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Abstract—Why are some people more creative than others?
How do human brain networks evolve over time? A key
stepping stone to both mysteries and many more is to compare
weighted brain networks. In contrast to networks arising from
other application domains, the brain network exhibits its own
characteristics (e.g., high density, indistinguishability), which
makes any off-the-shelf data mining algorithm as well as
visualization tool sub-optimal or even mis-leading.

In this paper, we propose a shift from the current mining-
then-visualization paradigm, to jointly model these two core
building blocks (i.e., mining and visualization) for brain net-
work comparisons. The key idea is to integrate the human
perception constraint into the mining block earlier so as to
guide the analysis process. We formulate this as a multi-
objective feature selection problem; and propose an integrated
framework, BrainQuest, to solve it. We perform extensive
empirical evaluations, both quantitatively and qualitatively, to
demonstrate the effectiveness and efficiency of our approach.

I. INTRODUCTION

In recent decades, revolutionary neuroimaging techniques
(e.g., multimodal MRI) have advanced the fundamental
understandings of the neural connection and co-functioning
of in vivo human brains, known as the brain network [1] or
connectome [2]. The high-resolution measurement of brain
networks opens the door to many data mining problems. In
this paper, we focus on the comparative mining of weighted
brain networks among labeled populations [3]. For example,
what is the difference between the brain networks of a highly
creative group and a normal group? How do brain networks
evolve over time, in the aftermath of a major surgery?

At the first glance, it seems that many matured data
mining techniques could conveniently lend themselves to
this task. For example, feature selection and frequent graph
mining which optimize quantitative performance measures,
including the label classification accuracy, precision/recall,
etc. However, we argue that, in the context of the brain
network comparison, the interpretability of mining results
for end users is at least as important as their quantitative
performance measures. First, the current data generation
process in both brain imaging and network creation is
error-prone, and there is no generic comparative pattern on
brain networks among different population groups. These
factors lead to the significant uncertainties in the patterns

detected by algorithms. Such patterns would be worthless
without the cross-examination with historical records and
the manual confirmation by domain experts. Second, the
domain experts (e.g., neurologists and doctors) are not
necessarily data mining experts with the knowledge of the
full detail of mining algorithms. Instead, they might depend
on visual interfaces (e.g., graphs drawn in Figure 2) to
analyze the cortical difference. Third, on such interfaces, the
mechanism for human users to discover comparative patterns
and interpret the mining results is significantly different from
a fully automatic algorithm. In fact, human users are largely
governed by the perception theory of the vision system.

Applying the interpretability constraint by the human
perception, most relevant data mining techniques in their
current forms are sub-optimal for the brain network com-
parison task, if not infeasible at all. In particular, feature
selection methods such as statistical hypothesis testing and
sparse regression models [4][5] identify individual and/or
collections of network connections that are discriminative
among outcome groups (e.g., high/low IQ scores). However,
the comparative pattern on the selected features at the
perception-level is not often noticeable by the end users.
On the other hand, when interaction effects among features
are strong, feature selection methods might fail to detect the
subgraph patterns that have been shown to be prevalent in
brain networks [6].

The key innovation of this work is the joint modeling of
the discriminative objective in data mining and the inter-
pretability constraint in visualization guided by the human
perception mechanism. We present BrainQuest, an integrated
comparison framework on brain networks, that achieves
effectiveness and efficiency from both data analytics and
domain user’s perspectives. Our major contributions can be
summarized as below.
• A Novel Problem Definition based on an empirical study

of real-world brain network characteristics (Section II),
that integrates multiple objectives into a coherent feature
selection formulation. We propose a new constraint on
human perception which has not been studied before
(Section III);

• A Perception-Guided Modeling and Algorithm namely
the prioritized sparse group lasso, to fulfill our design
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Figure 1. (a) One subject’s brain network, nodes are placed at the center of each cerebral region, edges indicate fiber connections. The node label gives
the region index, with a full list on the left. The node color shows its degree. (b) The aggregated brain network of all subjects, nodes are grouped by
region index. The node label gives the number of aggregated regions and the edge color shows the number of original edges in the aggregation. (c) The
correlation coefficient matrix of all subjects’ unweighted topology vector. (d) The CDF of fiber connection strengths of 5 single subjects and all subjects.

(a) Comparison on gender with all features (b) Comparison on CCI with significant features (c) Comparison on CCI with features by lasso
Figure 2. Brain network comparison between two groups of subjects. Both edge thickness and color saturation indicate the average fiber strength in each
group: (a) Female v.s. male in purely visual comparison, all edges are displayed. (b) High CCI v.s. low CCI, 129 edges are displayed, all with significant
difference between groups (p < 0.05). (c) 83 edge features selected by lasso are displayed.

objectives simultaneously. The perception constraint is
satisfied through the experiment-driven model calibration
and a novel usage of the priority criterion for regularized,
group-based feature selections (Section IV, V);

• Comprehensive Evaluations by both numeric experi-
ments on quantitative measures linking to the design
objectives, and the user study on comparison tasks in
a practical scenario (Section VI).

