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Fig. 1: NodeTrix visual comparison between the brain network of high v.s. low Composite Creativity Index (CCI) group. Signifi-
cant difference is found on the connectivity of prefrontal lobes bilaterally. Diagonal cells (intra-block edges) are greyed out.

Abstract—Visually comparing human brain networks from multiple population groups serves as an important task in the field of brain
connectomics. The commonly used brain network representation, consisting of nodes and edges, may not be able to reveal the
most compelling network differences when the reconstructed networks are dense and homogeneous. In this paper, we leveraged the
block information on the Region Of Interest (ROI) based brain networks and studied the problem of blockwise brain network visual
comparison. An integrated visual analytics framework was proposed. In the first stage, a two-level ROI block hierarchy was detected
by optimizing the anatomical structure and the predictive comparison performance simultaneously. In the second stage, the NodeTrix
representation was adopted and customized to visualize the brain network with block information. We conducted controlled user
experiments and case studies to evaluate our proposed solution. Results indicated that our visual analytics method outperformed the
commonly used node-link graph and adjacency matrix design in the blockwise network comparison tasks. We have shown compelling
findings from two real-world brain network data sets, which are consistent with the prior connectomics studies.

Index Terms—Brain Network, Visual Comparison, Hybrid Representation.

1 INTRODUCTION

The study of human brain networks stands at the heart of brain connec-
tomics, an increasingly prominent field of computational neuroscience
to understand the landscape of neural connections in our brain [37].
In this paper, we focus on the macroscopic brain network defined by
high-level Region Of Interests (ROI), versus the microscopic brain net-
works composed of cells, synapses and voxels [4] [15]. The structural
brain network in the macroscopic level is typically constructed in two
steps. First, magnetic resonance imaging (MRI) is used to accurately
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segment the human cortex into ROIs1, which serve as nodes in the
brain network. Second, diffusion MRI or Diffusion Weighted Imaging
(DWI) is conducted to capture the water diffusion along white mat-
ter pathways on the cortex, which detects weighted edges (i.e., fiber
connections) among ROI nodes on the brain network.

One of the most interesting questions in brain networks relates to
the anatomical difference in connectivity that may be influenced by
subject-level characteristics, such as age, gender, genetic profile and
disease status. For instance, among Alzheimer’s disease (AD) pa-
tients, the connectivity level in areas related to the memory center of
the brain, is significantly lower than those in the matched healthy con-
trols [11]. Extracting and understanding these discriminative connec-
tivity features can significantly boost our understanding of the brain,
and the application in disease prediction, gene engineering and many
others. Although much progress has been made, the detection and val-
idation of discriminative brain connectivity features remains a daunt-
ing task. First, there is still a need for large-scale and high-quality
brain network measurements. Connectivity features that describe the
network among brain regions can be very high-dimensional, i.e., con-
sisting of thousands of individual connections. The studies that use

1ROIs are highly specialized brain regions. In this work, we apply the
Desikan-Killiany parcellation [14] by FreeSurfer to define 68 or 70 ROIs on
the brain cortex. Other popular cortex parcellations include Desikan-Killiany-
Tourville Protocol (62 ROIs) and Destrieux Atlas (148 ROIs).



advanced methods can cause overfitting when the number of subjects
is small, possibly leading to less reliable results. Second, it is costly
to validate numerous computational models proposed in sophisticated
brain network studies for which subject-matter experts are required.

Visualization tools are important for addressing some of these chal-
lenges to compare high-dimensional connectivity patterns in the brain.
On one hand they provide an interactive platform to fuse multiple
sources of brain networks and measurements to test various computa-
tional models and parameters. On the other hand, the visual interface
allows domain experts to work seamlessly with the data sets, analysis
algorithms and comparison results for efficient evaluation of the data.
A natural question arises regarding which visual representation works
the best for comparing human brain networks. The pioneering work
by Alper et al. [5] contributed towards answering this question. They
found that the node-link representation, though popular in illustrating
social and information networks, is not the best choice to visually com-
pare weighted brain networks. Meanwhile an adjacency matrix design
performs better in low-level brain network comparison tasks such as
finding connectivity patterns and neighboring elements. In this work,
we implement some of their user studies on real-world brain networks
(versus the synthetic data set in Alper et al. [5]). While most of our
results align well with Alper’s in that the matrix design outperforms
the node-link graph, it is critical to notice that on real brain networks,
both methods bear very low task accuracies and high completion times
(e.g. < 72% and > 34s in Table 2). We argue that this is because the
human brain network is dense and might be quite similar among pop-
ulation groups (Section 3.1). It can be infeasible, or at least difficult,
to ask users to visually compare dense and homogeneous human brain
networks with respect to their weighted connectivity patterns.

In this paper, we describe a new way to visually compare human
brain networks. Instead of directly comparing the traditional ROI-
based brain networks, we exploit the inherent block structure of the
human brain by considering the blockwise brain network comparison
problem (Section 3.2). The rationale behind the blockwise compari-
son can be explained as follows: from an anatomical standpoint, the
human brain is composed of multiple blocks – meaning that ROIs can
be divided into left and right hemispheres, and can be further bro-
ken down into several cerebral lobes, often linked to highly special-
ized brain functions. For example, the temporal lobe is responsible for
forming long-term memory, while the insula is involved in human con-
sciousness. Furthermore, due to the physical block structure, domain
users generally compare brain network connectivity patterns in rela-
tion to this anatomical breakdown. It has been shown that Alzheimer’s
disease may lead to alterations in fiber connectivity in the temporal
and parietal lobes primarily, predominantly in the left hemisphere [40].
More blockwise comparison studies in clinical practice are surveyed
in Section 3.2. Computationally, we show in Section 4.2 that incorpo-
rating the block structure of ROIs can improve the predictive perfor-
mance in classifying human brain networks while not interfering with
the extraction of comparative patterns. In summary, the contribution
of this work can be described as follows.

• We propose the blockwise brain network comparison prob-
lem over the ROI-based network comparison studied previously
(Section 3.2), and present an integrated visual analytics frame-
work to address this new problem (Section 3.3). The effective-
ness of our framework is demonstrated through case studies over
two real-world data sets: one comparing the average brain net-
work of a group of AD patients with that of healthy controls;
another comparing between two groups of normal people with
high and low creativity scores (Section 6).

• In this framework, we introduce an adaptive clustering algorithm
on the ROIs of human brain networks to maximize the predictive
classification performance with the resulting blockwise connec-
tivities (Section 4). The key challenge is to overcome local max-
ima in optimizing the feature selection process.

