tjs, Utj) >}kep L)} j=1.) < Divide(T,AT)
3 for j < [1,M], head < 1 do

/* detect all the stay trips on 7; */
4 for cursor + [2,L;] do
/* iterate all the records backward from cursor—1  */
5 for anchor + [cursor — 1,head] do
/* cut at the first escape outside a range of % i
. AS
6 if ||€(tj,cursor) _E(tj,anchor)H > 3 then
/* stay trip */
7 if tjcursor—1 —tj head = AT then

for k < [head,cursor — 1] do
| Isr(tjix) < S

10 head < anchor + 1, Break
/* detect all the travel records on ¥; */
1 for cursor < [2,L; — 1] && Is/7(tj cursor) # S do
/* find the first record on the left outside a range of AS
*/
12 for [ < [cursor—1,1] do

13 if [|0(t) cursor) —€(tj1)|| > AS then

14 L left « I, Break

/* find the first record on the right outside a range of AS
*/

15 for r < [cursor+1,L;] do

16 L if |0(t) cursor) — £(2j )| > AS then

17

L right < r, Break
18 if Ljright —tjleft < AT then
19 L IS/T (tj,cursor) T

20 | return Ig/7(5;),i=[1,L]

5 min to 10 min, which increases with AT (0.34%~3.8%,
Figure 1(b)).

In the stay/travel trip definition, the thresholds of AS and
AT need to be determined. In fact, these thresholds provide
the flexibility to capture the multi-scale mobility in the human
trajectory. Inside the city boundary, AT and AS can be minutes
and meters to describe the short-term stays and travels; while
in the state level, AT and AS can be days and hundreds of
kilometers to characterize the stay in a city and the travel
between cities.

We focus on the detection of intra-city travels because the
number of travel records is much fewer than the stay and
the detection of stay is relatively insensitive to the parameter
change (Figure 1(a)(c)). The goal is to detect more travels
while keeping the mobility definition reasonable. According to
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Fig. 1: The performance of the SDS algorithm on the dataset
of Beijing: (a)(b) the percentage of stay/travel records detected
by the global sparsity of the trajectory and AT (AS=800 m);
(c)(d) the percentage of stay/travel records detected by the
global sparsity of the trajectory and AS (A7=30 min).

Figure 1(b), we pick AT = 30min because the detected ratio of
travel does not increase much when switching to AT = 45min
and it does not impose a strict stay definition in Definition
1(a). Similarly, according to Figure 1(d), we pick AS = 800m
which maximizes the recall of travel (Wm) and
allows a mild stay definition compared with AS = 400m. The
parameters of AT = 30min and AS = 800m are consistent with

the empirical settings of Ref. [2] [3].

APPENDIX B
USER REQUIREMENT COLLECTED FROM EXPERT
INTERVIEWS

In a pilot study, we interviewed three groups of domain
experts, including urban planners, public safety officers, and
business analysts. First, we introduced the urban trajectory
data collected in this work and the tentative visualization
design for presenting the data to them. Next, the experts were
asked several questions and required to provide their answer
or feedback to the questions. After the interview, experts were
paid with consulting fee for their time. Note that there might be
more than one people interviewed in each group of experts and
each expert will respond to all the questions. Below we report
answers to three key questions from each group of experts by
combining people from the same group together.

A. Urban Planner

Q1: What are the characteristics of this type of trajectory
data from your experience with urban analytics?

A: T think T would champion its fine granularity in the
measurement of urban movements. Each individual’s location
is reported at reasonable precision (we caution that at this point

of the interview, we have not fully figured out the temporal
sparsity of the data set). Before, we mostly rely on census data
from traffic surveys or high-level traffic measurement for urban
planning, e.g., road-side sensors reporting traffic volume. This
is probably a new opportunity, though you do not have more
attributes of these urban users due to the privacy issue, e.g.,
their genders, professions, etc.

Q2: What kind of tasks you think this data and its visual-
ization can help for your everyday job?

A: Many tasks! I could link many tasks with this data. The
most immediate thought is to help understand the commute
traffic of the city, e.g., the major incoming/outgoing areas in
the everyday commute, the highly utilized urban roads, the
bottleneck of the commuting road network. Notably, it will
be interesting to evaluate the work-home balance of citizens
using your data. Previously this could be hard because of the
limited spatial and/or temporal granularity of urban data.

Q3: What is the current practice on the tasks you mentioned,
is there any solution using visualization?