II. EMPIRICAL STUDY

We studied the brain network of 113 subjects provided by
the Open Connectome project [2]. The data is measured by
multimodal MRI and processed in an automated pipeline [7].
Both gyral-based region-level small graphs and voxel-based
low-level big graphs are estimated from the raw MRI data.
Due to the wide acceptance of the gyral-based human brain
division atlas [8], we focus on the region-level small graph
in our study. On each subject, the small graph consists of 70
nodes, corresponding to cerebral regions in one human brain
(35 in each hemisphere). The edge between a pair of nodes
represents the fiber connection between cerebral regions,
where the edge strength indicates the degree of connectivity.
Each subject is recorded with rich demographic information,
including their gender, age, and measures on Full-Scale IQ
(FSIQ), Composite Creativity Index (CCI) and the Big Five
personality traits. We classify the value of each measure into
a few classes for the ease of comparison. For example, both
FSIQ and CCI are divided into two classes: the high class

with FSIQ (or CCI)≥100 and the low class with FSIQ (or
CCI)<100. Three interesting properties are found on these
brain networks, posing new challenges on the comparison
task studied here.

High density. On each subject, the 70-node brain network
has 800∼1208 edges, leading to a high graph density of
0.33∼0.5. Figure 1(a) illustrates the network of one random
subject. The central regions are almost fully connected.
Figure 1(b) further shows an aggregated brain network of
all subjects by grouping nodes of the same region together.
The aggregated network has 2016 edges and 50% edges are
shared by at least a half of subjects.

Indistinguishability. The networks among subjects are
similar in both topology and connection strength. To show
that, we build the Pearson’s correlation coefficient matrix
of the unweighted topology vector of all subjects. Each
topology vector has a length of 2415, including all binary
fiber connections of a subject. Figure 1(c) depicts the matrix,
almost every pair of subjects has a topology correlation
larger than 0.6, and the average correlation is close to 0.7.
The weighted topology correlations are even higher, with an
average of 0.9. On the fiber connection strength, Figure 1(d)
shows the CDF of connection strengths in 5 random subjects
and also the CDF from all subjects. Both the percentage of
weak connections (<100 in strength) and the distribution of
stronger connections are quite similar among individuals.

Limitation of feature selection. In comparing weighted
brain networks among subject groups, the inherent high



graph density and similarity in topology make it difficult
for a pure visualization-based approach. Figure 2(a) shows
an example comparing female and male subjects, using the
edge color and thickness to show the average connection
strength. People can discover some differences on individual
edges, but it is difficult to extract comparative subgraph
patterns. In fact, on the full graph level, the attribute of
subjects has little correlation with the overall topology.
We order the correlation coefficient matrix in Figure 1(c)
by subject’s CCI index. The figure reveals no significant
clustering pattern, except that the top 20 creative subjects
have a little bit different topology from the others. These
findings suggest using computational edge feature selection
methods in the brain comparison task. Unfortunately, two
baseline feature selection methods are shown to be ineffec-
tive in our initial studies. First, we conduct unpaired t-test
on each edge connection between comparing groups. Only
the edges with significant difference (p<0.05) are selected.
Figure 2(b) shows an example in comparing high v.s. low
CCI groups, in which 129 selected edges are displayed and
trivial edges (average strength below 100) are removed.
Though the comparison exhibits clear differences, it is
shown that the selected edges may not directly contribute to
the difference in outcome. We input these 129 edge features
into a standard logistic regression model to predict the CCI
group index. The average prediction accuracy under 10-fold
cross-validations reaches 52.28%, even worse than that of
a null model (53.1%). In the second trial, we apply L1
regularization with elastic net [5] on logistic regressions.
The best prediction accuracy (85.5%) is achieved on α = 1,
corresponding to the lasso regularization [4]. Figure 2(c)
depicts the 83 edges selected by lasso. These edges scatter
uniformly over the graph, some even without noticeable
difference in the visual comparison. It suggests that the
success in predicting the outcome does not necessarily lead
to an interpretable pattern in comparing brain networks.

III. PROBLEM

We first introduce the notations used throughout the
problem definition, as listed in Table I. The raw input is
the brain network of N subjects under study, represented by
undirected graphs G1, · · · , GN . Each graph Gi is composed
of a same number of nodes, denoted by n. Each node
represents one gyral-based region covering thousands of
adjacent MRI imaging voxels. There is an edge between each
pair of nodes if fiber connections are detected between their
regions. All edges are weighted by one continuous measure
X , normally the fiber connection strength. For simplicity,
we assume each graph to have the same number of edges:
e1, · · · , ep, where p = n(n−1)

2 . On Gi, the edge weight
vector by X is denoted by xi = (xi1, · · · , xip)′. For those
edges that do not have fiber connection, we set their weight
components to zero.

Table I
NOTATIONS.