• We adapt a hybrid visualization design, aka NodeTrix by Henry
et al [20] as shown in Figure 1, to optimize the blockwise net-
work visual comparison task, which takes the ROI block struc-

Table 1: Results on the Trend task (blue = best outcome).

Method
Measure

Acc. Sig. Time Sig.

Node-Link Overlaid (NO) 0.50 <0.001 25.63 >0.05
Matrix Overlaid (MO) 0.86 27.16
Node-Link Side-by-Side (NS) 0.92 24.02
Matrix Side-by-Side (MS) 0.81 24.61

Table 2: Results on the Connectivity task (blue = best outcome).

Method
Measure

Acc. Sig. Time Sig.

Node-Link Overlaid (NO) 0.33 <0.001 62.65 >0.05
Matrix Overlaid (MO) 0.72 34.93
Node-Link Side-by-Side (NS) 0.56 56.92
Matrix Side-by-Side (MS) 0.72 70.15

ture into account when displaying the human brain network (Sec-
tion 5.1). To further improve the performance of NodeTrix in
real-life comparison tasks, we propose to apply force-directed
edge bundling algorithms according to the block representation
of brain networks (Section 5.2). The NodeTrix visualization is
evaluated in the user study by comparing to the classical node-
link and adjacency matrix visualization on blockwise brain net-
work comparison tasks.

2 RELATED WORK

Brain network (aka the connectome) visualization is a popular inter-
disciplinary research topic. In the neuroscience community, Margulies
et al. summarized three classes of visualizations based on the vari-
ous steps in their data transformation pipeline [31]. On the low-level
DWI data, in particular Diffusion Tensor Imaging (DTI), tensor glyphs
in different shapes were invented to display the rich data dimension-
ality. For example, the latest design by Prčkovska et al. [34] aug-
mented spherical polar ploy glyphs [21] with optimized shape and
color scheme. Their design can highlight multiple maxima in order
to make the “peaks” of glyphs more distinct in the visualization. On
the streamline reconstructed by tractography [25], traditional visual-
izations display a deterministic fiber tract without considering its un-
certainty and dimensionality. Berres et al. [8] introduced nested sur-
face layers to visualize probabilistic tractograms which can indicate
the connectivity score between voxels. On the connectome constructed
from whole-brain fiber tracts, which is more related to our work, both
graph, matrix and chordmap [32] metaphors have been applied for vi-
sualization. For a more extended literature review on connectome vi-
sualization, we refer to this survey [31].

Most recently in the visualization community, Al-Awami et al. pro-
posed Neurolines [4], a novel visual metaphor to examine the neu-
ronal connectivities at nano-scale. Neurolines designed a multiscale
subway-like visualization which can be interactively rendered and
scaled up to display thousands of neurites for the detailed analysis of
neuronal structures and their connectivity. Everts et al. [15] studied the
visual abstraction of brain fiber tracts from Diffusion Tensor Imaging
(DTI) data. Through arranging the fiber tracts by their local similarity
at multiple scales, the global white matter architecture inside the brain
can be constructed from fiber tracts, with less visual clutters than pre-
vious approaches. Overall, these compelling methods on the visual
abstraction of brain connectivity mostly work at the microscopic level
of human brains, e.g., the neuron-level [4] or the voxel-level [15]. On
the comparison of human brain networks across population groups,
the difference at the microscopic level can be less significant, due to
their higher uncertainty, than the macroscopic connectivities, i.e., the
ROI-level brain networks.

The task of visually representing and comparing high-level brain
networks is relatively less explored, though the general topic of vi-
sual comparison has been a focus of the information visualization re-
search [19] [30]. Bach et al. presented Matrix Cube [6], an effective
3D cube visual representation to display the functional brain networks.
Their focus is on the dynamic pattern of brain networks, but not on the
comparison between groups of average brain networks. The work by



Table 3: List of comparison studies using brain networks; blue text indicates the analysis result related to the block structure on human brains.

Paper Topic Data & Subject Method Analysis Results GS #Cite
Wernicke 1874 [42] aphasia 10 subjects clinical disconnection of the sensory speech zone from the

motor speech area in the left hemisphere
1429

Geschwind 1965 [18] Disc. animals and man clinical disconnection syndrome between the visual-limbic
system, non-limbic associations

3146

Horwitz 1987 [24] AD 42 subjects (21
AD, 21 control)

PET fewer correlation between frontal and parietal lobes,
larger between the cerebellum and temporal lobe

157

Buckner 2005 [9] AD 764 subjects (5
studies)

mixed convergence of effects in posterior regions, interac-
tions with medial temporal lobe

1138

Daianu 2013 [12] AD 111 subjects (83
AD, 28 control)

3T MRI,
DTI

k-core breakdown in the left hemisphere, left/right
asymmetry intensifies

40

Ho 2003 [22] SZ 96 subjects (73
SZ, 23 control)

MRI reduction in frontal lobe white matter volume, in-
crease in frontal lobe cerebrospinal fluid volume

499

Kubicki 2005 [28] SZ 47 subjects (21
SZ, 26 control)

DTI, MRI decreased diffusion anisotropy in fiber bundles con-
necting higher-level regions

356

Olabi 2011 [33] SZ 1795 subjects
(27 studies)

MRI decreases over time in frontal, parietal and temporal
white matter volume

177

Chiang 2009 [10] Gene 92 twins 4T DTI FA heritable in frontal, parietal and occipital lobes 281
Scott 2010 [35] Gene 71 children fMRI CNTNAP2 expressed in frontal lobe circuits 125
Liu 2010 [29] Gene 57 subjects fMRI decreased prefrontal-related connectivities between

prefrontal regions and the posterior cortices
72

Alper et al. [5] might come closest to our study. They evaluated the
effectiveness of the node-link and matrix representation in weighted
graph comparison. Their results favored the matrix design with an
overlaid comparison method. In this work, we study the same research
topic on visual comparison, but consider a new problem of blockwise
brain network comparison after a survey of neuroscience literature on
their high-level human brain connectivity analysis requirement. No-
tably, we introduce the computational method for the ROI clustering
and integrate this method into a coherent visual analytics framework
that can guide the effective discovery of brain network biomarkers
across population groups.

3 OVERVIEW

3.1 Preliminary User Study
We start from a controlled user experiment to compare two basic vi-
sualization designs for the brain network comparison: the node-link
graph and the adjacency matrix. In addition, we consider two visual
comparison methods: the overlaid comparison [5] and the straightfor-
ward side-by-side comparison. When combined, we study four candi-
date interfaces: node-link overlaid (NO), matrix overlaid (MO), node-
link side-by-side (NS), matrix side-by-side (MS).