A: As I said, we use traffic census data, i.e., the volume of
traffic among districts (blocks) of the city. Some visualizations
have been applied, notably the “jump wire” display as we
often call them, imagine some arrows among the districts. This
simple visualization could help in the high level, but can not
show the detailed road utilization in the city during a particular
time.

B. Public Safety Officer

Q1: What are the characteristics of this type of trajectory
data from your experience with urban analytics?

A: Big data I think. It is a typical source of urban big data
and might be one of the earliest big data source for urban
analytics as we know. There are also several other data source
from government or data companies. An interesting idea will
be to fuse these data sources for urban analytics.

Q2: What kind of tasks you think this data and its visual-
ization can help for your everyday job?

A: For my job responsibility, situation awareness of the city
is of current concern related to visualization. We have very
large screens showing live data streams from multiple data
sources. Most of these data sources are video streams for status
of urban transportation or situation in key roads, regions, or
buildings. There is a lack of the kind of visualization showing
the overall situation of the city, maybe fusing multiple data
sources. | think your data might be a good candidate to serve
this need.

Q3: What is the current practice on the tasks you mentioned,
is there any solution using visualization?

A: Visualization of urban data in large screens. The chal-
lenge is mainly from the techniques to process and present
multiple sources of big urban data.

C. Business Analyst

Q1: What are the characteristics of this type of trajectory
data from your experience with urban analytics?



A: This is probably the first time in our company to use
the full-scale data of a city for visualization (Note that these
business analysts are from the same company that provides us
the urban trajectory data. Their job responsibility is to work
with company’s customers to solve customer problems with
the collected urban data). The scale and granularity of this kind
of urban data could help to understand the microcirculation of
people in modern cities.

Q2: What kind of tasks you think this data and its visual-
ization can help for your everyday job?

A: We work with many customers to innovate with our
data, in almost all kinds of economic sectors. For example, we
work with real estate companies to help them make business
decisions in the pricing and purchasing of certain real estate
projects. A visualization of fine-grained urban movements
around the candidate projects would be a reference for the
decision-making of our customers.

Q3: What is the current practice on the tasks you mentioned,
is there any solution using visualization?

A: We mainly use data mining and machine learning meth-
ods now, but these methods are not so intuitive in presenting
to our customers. Visualization could be a big plus for us.

APPENDIX C
COMPARATIVE STUDY WITH CARTOGRAPHIC FLOW MAP
VISUALIZATION

UrbanMotion is an aggregation-based visualization tech-
nique to display massive urban movements. From the method-
ology point of view, it is similar to several existing meth-
ods using spatial aggregation, notably the cartographic flow
map visualization proposed by Andrienko and Andrienko [1]
(FlowMap in short). The fundamental difference lies in that
UrbanMotion is designed for trajectory data with long-tailed
temporal sparsity, in which most travel trips extracted are only
tiny segments of the full trajectory and are extremely short in
time (mostly in minutes). We propose UrbanMotion techniques
to extract, aggregate, and visualize both global and local urban
movements out of these tiny segments. To interpret this subtle
difference and understand the pros and cons of UrbanMotion
for movement visualization, we conducted a lab experiment to
compare the visualization result of UrbanMotion and FlowMap
on the same long-tailed sparse trajectory data set.

The FlowMap visualization method is implemented accord-
ing to Ref. [1] and also adapted to take the new trajectory
data. First, travel trips are detected by the same method in
UrbanMotion (Algorithm 2). Note that large intervals between
consecutive location records will make it impossible to know
the actual route between these records. We use a smaller
interval of one minute to cut the original trajectory in Line
2 of Algorithm 2 (15 minutes by default for UrbanMotion).
This is consistent with the suggestion in Ref. [1] where the
record intervals in their data are mostly between 30 and 45
seconds. The travel trips detected are processed by an optional
map-matching stage and then used as the input trajectory
data of FlowMap method. Second, characteristic points are
extracted from input trajectories and then grouped to form

Voronoi tessellation. Finally, trajectories are aggregated by the
Voronoi tessellation into a mobility network among Voronoi
cells, and displayed by classical flow map visualization. The
line thickness indicates the volume of each flow. A default
setting of MaxRadius = 3km is applied according to the
recommendation in Ref. [1] and can be adjusted for level-
of-detail viewing.