SYMBOL DESCRIPTION
N , Gi # of subjects and their brain graphs
n, p, ej # of nodes, # of edges and each edge in the brain

graph
X , X , xi, xij edge weight variable, weight matrix on all subjects,

weight vector on Gi and the component on ej
Y , y, yi outcome variable on subjects, value on all subjects

and Gi

K, Sk , Vk # of levels for the outcome variable, the subset of
subjects for each level, and their aggregation views
for comparison

R, rk, rkj transfer function on edge aggregations, edge weight
on Vk and ej

γ, γj edge feature selection vector and the component for
ej

Xγ , Vk(γ) partial edge weight matrix, the view after feature
selection

At the network level, each subject and their brain graph
is associated with a discrete outcome variable Y , e.g., the
high/low CCI group of subjects by their CCI index. The
value of Y on N subjects is denoted by the vector y =
(y1, · · · , yN )′, where yi has K possible levels. This out-
come variable classifies all subjects into K disjoint subsets,
S1, · · · , SK . The brain graphs in each subset are aggregated
into one view by the region index, generating K views for
the visual comparison, denoted by V1, · · · , VK . Due to the
homogeneity of brain graphs, each view still has n nodes
and p = n(n−1)

2 edges. The edge weight by X on each view
is determined by a transfer function R over individual edge
weights. By default, we apply the mean function which is
used in standard visualization tools to illustrate the average
brain connectivity of a group. The edge weight vector on the
view of Vk is denoted by rk = (rk1, · · · , rkp)′. In this work,
without loss of generality, we target the pairwise comparison
(K = 2) between two views (V1, V2) aggregating brain
networks by a binary label, e.g., the high/low CCI class.
PROBLEM 1: PAIRWISE BRAIN NETWORK COMPARISON

Given: (1) the edge weight matrix X on a set of brain
connectivity graphs (design matrix); (2) the vector y of
a binary label on these graphs (response vector); (3) the
transfer function R to aggregate edge weights onto the
group-based views for visual comparison;
Select: the collection of useful edge features for comparison,
represented by the feature selection vector γ = {0, 1}p;
By optimizing four design objectives:

D1. Discriminative power by maximizing the binary classi-
fication accuracy on the label Y with selected features:
max P(ŷi = yi|Xγ ,y),
where Xγ denotes the partial design matrix after fea-
ture selection, ŷi is the predicted label on graph Gi;

D2. Sparsity by bounding the number of selected features:∑p
j=1 γj ≤ t,

where t is the parameter to control the sparsity. This
is to avoid overfitting in learning brain network labels



because we have p� N , i.e., a fat design matrix;
D3. Grouping effect by maximizing the clustering coeffi-

cient of selected edge features in the aggregated views:
max

∑K
k=1 ClusterCoeff(Vk(γ)),

Vk(γ) denotes the kth view after feature selection;
D4. Visibility of feature differences by a lower bound on

the ratio of visible differences for comparison:
P(|r1j − r2j | ≥ JND|γj = 1) ≥ ξ,
where ξ is the visibility threshold, JND is the just
noticeable difference in perception (Section V-B).

IV. MODEL AND ALGORITHM

A. Prioritized Sparse Group Lasso

We propose an integrated model based on the regulariza-
tion idea of lasso [4] to fulfill the four design objectives (i.e.,
D1∼D4 in Problem 1). The goal is to choose the optimal
feature weight vector w (which determines the feature
selection vector by γj = 1(0,+∞)(wj)) that minimizes:

NLL(w)︸ ︷︷ ︸
D1

+αλ||w||1︸ ︷︷ ︸
D2

+ (1− α)λ

M∑
m=1

√
pm

D4︷︸︸︷
θm ||w(m)||2︸ ︷︷ ︸

D3
(1)

where NLL(w) =
∑N
i=1 log(1 + e−yiw

Txi) denotes the
Negative Log Likelihood (NLL) for the weight vector w.
Edge features are partitioned into M groups with size
p1, · · · , pM , splitting the weight vector w into sub-vectors
w(1), · · · ,w(M).

The first term of this model is the NLL of a logistic
regression model. Minimizing NLL leads to an optimization
of the prediction accuracy, which meets the objective of
discriminative power (D1). The second term excluding α is
the standard L1 norm penalty to ensure feature sparsity (D2),
where the parameter λ is to control the degree of sparsity.
The third term is mostly derived from the group lasso penalty
[9] to select subgraph patterns based on an existing grouping
of edge features (D3). The parameter α is added to balance
the groupwise sparsity and the within-group sparsity.

The modeling to satisfy the design objectives of D1∼D3
is well-known to the data mining community as variants
of lasso methods [4][9][10], but a key challenge remains
open, i.e., how to meet D4, the perception-level visibility
of differences. Our major contribution in modeling is to
propose a new prioritized mechanism on the group feature
selection. The intuition is to encourage the selection of
group of features with a higher visibility than the desired
threshold; and suppress the selection of other less visible
groups. This is achieved by introducing a priority parameter,
denoted by θm, for each group of features. This model
adaptation seems straightforward, but the optimization of
these priorities is nontrivial. First, the selection/de-selection
of groups of features is a complex process, which is coupled
with the other parameters as well as the input data. We

yi xiwjγj

θm JNDw(m)pm

γ (m)

λ α

Npm

M

N
xi i
yi i
wj j
γj j
M
pm m
w(m) m
γ(m) m
θm m
λ
α
JND

Figure 3. Graphical model of the framework and the solution pipeline.

provide a theoretical analysis on this process to support
our optimization-based solution (Section IV-C). Second, the
exact modeling of visible differences for human in the
brain network comparison is unsettled, which requires user
experiments to calibrate the model (Section VI-A).