Alper et al. [5] first conducted this comparative study on NO and
MO visualizations over a group of synthetic brain networks. In con-
trast, our study is carried out on real-world brain networks, comparing
42 AD patients with 50 healthy controls. Real-world brain networks
have two significant differences from synthetic networks that can af-
fect the user study result. First, high network density. For instance,
the brain network of each of 92 subjects in our data set has 454∼1021
edges (i.e., fiber connectivity with nonzero strength) between 68 ROI
nodes, leading to a network density of 0.2∼0.45, whereas the synthetic
network in [5] has a 5% or 10% density. Second, similar network
topology across subjects. We have built a Pearson’s correlation coeffi-
cient matrix by the weighted topology vector of 92 subjects in our data
set, each has a vector length of 2278. More than 90% pairs of subjects
have a weighted topology correlation greater than 0.8, and the average
correlation is close to 0.9.

Our experiment result with 12 subjects over the real brain network
data set is summarized in Table 1 (Trend task) and Table 2 (Connec-
tivity task). The task design follows those in Alper et al. and the
implementation details are the same with our second user study ex-
plained in Section 6.1. There are two observations with respect to the
results by Alper and colleagues that motivate our follow-up research.
First, the comparison between MO and NO methods leads to the same
outcome: when the overlaid method is applied, the matrix design is

significantly better in accuracy and completion time when compared
to the node-link visualization, with the exception of the completion
time in the Trend task. However, the actual task accuracy deteriorates
greatly on the real data set: on the Trend task, it drops from 0.96 (MO)
and 0.85 (NO) in Alper et al. to 0.86 and 0.50 in our study; on the
Connectivity task, it drops from 0.90 (MO) and 0.71 (NO) to 0.72 and
0.33. The completion time measure has a similar pattern. These ef-
fects can be attributed to the dense and homogeneous nature of real
brain networks in the ROI level, which prevents users from accom-
plishing visual comparison tasks. Our second finding, the side-by-side
comparison design, though not considered in the previous study, leads
to comparable performance to the overlaid design when the network
density is high. This is especially true judging from subjective ratings.
The scores for the node-link side-by-side design in user experience
and usability (3.83 and 3.92 in the 7-point likert scale, higher is bet-
ter) are only slightly below those of the matrix overlaid design (4.07
and 4.08). Note that the side-by-side comparison bears an additional
advantage in much shorter training time than the overlaid comparison
for ordinary users.

3.2 Blockwise Brain Network Comparison

The preliminary user study result indicates that it may not be effec-
tive to visually compare real brain networks solely at the macroscopic
ROI level. The cortical connectivity at that level is adversely dense
and little visual difference is presented between individual subjects. In
fact, from the domain expert’s view (neuroscientists, e.g., co-authors
of this paper; doctors, our collaborators), rarely do they examine the
brain network difference only from the ROI level between individual
subjects. In this work, motivated by the inherent block structure of
human brains (e.g., left/right hemispheres, anatomical lobe classifica-
tions), we consider a new problem of blockwise network comparison
over the existing ROI-based brain network. At the ROI block level, the
abstracted connectivity pattern can be more salient in visual compari-
son and far more useful for domain experts.

To validate the importance and characterize user tasks on the new
problem, we did a literature review of 33 neuroscience studies on the
comparison of human brain networks (aka the white matter connec-
tivity) between diagnostic groups (AD, Schizophrenia, genetic disor-
ders). We examined each study by the criterion that whether or not
the comparison analysis had detected significant patterns in the ROI
block level, rather than only detected between particular ROIs. The
representative literature is given in Table 3 and a full list is docu-
mented in the supplemental material. In summary, 22 out of 33 stud-
ies (66.7%) in the review met our criterion. Dating back to the 19th
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Fig. 2: Visual analytics framework for blockwise brain network comparison.

century, Wernicke described the disconnection syndrome as a loss of
connectivity between the sensory speech and the motor speech areas
in the left hemisphere [42], which was among the first block-level con-
nectivity studies. On the group-based comparison studies between AD
patients and controls, we examined 12 relevant studies cited by Daianu
et al. [12]. Eight studies meet our criteria, details can be found in Ta-
ble 3. On the comparison study of Schizophrenia (SZ) patients, we
reviewed 7 highly cited papers on the white matter deficiency - 6 of
which reported results based on higher-order brain subnetworks [33],
aka block-level networks considered here. We also reviewed 12 brain
network studies related to genetics, cited by Thompson and colleagues
[39], 6 of which fitted our criterion.

Based on the literature review, we conclude that the ROI block level
difference among diagnostic groups are crucial for the classification
and prediction of certain disease or symptom. We summarize a set of
blockwise brain network comparison tasks based on the practice in the
literature and feedbacks from domain experts.

B1: Given one ROI block, identify noticeable changes of its local
connectivity between diagnostic groups.

B2: Given one ROI block, identify noticeable changes of its global
connectivity (i.e., between the ROIs of the current block and the ROIs
in other connected blocks) between the diagnostic groups.

B3: Identify ROI blocks that have local/global connectivity changes
between the diagnostic groups.

B4: Identify pairs of ROI blocks that present connectivity changes
between the diagnostic groups.

3.3 Visual Analytics Framework

Consider the design space for the blockwise comparison task defined
above. The user study result in Section 6.1 shows that applying the
classical node-link or matrix design leads to poor visual comparison
performance, especially on the inter-block connectivities. In a few
ROI definitions, two ROIs within the same block can be geometrically
separate in the projected brain cortex, making it difficult for users to
visually compare the block-level connectivities.

In this work, we propose a visual analytics framework to integrate
the algorithmic ROI block generation with the interactive visualization
to help identify and analyze blockwise brain network connectivity dif-
ferences. As shown in Figure 2, in the first stage, we apply clustering
algorithms to detect a two-level ROI block hierarchy (Section 4). In
the top level, the functional blocks divide all ROIs based on an anatom-
ical or functional classification (e.g., the lobe classification); and in the
bottom level, each functional block is partitioned into several compar-
ison blocks, in a way to maximize the group-level difference in the
network comparison. In the second stage, the raw ROI connectivity
and its hierarchical block structure are integrated and represented by
a hybrid NodeTrix visualization (Section 5). The functional blocks
are shown as matrices, the comparison blocks are shown as merged
rows/columns inside the matrix, and each ROI is represented by the
individual row/column. To optimize the inter-block connectivity com-
parison across diagnostic groups, we introduce the force-directed edge
bundling algorithm to visually aggregate the connections on the same
pair of ROI blocks.