The visualization results of urban movements in Beijing on
9AM-10AM of July 5th are given in Figure 2, (a)(b)(c)(d)(f)
by FlowMap and (g)(h) by UrbanMotion. Different color
themes are applied because the white color theme of Urban-
Motion is not good for presenting flow volume due to the
simultaneous coding of movement speeds. It can be found
that comparing the overview visualization by FlowMap (Figure
2(a) using a default parameter of MaxRadius = 3km) and
UrbanMotion (Figure 2(g)), the output of FlowMap represents
a higher level of abstraction, while the output of UrbanMotion
better corresponds to the actual road network of the city of
Beijing (Figure 2(e)). Both methods in comparison do not
apply map-matching. We drill down to examine why the
overview of the two methods are different. It is discovered that
the visualization by FlowMap in Figure 2(a) only represents
5.42% of all the raw travel trips. The remaining 94.58% of
travel trips detected are very short and stay within the same
Voronoi cell because of the long-tailed sparse nature of the
trajectory data. In other words, for each trajectory of a urban
user, multiple travel trips are detected, most of which lie within
the boundary of a single Voronoi cell. Meanwhile, Urban-
Motion uses a much smaller cell setting in the aggregation
of movements. More travel trips are visualized among spatial
cells.

Applying the map-matching technique, the FlowMap visu-
alization result in Figure 2(b) is mildly changed from the result
over unmatched movement data (Figure 2(a)). This is because
the measurement error of location records is much smaller
than the parameter of MaxRadius in FlowMap (e.g., 3km). The
movement aggregation is less affected by the map-matching,
except the Voronoi tessellation computed from the distribution
of map-matched records. By design, FlowMap with map-
matching still connects the generating point of Voronoi cells
and remains a higher level of abstraction compared with the
UrbanMotion visualization.

We try to increase the granularity of FlowMap method to
obtain an overview that better covers of the data set. Figure
2(c) depicts the result under MaxRadius = 1km (covering
13.05% of all the raw travel trips), which however multiplies
the visual complexity. When the bottom 80% flows by volume
are filtered out, the remaining flows can not represent a
good overview of movements in the city (Figure 2(d)). In
comparison, UrbanMotion applies a default cell size of 500m
(approximately MaxRadius = 250m), which ensures a much
higher ratio of cross-cell travel trips. The direction of within-
cell movements are also considered in the trajectory analysis.
The movement clustering and flow tracing algorithms further
help to extract the backbone of global movement flows in the
city while preserving a moderate visual complexity. FlowMap



also displays within-cell movements by charting their overall
flow volume, but the movement direction of within-cell move-
ments are not shown (accounting for 94.58% movements under
MaxRadius = 3km). In addition, as proposed in the main doc-
ument of this paper, applying map-matching to UrbanMotion
helps to examine local movement patterns in focused areas
of a city. The detailed UrbanMotion visualization in Figure
2(h) illustrates the utilization of major roads in the Wangjing
district of Beijing.

Through our experiments, we also identify two major dis-
advantages of UrbanMotion in comparison to FlowMap. First,
UrbanMotion adopts a fix-sized gridding of the city map
with relatively small cells. Though it better covers the long-
tailed sparse trajectory data, in areas with few movements, the
technique is less efficient as the same number of cells need
to be processed. FlowMap resolves this issue by introducing
Voronoi tessellation. Through characteristic point detection
and grouping, areas with low density of movements will
have larger Voronoi cells while areas with high density of
movements will have smaller Voronoi cells. The spatial data
aggregation is more efficient under uneven movement distribu-
tion. Second, FlowMap is more suitable for online movement
visualization over streaming data. The Voronoi tessellation
can be computed offline using historical data. The online
processing only needs to map each characteristic point into
a corresponding Voronoi cell. In comparison, UrbanMotion
computes movement clustering on each cell or map-matching
on each location record. These stages are both costly, as shown
in the implementation details of Sec. 4.5 and the performance
result in Table 2. For now, UrbanMotion is mainly used for
the replay of existing trajectory data due to the limitation in
computational complexity.
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Fig. 2: Visual comparison of FlowMap and UrbanMotion on the same sparse trajectory data set: (a) abstract overview by
FlowMap without map-matching (MaxRadius = 3km); (b) abstract overview by FlowMap using map-matched movement vectors
as input data (MaxRadius = 3km); (c) more fine-grained visualization by FlowMap (MaxRadius = 1km, without map-matching);
(d) filter to show top 20% flows (MaxRadius = 1km); (e) the road network of the city of Beijing; (f) local movements in the
Wangjing district by FlowMap using map-matching; (g) abstract overview by UrbanMotion without map-matching; (h) local
movements by UrbanMotion using map-matching.