The entire model is named the prioritized Sparse Group
Lasso (pSGL). Figure 3 gives an explanation from the
perspective of bayesian graphical model. Filled boxes are
model parameters and input data, while hollow boxes are
the variables to compute. This is similar to the modeling of
group lasso and elastic net (Chapter 13.5 of [11]) except for
the introduction of θm and JND. To solve this joint model,
we propose a five-stage solution pipeline (Figure 3): (1) All
edge features are grouped by existing categories or clustering
algorithms (Section V-A); (2) The human perception model
is established to compute the visibility of differences in
the comparison (Section V-B); (3) A basic Sparse Group
Lasso (SGL) model without priority is solved by the latest
algorithm, and cross-validated to determine the best sparsity
parameters (Section V-C); (4) The priority for each feature
group is computed by an optimization algorithm (Section
IV-B); (5) The pSGL model with priorities is solved to meet
the visibility objective.

B. Optimization Algorithm for Priorities

In our solution, the key stage is to compute the priority
θm for each group of features (Stage 4 in Figure 3), based
on the result in solving the unprioritized SGL model (Stage
3 in Figure 3). The objectives in this stage are two-fold:
(1) satisfy the visibility of difference constraint (D4) in
the pSGL model; and (2) minimize the variance to the
unprioritized SGL model. This can be formulated as:

min

M∑
m=1

√
pm|θm − 1| · ||ŵ(m)||2

s.t.

∑M
m=1 pmξm(γ(m) + ∆γ(m))∑M
m=1 pm(γ(m) + ∆γ(m))

≥ ξ (2)

where ŵ(m) denotes the weight sub-vector on feature group
m solved for the unprioritized SGL model, γ(m) ∈ {0, 1}



indicates whether any feature in group m is selected in
the unprioritized SGL model, ∆γ(m) denotes the change
of feature selection on group m after applying priori-
ties. ∆γ(m) ∈ {−1, 0, 1} indicates group de-selection,
unchanged and selection, respectively. ξm denotes the ratio
of visible differences in feature group m.

We show that θm can be computed as having the minimal
change to enable ∆γ(m) (see the analysis in Section IV-C):

θm =

{
||S(− ∂NLL

∂w(m)
(ŵ),αλ)||2

(1−α)λ√pm |∆γ(m)| = 1

1 ∆γ(m) = 0
(3)

Substituting with (3), the optimization problem becomes

min

M∑
m=1

||ŵ(m)||2 · |
||S(− ∂NLL

∂w(m) (ŵ), αλ)||2
(1− α)λ

−√pm| · |∆γ(m)|

s.t.

M∑
m=1

pm(ξm − ξ)∆γ(m) ≥
M∑
m=1

pm(ξ − ξm)γ(m) (4)

This turns out to be a constraint linear programming problem
over ∆γ(m), given the weight vector ŵ solved for the
unprioritized SGL model. We propose a budget optimization
algorithm in Algorithm 1 to solve the problem. The idea is
to treat the right side of the constraint in (4) as the fixed
budget to spend, and the left side terms as investments to
meet the budget. The objective in (4) is to minimize the total
cost by each investment of ∆γ(m) 6= 0. The algorithm sorts
all feasible investments by the investment/cost efficiency and
spends the budget by this rank until no budget is left.

C. Theoretical Analysis

Correctness Analysis. We first discuss how the pro-
posed model regularizes the weight vector towards zero.
The objective function in (1) is not differentiable when
wj = 0 due to the L1 penalty, so this is a non-smooth
optimization problem. However, Equation 1 is clearly convex
so that the optimality condition can be obtained through
subgradient equations. Denote the objective in (1) by F (w),
its subgradient g at w0 satisfies

F (w)− F (w0) ≥ gT (w −w0),∀w ∈ Rp (5)

Consider a particular group of features with the weight sub-
vector ŵ(m), and the entire weight vector is denoted by ŵ.
This group will be zeroed out when ŵ(m) = 0 is one of the
subgradient satisfying (5). Taking gradients on (1) within the
group m, the condition in (5) becomes:

∂NLL

∂w(m)
(ŵ)∆ŵ(m)+αλ||∆ŵ(m)||1+(1−α)λ

√
pmθm||∆ŵ(m)||2 ≥ 0

where ∆ŵ(m) denotes an arbitrary small change from
ŵ(m) = 0, NLL is the first term of (1). With a few
reductions and analysis, the inequation translates to the

Algorithm 1: Optimization Algorithm for θm.

Input : ŵ, ŵ(m), pm, ξ, ξm, α, λ
Output: ∆γ(m), θm for m = 1, · · · ,M
begin

F ← ∅, budget← 0
for m← 1 to M do // initialization

γ(m) ← 1(0,+∞)(ŵ
(m)),∆γ(m) ← 0, θm ← 1

costm ← ||ŵ(m)||2|
||S(− ∂NLL

∂w(m)
(ŵ),αλ)||2

(1−α)λ −√pm|
investm ← pm(ξm − ξ)
budget← budget+ pm(ξ − ξm)γ(m)

if (γ(m) − 0.5) · investm < 0 then
F ← F ∪ {m} // feasible groups

for m ∈ F do // invest/cost efficiency

efficiencym ← min(|investm|,budget)
costm

Sort F by efficiencyF decreasingly
while budget > 0 && F 6= ∅ do
// iterations

s = F (1) // most efficient group
∆γ(s) ← 1− 2 · γ(s)