Table 4: Notations for the brain network classification.
SYMBOL DESCRIPTION
N, Gi # of subjects and their brain networks
n, p, e j # of nodes, # of edges, each edge in the network
X , X , xi, xi j edge weight variable, weight matrix on all sub-

jects, weight vector on Gi, the component on e j
Y , y, yi outcome variable, its value on all subjects and Gi

4 ROI CLUSTERING

The top-level ROI hierarchy is composed of functional ROI blocks. In
this work, we adopt the cerebral lobe classification that partitions each
hemisphere into six lobes: frontal lobe, parietal lobe, occipital lobe,
temporal lobe, limbic lobe, and insula. Other functional cortex parcel-
lations are also applicable, depending on the targeted comparison task.
In the second-level ROI hierarchy, we apply clustering algorithms to
detect comparison blocks that best reveal the connectivity difference
among diagnostic groups. The main idea is to link the accuracy in the
predictive analysis, i.e., the classification of brain networks into diag-
nostic groups, with the visual comparison performance among groups
of brain networks. The problem of optimizing the blockwise brain net-
work visual comparison is converted to finding the best ROI clustering
that maximizes the brain network classification accuracy.

4.1 Brain Network Classification

The brain network classification problem is defined as predicting the
label of a subject (outcome) using the features on the subject’s brain
network. Here the label indicates the diagnostic group. Throughout
this paper, we consider the binary classification, i.e., the label has two
levels, e.g., diseased or healthy subject. The brain network features are
limited to the set of connectivity strengths, i.e., the number of fibers
going through each pair of ROIs. These connectivity strengths become
the edge weight in the brain network, so we also call them edge fea-
tures interchangeably.

The formal notations in this definition are listed in Table 4. We
consider N subjects and their brain networks, denoted by G1, · · · ,GN .
Each brain network has n nodes (i.e., ROIs) and p edges (i.e., fiber
connections) between pairs of nodes, denoted by e1, · · · ,ep. The edge
weight (i.e., connectivity strength) is defined by the variable X . On
Gi, the network of the ith subject, the edge weights are denoted by
the vector Xi = (xi1, · · · ,xip)

′. At the network level, each subject is
associated with a binary outcome variable Y (i.e., subject label). The
value of Y on N subjects is denoted by the vector Y = (y1, · · · ,yN)

′.
Using a basic logistic regression model, the objective function to best
fit the model given data is written as minimizing the Negative Log
Likelihood (NLL).

Min NLL(W ) =
N

∑
i=1

log(1+ e−yiW T Xi) (1)

where W = (w1, · · · ,wp)
′ denotes the weight vector for all p edge fea-

tures. The edge with a larger weight means that it has a higher influ-
ence on the outcome.
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Fig. 3: Tree search in the agglomerative clustering of ROIs. Each node
represents an ROI clustering setting where the node label gives the
resulting classification accuracy. Each link indicates a feasible binary
combination of two ROI clusters.

When classifying brain networks, it is known that using all the edge
features for training can lead to severe overfitting, which downgrades
the classification accuracy in the testing set. The general approach is to
apply feature selection that only picks the most informative features to
predict the label. Here we adopt the lasso model [41] which adds a L1
regularization term (||W ||1, i.e., L1 norm of the weight vector W ) for
the edge feature selection. The objective function of the lasso model
is given by

Min
N

∑
i=1

log(1+ e−yiW T Xi)+λ ||W ||1 (2)

where the parameter λ > 0 controls the degree of overall model spar-
sity. A larger λ will lead to less selected edge features. The weight
vector W determines the feature selection result. The ith edge feature
will be selected if wi 6= 0, and unselected if wi = 0. To determine the
sparsity parameter λ , we iterate over a list of logarithmically spaced
parameter choices within the feasible range for nonzero weight vec-
tors. The best λ is chosen as the one leading to the highest classifica-
tion accuracy in 10-fold cross-validations.

The lasso model is popular because of its effectiveness to achieve
good classification accuracy. However, lasso does not capture the in-
teraction effect among features, nor does it take the feature group in-
formation as indicated by the block structure in our work. In our final
classification model, we apply a recent variant of lasso, namely the
sparse group lasso (SGL) [36] which incorporates feature grouping
information to optimize the classification. These edge feature groups
can be directly linked to the ROI clustering in that when network nodes
are grouped, their edges are aggregated correspondingly. The objec-
tive function of the SGL model is defined by

Min
N

∑
i=1

log(1+ e−yiW T Xi)+αλ ||W ||1 +(1−α)λ
M

∑
m=1
||W (m)||2 (3)

where M denotes the number of feature groups, W (m) is the partial
weight vector of the mth feature group. The parameter α controls the
the group-wise sparsity. The remaining question is to determine which
ROI clustering provides the best feature grouping information for the
brain network classification.

4.2 Optimal ROI clustering
We start from a trivial setting of n ROI clusters, i.e., one cluster per
ROI. In this setting, the objective function of the SGL model (Eq.
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Fig. 4: ROI clustering performance by the roll-back greedy scheme.

(3)) degenerates to that of the basic lasso model (Eq. (2)) because
∑

M
m=1 ||W (m)||2 = ||W ||1. Any nontrivial k-ROI-clustering (k < n) can

be seen as a k-partition of the n initial clusters. The number of possible
nontrivial ROI clusterings amounts to the Bell number [7]. Therefore,
finding the best ROI clustering that yields the highest classification ac-
curacy leads to an NP hard problem requiring O(nn) computation time,
when the exhaustive search on all possible ROI clusterings is applied.

The search-based solution can be improved by only combining
ROIs within each functional block, but the complexity is still expo-
nential. A more feasible approach is to apply the greedy search by
clustering ROIs in an agglomerative manner. An illustration of this
process, i.e., the search tree, is given in Figure 3(a). In this tree, each
node represents an ROI clustering setting and the node label indicates
the classification accuracy when this ROI clustering is applied, i.e., a0
for the initial clustering and ai j for the jth feasible clustering in the ith
step. The directed link indicates the process to merge two ROI clusters
into a new cluster, moving from one clustering setting to another. The
search starts from the root of the tree where the trivial n-ROI-clustering
is applied. In the next step, all feasible binary combinations of trivial
ROI clusters are examined by classifying with the SGL model under
the new clustering. These clusterings are represented as the nodes in
the second hierarchy. The greedy search scheme will pick the clus-
tering setting leading to the highest accuracy in each step, e.g., in this
figure, the clustering that combines ROI cluster {#3} and {#4} which
yields a classification accuracy of a14 ≥ a1 j. After that, the search pro-
cess is repeated one step further and combines the ROI cluster {#3,#4}
with {#5}. In n−1 steps, all ROIs are combined into one cluster and
the search process terminates.

The greedy search scheme leads to a cubic computational complex-
ity assuming the SGL solver has a constant cost, which is feasible for
computation because the number of ROIs (n) is small. However, due
to the non-concave and combinatorial nature of the search space, the
greedy search is highly likely to get stuck in the local maxima. To
address this issue, we propose an improved greedy search scheme by
adding roll-back operations. As shown in Figure 3(b), instead of using
the classification accuracy as the search heuristic, we turn to maxi-
mize the accuracy improvement from the last step, denoted by Ii j for
the jth combination in the ith step. This allows us to introduce a slope
constraint S. In case the best accuracy improvement in certain step of
the greedy search falls below S, e.g., I23 < S in Figure 3(b), we drop
this search branch by overriding the accuracy improvement of its up-
per node (i.e., I14) to I23. This branch will not be searched any more
because I14 < S. The search process restarts with a roll-back one step
further, i.e., to the root node in this figure. As the previous best choice
of I14 has been dropped, the second best clustering indicated by the
improvement I12 is picked and the greedy search continues from this
new branch. Except for the slope constraint S, we control another two
parameters to keep the search process going: the maximal roll-back
depth Dmax and the slope constraint step ∆S. When the search rolls
back more than Dmax hierarchies consecutively, we loosen the slope
constraint by subtracting one step of |∆S| from S. This also fits the
actual curve of the accuracy improvement. As shown in Figure 4, the
best accuracy appears in the middle of the clustering process, and after
that drops almost monotonically.

The greedy search with roll-back scheme can lead to significantly



Fig. 5: The NodeTrix visualization design for blockwise visual comparison of brain networks.

increased computational complexity as more than one path on the
search tree can be traversed. We introduce the caching strategy to re-
duce the computation requirement. As shown in Figure 3(b), the same
ROI cluster combination can appear in different steps of the search
tree, e.g., I11/I′21 and I13/I′23. The strategy is to assume the accuracy
improvement by the same combination does not change much across
search steps. Under this assumption, every new search in later steps
can first fetch the accuracy improvement from the cache established in
earlier steps. This greatly reduces the cost in repeating SGL modelings
for every new clustering.

We have applied the greedy search and the roll-back scheme in the
113-subject high-CCI v.s. low-CCI brain network data set. The per-
formance curves are depicted in Figure 4. The ROI clustering will
mildly increase the classification accuracy before a half of the ROIs
are grouped together, while the number of features selected remains
constant. This demonstrates that the inherent block structure of human
brain networks can be leveraged in its classification to better abstract,
but not undermine, the comparison pattern, if only an adequate num-
ber of clusters is specified. When the clustering proceeds to generate
over-simplified block structure, the classification accuracy will drop
quickly and it is hard to discover good blockwise comparison patterns
any more. We have integrated the classification accuracy measure dur-
ing the search process into the visualization interface to guide the in-
teractive visual comparison of brain networks.

5 VISUALIZATION DESIGN

We consider two design goals for the brain network visualization in
our scenario: 1) optimize the user performance in the visual compar-
ison of brain networks; 2) incorporate the two-level ROI block hier-
archy into the visualization for blockwise comparisons. It has been
shown in [5] that the node-link representation is not the best choice
for visual comparison. Meanwhile, the adjacency matrix can be better
than the node-link design in user performance, but it is difficult to em-
bed multiple ROI block hierarchies into the matrix design while high-
lighting the blockwise comparison patterns. In this work, we explore
the hybrid approach, that uses the NodeTrix representation to visual-
ize the blockwise brain network connectivity for comparison between
population groups. The NodeTrix metaphor was invented by Henry
et al [20] to display social networks having inherent clustering nature.
In their design, the dense social communities can be represented by
matrices, while the sparser inter-community connections are drawn in
the node-link diagram. We echo the same design rationale on brain
networks. The weighted graph clustering result (k=12) on our brain
network data set shows a very close structure to the 12-lobe brain par-
cellation: 46 out of 68 ROIs have the same membership in the graph
clustering and the lobe classification. This demonstrates that the intra-
lobe connectivity is on average denser than their inter-lobe counter-
part, which advocates the use of the NodeTrix design.

5.1 NodeTrix Representation
Figure 5 depicts an example of using NodeTrix to display the block-
wise brain network comparison in a side-by-side design. For each
brain network, the high-level visual representation is composed of sev-
eral matrices, each corresponding to a functional block in the brain,
i.e., one of the anatomical lobes in our setting. Each row/column in
the matrix represents a single ROI whose index is drawn as labels on
the border of the matrix, e.g., the largest frontal lobe contains 11 ROIs
in each hemisphere. The rows and columns can be combined together
to represent the comparison blocks in the ROI clustering hierarchy, as
shown in Figure 1. Inside each matrix, the entries drawn as color-
coded cells indicate the intra-lobe ROI connections. The red hue is se-
lected as the default fill color, while the color saturation is used to rep-
resent the fiber strength of each ROI connectivity. The more saturated
the color, the higher connectivity strength. The detailed strength–color
mapping is indicated and controlled by the color map slider in the cen-
ter of the control panel in Figure 5. User interactions are supported to
tune the color map and optimize the visual comparison (Section 5.3).
Note that the diagonal cells in each matrix are greyed out as the fiber
loops on each ROI are unimportant for the comparison of brain net-
works. For the inter-lobe ROI connections, curved edges are drawn
between the matrices where the two endpoints are on the brim of the
source and target ROI column/row. Both the edge thickness and color
saturation indicate their connectivity strength.

Our design supports three comparison views by different projec-
tions of the brain network: sagittal view (Figure 9), axial view (Figure
5), coronal view (supplemental video). They are also distinguished by
separate background brain sketches. On the layout of each view, we
consider optimizing both the topographical proximity and the perfor-
mance for visual comparison. The matrices representing the functional
blocks are placed in the center of their anatomical lobes. The ROIs
within each functional/comparison block are initially ordered by their
ROI indices. We also provide an interaction to reorder ROIs according
to their magnitude of difference in the comparison.