θs ←
||S(− ∂NLL

∂w(s)
(ŵ),αλ)||2

(1−α)λ√ps
budget← budget− |invests|
F ← F − {s}

end

form of soft thresholding in lasso, indicating the groupwise
sparsity condition:

||S(−∂NLL
∂w(m)

(ŵ), αλ)||2 ≤ (1− α)λ
√
pmθm (6)

where (S(z, αλ))j = (|zj | − αλ)+. It is clear that θm con-
trols whether the features in group m should be deselected
entirely, which leads to (3). Using a similar analysis, we
can derive the within-group sparsity condition for ŵj = 0
in group m:

|∂NLL
∂wj

(ŵ)| ≤ αλ (7)

In determining the priorities for the pSGL model, for
feature groups not selected in the unprioritized SGL model
(ŵ(m) = 0), we need to replace ŵ(m) in (4) with an
estimated cost of selecting the group, denoted by ŵ

(m)
+ .

Using the subgradient analysis in (6)(7), each ŵj in ŵ(m)
+

satisfies:
∂NLL

∂wj
(ŵ)sign(ŵj) + (α− α√pm +

√
pm)λ = 0 (8)

Notice that ∂NLL∂wj
(ŵ) is non-decreasing when ŵj increases.

Newton-Raphson method can be applied to solve (8) for
each ŵj , and finally compute ŵ(m)

+ .
Complexity Analysis. On the algorithm scalability, the

proposed Algorithm 1 scales well as the problem size grows.



The most costly step is the sorting of the list of feasible
groups, which has a complexity of O(Mlog(M)). In the
case of brain networks, the number of groups grows linearly
with the number of regions, having O(M) ∼ O(

√
p). Also,

the algorithm to solve SGL has a complexity of O(p) [12],
linear to the number of features. The total computation
complexity holds linear to the number of features. This is
validated by experiments in Section VI-D.

V. IMPLEMENTATION DETAIL

A. Feature Grouping

In the first stage of our solution, edge features are grouped
and input to the SGL model. Existing feature categories can
be applied as the group, e.g., the functional classification
of brain regions. In addition, two clustering methods are
supported. The first is the node clustering on the aggregated
brain graph of all subjects, again by the mean transfer
function. M − 1 node groups are obtained by optimizing
the clustering objective on weight graphs. Then M edge
feature groups are derived, M − 1 groups correspond to
the subgraphs by the node clustering and the other group
contains all inter-cluster edges. The second method directly
clusters edge features by translating the aggregated brain
graph into the corresponding line graph, where each node
refers to one edge in the brain graph. The edge weight
on a line graph is computed by the similarity between
adjacent edge features on the brain graph or their weight
multiplication [13].

B. Perception Model

After the feature grouping, we need to determine whether
each group of features is visible in the comparison by
human. Here we introduce the Just-Noticeable Difference
(JND) model [14] in the perception theory. The concept of
JND is defined as the minimal amount of perception magni-
tude that something must be changed for human to notice the
difference. Formally, given a reference stimulus with value
I on certain perception channel, the JND profile, denoted
as JND(I), quantifies a minimally increased stimulation
I+JND(I), at which just P% of people can detect changes
from the previous stimulation intensity. Normally P takes a
value of 50, so that a half of people will sense the change at
least as large as JND. By Weber’s Law, JND is proportional
to the original intensity: JND(I) = k ·I . The factor k takes
a constant value, but varies across different user bases and
modalities of the human perception (e.g., sound, vision).

For the scenario of visual comparison, the closest JND
model has been proposed on the image processing domain
[14]. There are two additional factors except for the intensity
difference: (1) background luminance adaptation; (2) spatial
masking. In this work, we adopt an extended JND model
from the image perception domain to the subgraph-level
JND on node-link graphs. On the visual comparison of

Figure 4. Brain network comparative visualization applying color palette,
feature capping and redundant coding mechanisms. 83 features are selected
by lasso with a 85.5% prediction accuracy.

a subgraph G, each edge is said to be noticeable if its
difference between groups is no smaller than JND(G).

JND(G) = β0 + β1 · E(G) + β2 · STD(G) (9)

where E(G) denotes the weighted average of edge color sat-
uration by edge length/space, STD(G) denotes the standard
deviation of edge color saturations. More detail and the ra-
tionale of this perception model is explained in the extended
technical report [15]. Note that the model parameters will
be calibrated through the user experiment in Section VI-A.

C. Model Estimation

In solving SGL and pSGL models with fixed priority
parameters, we apply Moreau-Yosida regularization based
algorithm in [12]. To determine the sparsity parameter of α
and λ, we first try a list of value in α ∈ [0, 1]. For each
α, the overall sparsity λ takes logarithmically spaced values
within the feasible range for nonzero weight vectors. The
best λ is determined as the one with the highest prediction
accuracy. Note that the prediction accuracy is calculated in
a 10-fold cross-validation by a random partition of the data.