5.2 Brain Connectivity Edge Bundling
The brain connectivities between ROI blocks are drawn as B-spline
curves between matrices. These edges are bundled together by select-
ing appropriate control points for each curve. We propose two edge
bundling algorithms for separate objectives: the semantic bundling to
optimize the visual comparison and the geometric bundling to reveal
the physical routing path of the underlying fiber pathways.

Semantic edge bundling. In this method, the objective is to re-
duce the visual clutter raised by the dense ROI-level connections while
preserving the blockwise connectivity patterns. We achieve this by a
three-step force-directed edge bundling algorithm.

In the first step, we cluster all the ROI connectivity edges into
groups according to their blockwise semantic information. The edges



connecting the same source and destination matrices are grouped to-
gether and share the same set of control points. In other words, edges
will be bundled to represent blockwise connectivities. In the second
step, we determine the initial placement of control points in each edge
bundle. To keep their original connectivity structure, the control points
are uniformly sampled from the straightline connecting the center of
their source and destination matrices. In the third step, we apply the
force-directed edge bundling algorithm to adjust these control points
to further alleviate visual clutter. The basic idea is to move the control
points of all edge bundles towards each other to reduce the number of
spatially distributed control points. In more detail, all control points
are considered as nodes in a proximity graph. Then the force-directed
layout [17] is conducted on this graph to refine the placement of all
control points. The key choice is to decide the optimal distance (i.e.,
proximity) between each pair of control points. We apply Holten and
Van Wijk’s algorithm in [23]

OptDist = Dist0 · (
Ce

Min(Ce)
)k where Ce =Ca ·Cs ·Cp (4)

where Dist0 denotes the initial distance between the two control points.
Ca, Cs, Cp indicates the adjustment based on the angle, length and
proximity of the matrix connection lines of these two control points.

Geometric edge bundling. In another method, we start by align-
ing the brain network connectivity with the fiber tracts reconstructed
through tractography. These fiber tracts can be geometrically clus-
tered into bundles [26] where each bundle represents the connectivity
between several ROI blocks. The control points for each blockwise
connection can be selected from these bundles to reveal the geometric
routing of fibers in the human brain.

In more detail, we introduce a two-step algorithm to compute the
control points on each fiber track bundle. In the first step, a streamline
is extracted from every track in the selected fiber bundle by uniform
sampling. Then we use the sampled points in all tracks to compute a
centerpiece streamline. The fiber track staying closest to this center-
piece streamline is selected to represent the entire fiber bundle. The
second step is to re-sample the representative fiber track to extract a
small number of control points for the edge bundling. Each fiber track
is composed of a large number of points. We start from the first point
and keep track of the accumulative curvature in iterating all the points,
which is known as the winding angle. Once the winding angle is larger
than a threshold, the current point is sampled and the winding angle is
reset to zero. In the final algorithm, we choose a winding angle thresh-
old of 360 degrees according to Tao et al. [38]. In case the winding
angle does not reach the threshold after scanning the entire track, we
apply uniform sampling. Mathematically, the curvature ki at point pi
of a fiber track streamline is computed by

ki = cos−1(−−−−→pi−1 pi ·−−−−→pi pi+1) (5)

where pi−1 and pi+1 are neighboring points of pi on the streamline.

5.3 Interaction for Visual Comparison
Following the visualization design, we support basic network inter-
actions as well as a suite of customized interactions to facilitate the
user’s visual comparison task on brain networks. At the ROI level, we
design an interactive color map, as shown in the range slider of the
central panel in Figure 5. The left range selector controls the edge
filtering. All the edges below a specified strength threshold will be
removed in the display. The right range selector controls the maxi-
mal edge strength. The edges above this maximum will be drawn in
the largest color saturation. The edges with strength inside the range
will have a linear mapping to the color saturation spectrum. When the
binary mode is selected, the range selector becomes the point selec-
tor. All remaining edges after the filtering will be drawn in the same
maximal color saturation. At the ROI block level, we introduce a ma-
trix reorder interaction. All ROIs inside each lobe are first sorted by
the difference between the two compared groups of networks. The
ROI with the largest difference is placed in the matrix center and all
ROIs are arranged from the center to the border by this order. At the

network level we design a network contrast interaction which, when
applied, each connectivity strength in the network is subtracted by the
minimal strength of the two networks in comparison. Subsequently,
only the connectivity difference is shown after this interaction.

6 EVALUATION

6.1 User Experiment on Blockwise Comparisons
We conducted a controlled experiment to understand the effect of vi-
sual designs on the user’s performance in blockwise brain network
comparison tasks. We compared three visualizations: node-link net-
works, adjacency matrices, and the proposed NodeTrix design (Fig-
ure 5). NodeTrix applies a one-level blocked structure mapping brain
lobes to the matrix. Within each lobe, the comparison blocks are not
used because in our pilot study, users need additional time and train-
ing to locate the best clustering parameter. In all three designs, the
side-by-side comparison is adopted.

Experiment design. We recruited 16 subjects (10 male, 6 female)
who were all computer science graduate students and have experience
with data visualization. The experiment applied a full-factorial within-
subject design that every subject was tested on including all visualiza-
tion methods. The experiment was divided into the training session
and the test session for each visualization. In the training session,
users warmed up by completing the same suite of tasks on a much eas-
ier setting (e.g., less nodes and edges in the brain network to compare).
The organizer checked the result of each training task and addressed
all questions before proceeding to the next step.

Task. All four tasks listed below were conducted on the brain net-
works from 92 subjects (including controls vs. AD patients) to com-
pare differences at anatomical network level.

T1 (Local connectivity): does the overall edge weight within the
right frontal lobe subnetwork decrease or increase in controls when
compared to AD patients?

T2 (Lobe-Lobe connectivity): does the overall edge weight between
the right frontal and the right temporal lobe decrease or increase in
controls when compared to AD patients?

T3 (Lobe-ROI connectivity): does the overall edge weight between
the frontal lobe and all other ROIs decrease or increase in controls
when compared to AD patients?

T4 (Lobe connectivity retrieval): identify one lobe-lobe pair whose
connectivity has the largest overall edge weight difference between
brain networks of the two diagnostic groups?

Note that for each task×visualization pair, each user was tested on
three difficulty levels by controlling the difficulty for detecting differ-
ences in the group comparison. This level is shuffled for different users
and visualizations to eliminate learning and ordering effect. For each
task, we recorded the subject’s answer and completion time. The task
completion time was measured after the subject had read the question,
so that the reading skill variation was excluded. On T 1 through T 3,
the relevant lobes in the task were highlighted using color coding in
the matrix (node) outline of each visualization. On T 4, all lobe names
are labeled on the visualization. This was done to minimize the visual
search time for the lobe in the task. During the test session, subjects
were also asked to respond to three subjective questions immediately
after they completed all the tasks for each visualization. Answers were
selected from a 0∼6 Likert scale (larger is better).