D. Visual Design

In complement to the algorithmic framework, we propose
a customized visual design for the comparison of brain
networks, as shown in Figure 4: (1) Color palette. Beyond
the linear mapping from the edge feature to the color
saturation, we introduce data binning with 9 sequential color
classes. Here the color palette follows the suggestion in
ColorBrewer [16], the number of classes is determined by
the result in Section VI-A. (2) Feature value capping. In our
empirical study, it is found that only a few edge features
have noticeable difference (>10.9%) in the comparison.
We develop the feature capping method to amplify small
differences to be more visible. For example, in our case with
a capping value of 10800 (Figure 4), the visible difference
threshold is reduced to 1200 from 3000. For edges with
weight exceeding this cap, we use a single upper-bounded
color to draw, which makes up the augmented 10-color
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Figure 5. The user study results to calibrate the subgraph JND model: (a)
Distribution of user’s answer on visual difference. (b) 50% JND of three
visual coding methods: color saturation, line thickness, color+thickness. The
ratio of difference in X axis is measured as the absolute value difference
divided by the maximal edge value in its subgraph (the background
luminance), therefore these ratios are not uniformly distributed on [0,1].

palette. (3) Redundant coding. By the result in Section VI-A,
using both color saturation and line thickness can signif-
icantly improve user’s performance in visual comparison.
This is due to the redundant coding effect that leverages
more visual channels to display the difference.

VI. EVALUATION

Experiments are designed to answer the following ques-
tions: (Q1) Whether the proposed subgraph JND model cap-
tures the user’s performance in identifying visual differences
among brain networks? (Q2) How well does the proposed
model perform in optimizing the design objectives, both
individually and collectively? (Q3) How does our method
scale?

A. JND Experiment

We conducted a controlled user experiment on brain
network comparison to estimate the subgraph JND model
in (9).

Design. We recruited 17 subjects after they passed the
color-blindness test. The experiment followed the within-
subject design and each subject entered a total of 65 tasks
independently. The first 5 tasks were designed for training
and the following 60 tasks were the test phase, divided into
20 tasks for each of three visual difference coding methods:
(1) using color saturation, (2) using line thickness, and (3)
using the redundant coding on both channels.

Data and Tasks. In each task, we asked users to compare
two views: one with the original brain network data, and
the other with planned differences added on the edges of a
subgraph. All original views applied the average of 113 brain
networks in our data set. The other view with difference was
generated like this. First, we randomly chose a nontrivial
subgraph with a varying size by the pre-computed graph
clustering. Then each edge in this subgraph was selected
with some probability (0.5 by default). All selected edges
were increased/decreased in feature value by a ratio of their
original values. The ratio is uniformly controlled between

5% and 100% (20 samples). One of the three visual coding
methods is applied to display the difference. We ensured
a balanced design so that the full space of each method
can be explored. On each task, users were asked to choose
from three difference levels between the two views: (1)
No difference, (2) Little difference (random noise), (3)
Significant difference. We recorded both user’s choice and
their completion time.

Results. As shown in Figure 5(a), users indicate 82.7%
tasks to have at least little difference and 48.5% with a
significant difference. Based on this distribution, we choose
significant v.s. non-significant as the boundary for noticeable
difference. Also note that user #15 has largely skewed
answers from the others, so we have dropped his entries
in the analysis. On each of 60 tasks in the testing phase,
we check whether there is at least 50% users answering
with significant difference. This corresponds to whether the
task setting is beyond the JND or not. Then the model in (9)
can be fitted with logistic regression. Somehow surprisingly,
the estimated model in our scenario is quite simple. As
depicted in Figure 5(b), the above/below the JND outcome
can be perfectly classified by the ratio of difference on visual
channels. The regression analysis obtains a boundary ratio of
0.183 for using color saturation to visualize the difference,
0.238 for using line thickness, and 0.109 for color+line
thickness coding. These results demonstrate that the line
color coding for visual comparison is better perceived than
the line thickness coding, while the redundant coding of both
gains the best performance.

B. Performance Comparison

We evaluate the performance of following feature se-
lection methods: lasso (Elastic Net under α = 1), ridge
regression (Elastic Net under α→ 0) and Elastic Net; sparse
group lasso (SGL) under θm = 1 with both node and line
clustering by edge strength or strength difference between
comparative views; prioritized SGL (pSGL) under a ratio of
visible difference threshold (ξ) of 0.25; group lasso (SGL
under α = 0). We focus on the scenario of comparing brain
networks between the high CCI group (60 subjects) and
the low CCI group (53 subjects). The groupwise sparsity
α varies from 0 to 1 to cover the full space of lasso-
based methods. The statistical hypothesis testing, which only
selects features with significant differences (p < 0.05),
predicts the CCI class even worse than a null model (53.1%
accuracy), so we drop this model in the comparison. For
SGL models with different clustering algorithms, we choose
the node/line clustering with the best prediction accuracy.

We also compare with the frequent graph mining methods
in the experiment. In particular, we choose one of the most
popular methods, gSpan [17]. In our scenario, we take a
two-step approach. First, frequent subgraphs among all brain
networks are generated as candidates using gSpan. Second,
the extracted subgraphs are treated as the input features of a
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Figure 6. Performance comparison of feature selection methods on design objectives.

standard logistic regression to train a binary classifier for the
two CCI classes. It is very time consuming to run gSpan on
the entire brain networks, largely due to their high densities
(see Section II). To address this issue, we divide the 70-
node brain network into three parts, left-brain, right-brain
and the left-right connection subgraphs. gSpan is executed
separately on each set of regional networks.

All methods are compared on the objectives defined in
Section III. Figure 6 summarizes the result on discriminative
power, sparsity, visibility and grouping effect. As shown
in Figure 6(a), all feature selection methods achieve better
prediction accuracies with a larger α. This is because in our
setting, we have N � p. Thus, as we increase α and stress
more on the overall sparsity, fewer features are selected
(Figure 6(b)). Consequently, the prediction performance is
improved thanks to the less overfitting. Notice that, SGL
with an appropriate clustering could outperform Elastic Net
without an explicit grouping. The proposed pSGL model
further improves the prediction, mainly because it selects
an even smaller number of discriminative features and thus
reduces the overfitting. In the extreme case, gSpan would
only select a single small subgraph, which degrades the
prediction accuracy.

In terms of the visibility of difference, as illustrated in
Figure 6(c), the proposed pSGL model raises the visibility
to a level close to or above the specified threshold (0.25)
and is better than most of the lasso-based methods. The
gSpan algorithms achieve the best visibility, mainly because
only a small number of features are selected. As for the
clustering coefficient, Figure 6(d) shows that all lasso-based
methods have a better clustering effect with a smaller α,
which is consistent with their heuristics. The proposed pSGL
model leads to a smaller clustering coefficient because it
selects fewer edge features. Nonetheless, with a medium α
(0.4∼0.7), the pSGL model still has a better clustering than
other methods with α > 0.9, when all methods achieve a
comparable prediction accuracy at 80%. Frequent subgraph
mining algorithms produce clustered subgraphs by their
design.

In summary, the proposed pSGL model achieves the best
overall performance on the four design objectives of our
problem. Figure 6(e) illustrates the trade-off between the
prediction accuracy and the visibility of difference on a
scatterplot. Four representative plots of the pSGL model lie

on the upper-right corner, indicating a balance between the
prediction accuracy and the visibility. On the other hand,
the existing lasso methods stay at the lower-right corner,
suffering from poor visibility for comparison; and frequent
subgraph mining methods stay at upper-left corner, falling
short on the prediction accuracy.

Our results are better demonstrated with the visual com-
parison in Figure 7 (the result by lasso is given in Figure
4). By lasso, the best prediction accuracy of 85.3% is
reached, but the selected features are scattered out and
hard to compare by humans. Elastic Net (Figure 7(a)) and
SGL with line clustering (Figure 7(c)) both obtain the best
prediction under α → 1. The selected features are more
clustered, but still the comparative pattern is not significant
for humans to interpret. Group lasso with node clustering
(Figure 7(b)) shows perfectly clustered view, however, the
prediction accuracy is poor (58.2%) and there are too many
features to compare. The result by the proposed pSGL model
(α = 0.7 for the best visibility) is show in Figure 7(d). Our
method extracts more focused, clustered and visible patterns
for the human interpretation, in the meanwhile producing a
good prediction accuracy (77.5%). We can infer that the
connections of region #64 (rh-superiorfrontal) and #39 (rh-
caudalmiddlefrontal) are important for the CCI difference.
There is strong accordance to our findings in neuroscience
literature. The superior frontal region is involved in self-
awareness [18] while there is theory that self-awareness
strongly influences creativity [19]. At a higher level, both
regions of #64 and #39 are in the right hemisphere, and in
Figure 7(d), the high CCI group has stronger connections
than the low CCI group between #64/#39 and several
regions in the left hemisphere. This difference can be further
augmented by introducing binary edge filters that hide weak
connections below a threshold. Figure 7(e)(f) are the conse-
quences filtering over Figure 7(d). Only 12 and 8 features are
kept in the high CCI group while much less features stay in
the low CCI group. On the graph mining algorithms (Figure
7(g)(h)), visual differences can be perceived, though they
are not as discriminative as those from our pSGL model.

C. User Studies

Design. We follow up with a controlled user study to
evaluate the user performance of feature selection methods.
12 subjects were recruited, all with basic knowledge of
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Figure 8. User study result comparing feature selection methods.
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(b) pSGL with Priority Optimization

Figure 9. The algorithm scalability when the feature size is increased
exponentially. X/Y axis in both figures are under the same log scale.

graph and network. Each subject was required to complete
6 tasks, corresponding to 5 visualization results in Figure
4 and Figure 7(a-d), and one sample task at the beginning
for training. On each task, the subject was asked to select
all edges that have a significant difference between the
comparative view. They were instructed to work in a best-
effort manner. We recorded all the edges they selected
and the time for completion. By the end of the study,
we input the user selected features into a standard logistic
regression model and calculate the prediction accuracy for
each subject×task setting.

Result. Figure 8(a) presents the performance of top
subjects finishing with best prediction accuracies over each
feature selection method. The scatterplot shows the trade-off
between the prediction accuracy and the completion time,
corresponding to the model effectiveness for users. Figure
8(b) depicts the performance of top subjects selecting most
features over existing models (by the ratio of manually
selected features in those selected by models/algorithms).
This corresponds to the model efficiency for users. In both
figures, it is shown that pSGL lies on the upper-right area,
i.e., our method achieves the best performance in both user
effectiveness and efficiency.