Q1 (Usability): How much does this visualization help you in com-
pleting the tasks and finding the correct answers?

Q2 (Cognitive Performance): How much does this visualization
help you to understand the brain network data?

Q3 (User Experience): How would you rank your experience with
this visualization design?

Result. Experiment results were analyzed separately for each task.
Significant level was set at 0.05 throughout the analysis.

Task Accuracy: The user’s accuracy in completing each task is sum-
marized in Figure 6(a). For T 1, the intra-lobe local connectivity task,
all three visualizations led to rather high accuracies on average (Node-
Link: 0.93, Matrix: 0.88, NodeTrix: 0.91), and there were small differ-
ences in between. For T 2, the lobe-lobe connectivity task, NodeTrix
(0.93) had better accuracy than Matrix (0.86) and Node-Link (0.67).



(a) Task Accuracy (b) Completion time

Fig. 6: The user performance distribution of three visual designs.

Fig. 7: Subjective scores for three visual designs in the user study.

A repeated-measure ANOVA test on their average task accuracy (nor-
mality and sphericity held, the same below) shows that there were sig-
nificant group-level differences (F(2,26) = 8.943, p = 0.001). Post-
hoc test using the Bonferroni correction reveals a significant difference
between Node-Link and NodeTrix (p = 0.001), but the difference be-
tween Node-Link and Matrix was not significant (p = 0.078). For
T 3, the lobe-ROI connectivity, Node-Link (0.91) and NodeTrix (0.91)
have better average accuracy than Matrix (0.76), but the difference
was not significant (p = 0.12). For T 4, the lobe connectivity retrieval
task, most subjects failed to complete it using the Node-Link visual-
ization deisgn, so we only compared Matrix and NodeTrix designs.
In average, NodeTrix (0.98) had a much higher accuracy than Matrix
(0.36), and the difference was significant based on a paired samples
t-test (t(13) =−13.0, p < 0.001).

Completion Time: The user’s completion time in each task is sum-
marized in Figure 6(b). For T 1, the intra-lobe local connectivity task,
Matrix (5.31s) and NodeTrix (5.17s) took slightly shorter time than
Node-Link (6.01s) to complete, but the difference was not signifi-
cant (p = 0.27). For T 2, the lobe-lobe connectivity task, again Ma-
trix (5.43s) and NodeTrix (5.12s) took shorter time than Node-Link
(7.75s). A repeated-measure ANOVA test (normality and spheric-
ity held, the same below) showed a significant group-level differ-
ence (F(2,26) = 6.598, p = 0.005). Post-hoc tests using the Bonfer-
roni correction revealed a significant difference between Node-Link
and NodeTrix (p = 0.045), but not between Node-Link and Matrix
(p = 0.057). For T 3, the lobe-ROI connectivity, all visualizations took
a similar amount of time: Node-Link (4.96s), Matrix (5.62s), Node-
Trix (5.18s), and the differences were not significant (p = 0.53). For
T 4, the lobe connectivity retrieval task, NodeTrix (8.87s) had a much
shorter completion time than Matrix (20.21), and the difference was
significant under a paired samples t-test (t(13) = 4.11, p = 0.001).

Subjective Questions: The user’s subjective scores are summarized
in Figure 7. It is shown that Node-Link and NodeTrix have better av-
erage scores than Matrix in all three subjective measures. We then ap-
plied the Friedman test to analyze their group-level difference, which
does not require a normality assumption. Results indicate that while
there was no significant difference in the usability score (p = 0.41,
the average score, Node-Link: 4.36, NodeTrix: 4.36, Matrix: 3.79),
the cognitive performance and user experience were significantly dif-
ferent across groups. On the cognitive performance, Node-Link (4.93)
and NodeTrix (4.79) were significantly better than Matrix (4.21) under

the Friedman test (χ2(2) = 9.46, p = 0.009). The post-hoc Wilcoxon
signed rank test results were p = 0.004, 0.046. On user experience,
Node-Link (3.79), NodeTrix (4.36) and Matrix (3.21) have significant
group-level difference by the Friedman test (χ2(2) = 9.33, p= 0.009),
but the post-hoc Wilcoxon signed rank test only detected significant
difference between NodeTrix and Matrix (p = 0.004).

Discussion. The user study results show that, on the block-block
connectivity tasks for both low-level examination (T 2) and high-level
retrieval (T 4), the NodeTrix design performs significantly better than
the Node-Link design, and better than the Matrix design, for both
task accuracy and performance time. Especially for the high-level re-
trieval task of T 4, NodeTrix was significantly better than Matrix. This
demonstrates the superiority of the NodeTrix design in revealing the
block-level brain network structure, which is extremely important in
exploratory tasks (like T 4) where noisy data is present. On the lo-
calized single-block tasks (T 1 and T 3), while the completion time is
close because of the low difficulty level, NodeTrix achieved a similar
task accuracy to the Node-Link design, and both were better than the
Matrix design, though not significantly. This indicates that the hybrid
block representation (NodeTrix) does not affect the local connectiv-
ity retrieval, while a full block design (Matrix) could downgrade the
local comparison performance when no customized technique (e.g.,
overlaid design) is applied. For the user’s subjective rating, we no-
ticed that all users disliked comparing matrices side-by-side. Though
the Matrix design can still work (no significance in usability), user’s
cognitive gain and experience were significantly poorer than NodeTrix
and Node-Link design. This can be attributed to the counter-intuitive
nature of the adjacency matrix. NodeTrix compensates this deficiency
by keeping a high-level node-link representation.

6.2 Case Study

We evaluated the NodeTrix visualization design on two sets of real-life
brain networks. The first is on Alzheimer’s Disease patients. More
recently, as studied in Thompson et al. [40] and Daianu et al. [12],
the AD patient’s brain network tends to degenerate in an asymmetric
fashion predominantly in the left hemisphere. Furthermore, the meta-
analysis in [9] from five studies of 1138 subjects showed a converged
effect of AD to the posterior cortical regions in the left hemisphere
(mainly in the parietal lobe).