D. Scalability

We test the scalability of the proposed method by synthe-
sizing larger brain networks. To upgrade the network into
K × 2415 features, (d

√
Ke − 1) new dummy nodes are

replicated from each of 70 source network nodes/regions.
Between each pair of new nodes, an edge is created with
a probability of K−1

(d
√
Ke−1)2 . The edge weight is determined

by the corresponding feature in the 70-region network, with
white noise in a 5% range. The number of feature groups
grows d

√
Ke times, linear to the number of network nodes.

Ten synthesized brain networks are used in the test, K =
20, 21, · · · , 29 times of the original network, until reaching
a million edge features. Two algorithms are applied, the first
with the baseline solver in [12] for the SGL model, and the
other is our proposed algorithm for the pSGL model. All
experiments are carried out on a commodity desktop as the
server and 8 external Intel Xeon 2.67GHz computing nodes
running Matlab parallel computing toolbox.

Results are summarized in Figure 9 in the uniform log-
log scale. By both algorithms, the computation time grows
linearly with the number of features. This is demonstrated
by the slopes of time bars in Figure 9(a)(b), which are
close to one in each setting. Compared with the baseline
algorithm in Figure 9(a), the priority optimization increases
the computation time by 30% ∼ 110%. This corresponds
well with our solution pipeline that solves the SGL model
twice. The latter solver can be faster when the priorities
are optimized to only select feature groups that increase the
visibility ratio towards the threshold.

VII. RELATED WORK

Brain Network Analysis emerges as a compelling topic
in data mining research due to the maturation of non-invasive
neuroimaging techniques [20]. The raw neuroimaging data is
modeled as a high-order tensor, e.g., by three-dimensional
image and time. On these tensor data, fundamental prob-
lems are defined [21], including the node discovery that
detects brain areas with coordinated activities, edge discov-
ery that creates weighted relationship between nodes, and
the verification of network strength. Both the tensor and
brain networks can be trained by learning methods (tensor
decomposition, feature selection) to infer the relationship
with certain outcomes, e.g., Alzheimer’s Disease [22][23].
In another thread, studies on the subgraph extraction and
analysis on brain networks are also popular, where the
challenge lies in the modeling and subgraph mining of
uncertain brain networks [24][6]. Though solid progress has
been made on this area, the problem of jointly optimizing
data mining and perception-level objectives has never been
studied before.

Feature Selection algorithms are widely applied in the
study of bioinformatic data, because of its tendency to carry
much more features (e.g. genes, biological pathway) than
the data sample. On regression analysis, the regularization-
based sparse learning has attracted intensive studies for
decades. The seminal work by Tibshirani [4] introduced
the lasso (aka L1 regularization), which adds the L1 norm
penalty to encourage zero weights for sparsity. In many



scenarios, lasso can be too aggressive to identify correlated
features. Therefore, Elastic Net [5] was proposed to exploit
the grouping effect in feature selection, which applies a
combination of L1 and L2 penalty. With a similar goal,
group lasso [9] was introduced, which allows specifying
the group of correlated features. The latest work on the
sparse group lasso [10] further combined the group lasso
with L1 penalty, to provide flexibility in controlling both
groupwise and within-group sparsities. On graph analysis,
the graph-guided fused lasso [25] was designed to cluster
selected features together. Compared to the existing work
on feature selection, we consider the novel perspective of
human perception and propose a new model in this objective.

Network Visualization has been well-studied to display
networks and graphs [26]. Due to the unique characteristic
of brain networks (e.g., high density), existing visualization
designs are often inadequate for brain networks (e.g., Figure
1(a-b)). Moreover, the task of visual comparison on brain
networks is largely unexplored. The work in [3] might be
one of the sparse literature on this subject. They studied
the effectiveness of two visual representations on weighted
graph comparison. This work is more a design study and
they do not consider data mining objectives.

VIII. CONCLUSIONS

This paper presents BrainQuest, an integrated mining
and visualization framework for the comparison of brain
networks. We consider statistical and perception constraints
on: (1) discriminative power; (2) sparsity; (3) grouping
effect; (4) visibility of differences. BrainQuest achieves
these goals by a multi-objective feature selection model.
Notably, the new constraint on perception is calibrated
through user experiment and optimized by a novel usage
of the priority criterion on lasso-based models. We propose
scalable algorithms to implement the framework and conduct
comprehensive evaluations in both quantitative experiment
and user study. The mining result corresponds well to
neuroscience findings, which demonstrates our success.
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(a) Elastic Net (165 features, 78.8% accuracy) (b) Group Lasso (232 features, 58.2% accuracy)

(c) SGL (118 features, 84.7% accuracy) (d) Prioritized SGL (54 features, 77.5% accuracy)

(e) Prioritized SGL with binary filters (12 features) (f) Prioritized SGL with binary filters (8 features)

(g) gSpan on left brain (16 features, 62.2% accuracy) (h) gSpan on left-right connections (17 features, 63.3% accuracy)
Figure 7. Visual comparison of feature selection results (best viewed in color and high resolution).