We analyzed the data set from ADNI – a publicly available AD
Consortium [2], and applied NodeTrix to reproduce the above brain
network patterns. The ADNI data we used for this study contained
DWIs from 202 subjects - 50 healthy controls, 72 with early mild
cognitive impairment (eMCI), 38 with late mild cognitive impairment
(lMCI) and 42 AD patients. The participants underwent whole-brain
MRI at 16 different site across North America [12] and their ages
ranged between 55 to 90 years. For each subject, an ROI-level network
was computed using an automated segmentation method, FreeSurfer
[3] based on the Desikan-Killiany atlas [14]. The edge weights among
ROIs described the fiber density between pair of ROIs (the number
of fibers passing through a pair of ROIs). To focus on the alterations
patterns in the network, we greyed out the connections from each ROI
to itself (i.e., the diagonal cell in the adjacency matrix). We started
the analysis by comparing the average brain network of 42 AD pa-
tients with those of 50 controls. The initial view was rather cluttered
because of the high number of edges and complexity of the average
brain networks (Figure 5). Therefore, we focused on the network dif-
ferences by manipulating the edge color map slider. First, we applied
filters to eliminate many low-density connections that overwhelm the
network view. Then we switched to the binary color mapping mode to
only compare the unweighted connectivity controlled by a predefined
density threshold. The result was illustrated in Figure 8(a). It can be
quickly identified that the high-density fiber connectivity network is
more symmetrical (between left and right hemisphere) in the control
group than in the AD group. The AD patients have relatively sparse
connectivity in the left hemisphere (the right part of the AD network in
Figure 8(a) due to the projection method). It appears that the connec-
tivity of the left parietal lobe breaks down the most. We further con-
firmed this hypothesis by using the network contrast interaction. As



Fig. 8: AD case: (a) The brain network asymmetry is shown; (b) When the contrast interaction is used, detailed lobe differences are revealed.

(a) Left sagittal view

(b) Right sagittal view

Fig. 9: Sagittal views in the AD case: (a) Left; (b) Right.

Fig. 10: CCI case using the contrast interaction.

shown in Figure 8(b), most of the large differences between the two
population groups were located in the intra- or inter-parietal lobe con-
nectivity subnetworks. A matrix reorder operation was also applied to
place the ROIs with the largest differences in the center of each lobe
matrix. This became clearer when we switch to the left sagittal view
(Figure 9(a)). Another observations was that the AD patients appeared
to have thicker connectivity pattern between the right insula (ROI #36)
and the right parietal/frontal lobes, though this finding needs to be val-
idated from a statistical standpoint (Figure 8(b), Figure 9(b)).

In the second case study, we deployed our visualization on the 113-
subject brain networks from the Open Connectome project [1]. The
raw brain networks were also defined using 70 ROIs in FreeSurfer
based on the Desikan-Killiany atlas. Due to the higher resolution
DWIs and possibly, difference in the processing methods, both the
scale and distribution of the connectivity patterns appeared different
from those in the ADNI data set (which is expected). In this case, we
compared the subject’s brain network using their Composite Creativity
Index (CCI), which assesses the creativity of subjects in ten different
domains (e.g., visual arts, music, etc.) through a questionnaire. The
CCI score is normally distributed in population and we classified the
scores into two classes for the comparison tasks: the high class with
CCI higher than or equal to 100 (the average across populations) and
the low class smaller than 100. Our goal was to validate the results
from the seminal work by Flaherty [16] who showed that the frontal

and temporal lobes are important areas involved in creative thinking
and expression. Again, we started the analysis by displaying the brain
networks of the CCI high vs. low population groups. The comparison
view is further optimized by applying the network contrast and ma-
trix reordering operation. As illustrated in Figure 10, it is visible that
the frontal and temporal lobe connectivity patterns are stronger in the
high-CCI group than in the low-CCI group.

In recent work [27] [13], scientists found linkage between the pre-
frontal lobe and the creative mind and problem solving tendency. We
reproduced this discovery by incorporating the optimal ROI clustering
into the visualization design. As shown in Figure 1, the sub-cluster
corresponding to the prefrontal lobe in the frontal matrix reveals much
stronger connectivity vs. the other lobes in the contrast view.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented an integrated visual analytics method
for comparing blockwise brain network differences among population
groups, a highly relevant task for clinical research aimed at visualizing
the network of human brains. Existing visual representations such as
node-link graph and adjacency matrix suffer from low accuracy when
comparing real-life brain networks that are homogeneous and densely
interconnected. We tackle this problem by proposing: 1) a greedy
ROI clustering algorithm driven by the predictive classification per-
formance; 2) an improved NodeTrix design for displaying the block-
wise brain network connectivity patterns; and 3) a suite of customized
interactions to accelerate the visual comparison between groups of in-
terest. Visual clutter reductions and the linkage to the underlying fiber
tract data are achieved by two edge bundling algorithms considering
the separate semantic and geometric information. We demonstrate the
effectiveness of our method in blockwise brain network visual compar-
ison by both controlled user experiment in contrast to state-of-the-art
visualization methods, and case studies on real-world brain networks.

Despite the success of our method in visually comparing brain net-
works within the studied scope, there are several unsolved challenges
due to the enormous complexity and uncertainty of real-world human
brain networks. First, the current NodeTrix design supports up to two
levels of network hierarchy, while the high-resolution human connec-
tome can carry many more hierarchies, ranging from block and ROI
level to voxel and neuronal level. One aspect of our future work is to
explore new visualization and interaction designs to address this prac-
tical challenge. Second, in this work we only consider the pairwise
side-by-side comparison of brain networks. In fact, many diagnostic
classes are not bilateral, and comparisons are conducted among more
than two groups. We plan to study how the proposed method can be
extended to work with a multiple-comparison scenario. Finally, our
method can be extended to support the visual comparison of many
other geospatial networks (e.g., dynamic traffic and migration net-
works), on which there are inherent blockwise connectivity patterns
and the network node positions are geospatially fixed.
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[31] D. S. Margulies, J. Böttger, A. Watanabe, and K. J. Gorgolewski. Visual-
izing the human connectome. NeuroImage, 80:445–461, 2013.

[32] J. McGonigle, A. L. Malizia, and M. Mirmehdi. Visualizing functional
connectivity in fMRI using hierarchical edge bundles. In OHBM, 2011.

[33] B. Olabi, I. Ellison-Wright, A. M. McIntosh, S. J. Wood, E. Bullmore,
and S. M. Lawrie. Are there progressive brain changes in schizophre-
nia? a meta-analysis of structural magnetic resonance imaging studies.
Biological psychiatry, 70(1):88–96, 2011.
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